
Appeared in� Int� Journal of Parallel Programming ������ Feb� ����� pages ���	�� c� ���� Plenum Publishing Company

The Fork�� Parallel Programming Language�

Design� Implementation� Application

Christoph W� Ke�ler Helmut Seidl

Fachbereich IV � Informatik� Universit�at Trier

D�����	 Trier� Germany

e�mail
 fkessler�seidlg�psi�uni�trier�de

Abstract

Fork�� is an imperative parallel programming language intended to express algorithms for
synchronous shared memory machines �PRAMs�� It is based on ANSI C and o�ers additional
constructs to hierarchically divide processor groups into subgroups and manage shared and private
address subspaces� Fork�� makes the assembly�level synchronicity of the underlying hardware
available to the programmer at the language level� Nevertheless� it supports locally asynchronous
computation where desired by the programmer�

We present a one�pass compiler� fcc� which compiles Fork�� and C programs to the SB�
PRAM machine� The SB�PRAM is a lock�step synchronous� massively parallel multiprocessor
currently being built at Saarbr	ucken University� with a physically shared memory and uniform
memory access time�

We examine three important types of parallel computation frequently used for the parallel
solution of real�world problems� While farming and parallel divide�and�conquer are directly sup�
ported by Fork�� language constructs� pipelining can be easily expressed using existing language
features
 an additional language construct for pipelining is not required�

Key words� Fork��� parallel programming language� synchronous program execution� PRAM� parallel pro�

gramming paradigms

� Introduction

It seems to be generally accepted that the most convenient machines to write parallel programs
for� are synchronous MIMD �Multiple Instruction Multiple Data� computers with shared memory�
well�known to theoreticians as Prams �i�e�� Parallel Random Access Machines�� Although widely
believed to be impossible� a realization of such a machine in hardware� the SB�PRAM� is undertaken
by a project of W�J� Paul at Saarbr�ucken ��� 	
� The shared memory with random access to any
location in one CPU cycle by any processor allows for a fast and easy exchange of data between the
processors� while the common clock guarantees deterministic and� if desired� lock�step�synchronous
program execution� Accordingly� a huge number of algorithms has been invented for this type of
architecture in the last two decades�

Surprisingly enough� not many attempts have been made to develop languages which allow both the
convenient expression of algorithms and generation of e�cient Pram�code for them�

One approach of introducing parallelism into languages consists in decorating sequential programs
meant to be executed by ordinary processors with extra primitives for communication resp� access

�

to shared variables� Several subroutine libraries for this purpose extending C or Fortran have
been proposed and implemented on a broad variety of parallel machines� While PVM is based on
CSP ��
� and therefore better suited for distributed memory architectures� the P library and its
relatives support the shared memory programming model as well� The basic primitives provided for
shared memory are semaphores and locks� Moreover� it provides shared storage allocation and a
�exible monitor mechanism including barrier synchronization �
� ��
� This approach is well suited
if the computations executed by the di�erent threads of the program are �loosely coupled�� i�e�� if
the interaction patterns between them are not too complicated� Also� these libraries do not support
a synchronous lockstep mode of program execution even if the target architecture does so�

Attempts to design synchronous languages have been made for the data�parallel programming
paradigm� This type of computation frequently arises in numerical computations� It mainly consists
in the parallel execution of iterations over large arrays� Data parallel imperative languages have
been designed especially to program SIMD �Single Instruction Multiple Data� computers like� e�g��
pipelined vector processors or the CM�� Examples of such languages are Modula��� ��
� Vector
C ��
 and C� ��
 or its relatives Dataparallel C ��
 and DBC ���
�

However� there is just one global name space supported by these languages� Other parallel compu�
tation paradigms like a parallel recursive divide�and�conquer style as suggested in ���
� ��	
� ���
�
��
� ���
 are not supported� On the other hand� most process�oriented languages� such as e�g� ���

or ���
� do not o�er a mode of strictly synchronous program execution�

The only attempt we are aware of which allows both parallely recursive and synchronous program�
ming are the imperative parallel languages FORK ���
 and ll ���
� Based on a subset of Pascal
�no jumps�� ll controls parallelism by means of a parallel do�loop which allows a �virtual� processor
to spawn new ones executing the loop body in parallel� Opposed to that� the philosophy of FORK
is to take a certain set of processors and distribute them over the available tasks� Given �xed sized
machines� the latter approach seems better suited to exploit the processor resources�

The design of FORK ���
 was a rather theoretical one� Pointers� dynamic arrays� nontrivial data
types and non�structured control �ow were sacri�ced to facilitate correctness proofs� In this way�
however� the language became completely unusable�

In order to provide a full��edged language for real use� we have added all the language features
which are well�known from sequential programming� Thus� the new FORK dialect Fork�� has
become �more or less� a superset of C� To achieve this goal we decided to extend the ANSI�C
syntax � instead of clinging to the original one� This also meant that �for the sequential parts� we
had to adopt C�s philosophy� We introduced the possibility of locally asynchronous computation
to save synchronization points and to enable more freedom of choice for the programming model�
Furthermore� we have abandoned the tremendous run time overhead of virtual processor emulation
by limiting the number of processes to the hardware resources� resulting in a very lean code generation
and run time system�

Fork�� o�ers two di�erent programming modes� the synchronous mode �which was the only one in
old FORK� and the asynchronous mode� Each function is classi�ed as either synchronous or asyn�
chronous� Within the synchronous mode� processors form groups that can be recursively subdivided
into subgroups� forming a tree�like hierarchy of groups� Shared variables and objects exist once
for the group that created them� private variables and objects exist once for each processor� All
processors within a leaf group operate synchronously�

In the asynchronous mode� the Fork�� run�time library o�ers important routines for various kinds
of locks� semaphores� barriers� self�balancing parallel loops� and parallel queues� which are required
for comfortable implementation of asynchronous algorithms� Carefully chosen defaults allow for
inclusion of existing sequential ANSI C sources without any syntactical change�

In this article we give a comprehensive overview over the language Fork�� and an impression of

	

CLOCK

.....

.....

MEMORY

PROGRAM

...

PP P0 1 p-1

.....

SHARED MEMORY

0 1
MM Mp-1

private address subspacesshared address subspace

shared
objects

global
shared objects
group-local

BASE
0

BASE
1
..... BASEp-1

HOST

Figure �� Block diagram of the SB�PRAM from the programmer�s view�

its implementation� We examine three important parallel computation models used for the parallel
solution of real�world problems� namely farming� parallel divide�and�conquer� and pipelining� and
show how these are supported by the Fork�� language� its compiler� and run time system�

The rest of the paper is organized as follows� Section 	 presents the SB�PRAM architecture from the
programmer�s �and compiler�s� point of view� Section � explains the basic concepts and mechanisms
of Fork�� to control parallel execution� Section describes the compiler and the runtime environ�
ment� Section � deals with Fork���s expressivity� The Appendix lists some example programs�

� The SB�PRAM from the programmer�s view

The SB�PRAM �	�
 is a lock�step�synchronous� massively parallel MIMD multiprocessor currently
under construction at Saarbr�ucken University� with up to ��� RISC�style processing elements and
with a physically shared memory of up to 	GByte� Private address subspaces are embedded into
the shared memory by handling private addresses relative to a BASE pointer �see Figure ��� All
processors receive the same clock signal� thus the machine is synchronous on the machine instruction
level� The memory access time is uniform for each processor and each memory location� it takes
one CPU cycle �i�e�� the same time as one integer or �oatingpoint operation� to store and two cycles
to load a �	 bit word� This ideal ratio of communication to computation has been achieved by
techniques like hashing� latency hiding� �intelligent� combining network nodes etc� Furthermore� a
special node processor chip �	
 had to be designed�

Each processor works on the same node program �SPMD mode�� Each processor has �� general�
purpose �	�bit registers� In the present prototype� all standard data types �also characters� are
�	 bit wide� Double�precision �oatingpoint numbers are not supported by hardware so far� The
instruction set is based on that of the Berkeley�RISC�� but provides more arithmetic operations�

including integer multiplication and base�	�logarithm� Usually� these are three�address�instructions
�two operands and one result�� Arithmetic operations can only be carried out on registers�

The SB�PRAM o�ers built�in parallel multipre�x operations
 for integer addition� maximization�
bitwise and and bitwise or which also execute within two CPU cycles�

The modulo bit is a globally visible �ag which is inverted after each machine cycle� Thus it can be
used to separate reading and writing accesses to the same shared memory location� as required by
the PRAM model�

�Unfortunately� division for integer as well as for �oatingpoint numbers has to be realized in software�
�The functionality of the multipre�x instructions will be explained in Subsection ����

�

Parallel I�O �to�from local hard disks� and sequential I�O �to�from the host� features have been
added� A single�user� single�tasking operating system is already available� a multi�user and multi�
tasking system is planned for the near future� System software �assembler� linker� loader� has been
completed� as well as an asynchronous C compiler which has been extended by an implementation
of the P parallel macro package �	�� 		
�

Because of its architectural properties� the SB�PRAM is particularly suitable for the implementation
of irregular numerical computations� non�numerical algorithms� and database applications�

The current university prototype implementation provides a �of course� not very exciting� proces�
sor speed of ��	� MFlops� However� this could be easily improved by one or even two orders of
magnitude by using faster chip and interconnection technology and by exploiting the usually large
potential of cycles doing only private computation� As shown in �	�
� it is indeed possible to reach
on representative benchmarks a sustained node performance very close to that of current distributed
memory multiprocessors� without sacri�cing the PRAM behaviour�

Since the SB�PRAM hardware is not yet fully available� we use a simulator for the machine that
allows to measure exact program execution times�

We would like to emphasize that the SB�PRAM is indeed a physical realization of a Multiprefix�
CRCW�Pram� the strongest PRAM model suggested so far�

� Fork�� language design

Processes �in the common sense� are executed in Fork�� by groups of processors� whereas what
is called a �thread� in other programming languages most closely corresponds to an individual
processor in Fork�� � the only di�erence being that the total number of processors in Fork��
is limited to the number of physically available PRAM processors� It has turned out that the
implementational overhead to maintain synchronously executing virtual processors is a too high
price to pay for a potential gain of comfort of programming� On the other hand� execution of an
arbitrary number of asynchronous threads can be easily implemented in Fork�� �see Subsection �����

Fork�� is based on ANSI C �	
� The new constructs handle the group organization� shared and pri�
vate address subspaces� and various levels of synchronicity� Furthermore� direct access to hardware�
supplied multipre�x operations is enabled�

This section is organized as follows� Subsection ��� introduces the concept of variables in Fork���
Subsection ��	 deals with constructs controlling synchronous and asynchronous program execution�
The concept of hierarchical processor groups is explained in subsection ���� Subsection �� describes
pointers and heaps� whereas subsection ��� presents the powerful multipre�x operators of Fork���
A brief overview over the new language constructs added to C can be found in Table i�

��� Shared and private variables

The entire shared memory of the PRAM is partitioned � according to the programmer�s wishes �
into private address subspaces �one for each processor� and a shared address subspace which may
be again dynamically subdivided among the di�erent processor groups� Accordingly� variables are
classi�ed either as private �pr� this is the default� or as shared �sh�� where �shared� always relates
to the processor group that de�ned that variable� Private objects exist once in each processor�s
private address subspace� whereas shared objects exist only once in the shared memory subspace of
the processor group that declared them�

�Currently� a ��� PE submachine� corresponding to 	 processor boards� is running� under a preliminary version of
the SB
PRAM operating system �status at end of July �����

Fork�� special program variables

name meaning sharity type remark

��STARTED�PROCS�� number of all available processors sh int read�only
��PROC�NR�� physical processor ID pr int read�only
� current group ID sh int may be rede�ned
� current processor ID pr int may be rede�ned

Fork�� function �pointer� type quali�ers

name meaning remark example for usage

sync declare �pointer to� synchronous function sync int foo� sh int k � �����

async declare �pointer to� asynchronous function default sh void ��task	Pmax
��void��

Fork�� storage class quali�ers

sh declare a shared variable sh int k�� �pk� a	��
�

pr declare a private variable default pr int i��pi� b	��
�

Fork�� language constructs� statements

name meaning example for usage mode body

start all processors enter synchronous mode start f a	�
��� g asynchr� synchr�
farm enter asynchronous mode farm puts��Hello��� synchr� asynchr�
fork split current group in subgroups fork������������������ synchr� synchr�
barrier group�local barrier synchronization barrier� asynchr� �

Fork�� language constructs� operators

name meaning example for usage mode operands result

mpadd�ps�ex� multipre�x sum ��mpadd��p��� both int �� int pr int

mpmax�ps�ex� multipre�x maximum mpmax��m�a	�
�� both int �� int pr int

mpand�ps�ex� multipre�x bitwise and k�mpand��m���� both int �� int pr int

mpor�ps�ex� multipre�x bitwise or k�mpor��m��� both int �� int pr int

ilog��k� �oor of base 	 logarithm l�ilog��k�� both int int

Fork�� memory allocation routines

name mode type parameters meaning

malloc async char � pr uint allocate block on private heap
free async void pr char � free block on private heap

shmalloc async char � pr uint allocate block on global shared heap
shfree async void pr char � free block on global shared heap

shalloc sync char � sh uint allocate block on automatic shared heap
shavail async uint void get size of free automatic shared heap space
shallfree sync void void free all blocks shalloced so far in current function

Fork�� group structure inspection

name mode type parameters meaning

groupsize sync int void get number of processors in my current group
async groupsize async int void same as groupsize� for asynchronous call sites
parentgroupsize sync int void get number of processors in my parent group

Table i� Fork�� at a glance� uint is an abbreviation for unsigned int�

�

The total number of started processors is accessible through the constant shared variable

��STARTED�PROCS��

The physical processor ID of each processor is accessible through the constant private variable

��PROC�NR��

The special private variable �	 is intended to hold the current group�relative processor ID� it is
initially set to the physical processor ID but may be rede�ned during program execution�

It is not part of the language to �x what happens if several processors write the same �shared� mem�
ory location in the same cycle� Instead� Fork�� inherits the write con�ict resolution method from
the target machine� In the case of the SB�PRAM� the processor with highest ��PROC�NR�� will win
and write its value �Priority�CRCW�Pram�� However� as several other write con�ict resolution
schemes �like Arbitrary� are also used in theory� meaningful Fork�� programs should not be de�
pendent on such speci�c con�ict resolution schemes� there are better language elements �multipre�x
instructions� see subsection ���� that cover practically relevant applications for concurrent write�

The return value of a non�void function is always private�

��� Synchronous and asynchronous regions in a Fork�� program

Fork�� o�ers two di�erent programming modes that are statically associated with source code re�
gions� synchronous mode and asynchronous mode�

In synchronous mode� processors remain synchronized on the statement level and maintain the
synchronicity invariant which says that in synchronous mode� all processors belonging to the same
�active� group operate strictly synchronous� ie� their program counters are equal at each time step�

In asynchronous mode� the synchronicity invariant is not enforced� The group structure is read�
only� shared variables and automatic shared heap objects cannot be allocated� There are no implicit
synchronization points� Synchronization of the current group can� though� be explicitly enforced
using the barrier statement�

Initially� all processors on which the program has been started by the user execute the startup code
in parallel� After that� these processors start execution of the program in asynchronous mode by
calling function main���

Functions are classi�ed as either synchronous �declared with type quali�er sync� or asynchronous
�async� this is the default�� main�� is asynchronous by default� A synchronous function is executed
in synchronous mode� except from blocks starting with a farm statement

farm �stmt�

which enters asynchronous mode and re�installs synchronous mode after execution of �stmt� by a
group�local exact barrier synchronization�

Asynchronous functions are executed in asynchronous mode� except from blocks starting with the
start statement

start �stmt�

�In the old FORK proposal� the group�relative processor ID was denoted by ��

�

root group

leaf groups (currently active)

Figure 	� The group hierarchy in Fork�� forms a logical tree�

The start statement� only permitted in asynchronous mode� switches to synchronous mode for its
body �stmt�� It causes all available processors to synchronize� using the exact barrier synchroniza�
tion routine described in subsection ��� and execute �stmt� simultaneously and in synchronous
mode� with unique processor IDs � numbered successively from � to ��STARTED�PROCS�����

To maintain this static classi�cation of code into synchronous and asynchronous regions� within an
asynchronous region� only async functions can be called� In the other way� calling an async function
from a synchronous region results in an implicit entering of the asynchronous mode� the programmer
receives a warning� Using farm within an asynchronous region is super�uous and may even introduce
a deadlock �a warning is emitted��

Asynchronous functions must not allocate shared local variables� This also means that shared formal
parameters for asynchronous functions are forbidden�

The present implementation supports start statements only at the top level of the program� there
should not be more than one start active at the same time� Currently we are working on a
generalization of start that allows arbitrary nesting of synchronous and asynchronous regions �	�
�

��� The group concept

Fork�� programs are executed by groups of processors� rather than by individual processors� Initially�
there is just one group containing all available processors� Groups may be recursively subdivided�
Thus� at any point of program execution� all presently existing groups form a tree�like group hier�

archy� Only the leaf groups of the group hierarchy are active �see Figure 	��

Subgroups of a group can be distinguished by their group ID� The group ID of the leaf group a
processor is member of can be accessed through the shared variable �� Initially� � is set to � but
may be rede�ned appropriately during program execution� Both the group�relative processor ID �

and the group ID � are automatically saved when splitting the current group� and restored when
reactivating it� However� the user is responsible to assign reasonable values to them�

At each point of program execution in synchronous mode� Fork�� maintains the synchronicity in�
variant which requires that all processors belonging to the same active processor group are operating
strictly synchronously� i�e�� they follow the same path of control �ow and execute the same instruc�
tion at the same time� Also� all processors within the same group have access to a common shared
address subspace� Thus� newly allocated shared objects exist once for each group allocating them�
A processor can inspect the number of processors belonging to its current group using the routine

sync int groupsize���

At the entry into a synchronous region� the processors form one single processor group� However� it
may be possible that control �ow diverges at branches whose conditional depends on private values�

�

To guarantee synchronicity within each active subgroup� the current leaf group must then be split
into subgroups�

We consider an expression to be private if it is not guaranteed to evaluate to the same value on
each processor� i�e� if it contains a private variable� a function call� or a multipre�x operator �see
Subsection ����� Otherwise it is shared which means that it evaluates to the same value on each
processor of the group�

Shared if or loop conditions do not a�ect the synchronicity� as the branch taken is the same for all
processors executing it�

At an if statement� a private condition causes the current processor group to be split into two
subgroups� the processors for which the condition evaluates to a non�zero value form the �rst
subgroup and execute the then part while the remaining processors execute the else part� The
current �parent� group is deactivated� its available shared address space is subdivided among the
new subgroups� Each subgroup arranges a shared stack and a shared heap of its own� allowing
to declare and allocate shared objects relating only to that subgroup itself� Also� the subgroups
inherit their group IDs � and the group�relative processor IDs � from the parent group but may
rede�ne them locally� When both subgroups have �nished the execution of the if statement� they
are released� and the parent group is reactivated by explicit synchronization of all its processors�

A similar subgroup construction is required also at loops with a private exit condition� Assume that
the processors of a leaf group g arrive in synchronous mode at a loop statement� All processors that
will execute the �rst iteration of the loop form a subgroup g� and stay therein as long as they iterate�
Once the loop iteration condition has been evaluated to zero for a processor in the iterating group g��
it leaves g� and waits at the end of the loop to resynchronize with all processors of the parent group
g� However� at loops it is not necessary to split the shared memory subspace of g� since processors
that leave the loop body are just waiting for the last processors of g to complete loop execution�

As an illustration� consider the dataparallel loop

sh int p � groupsize���

pr int i�

for �i��� i�n� i��p� a	i
 �� c � b	i
�

This causes the private variable i of processor k� � � k � p� �� to loop through the values k� k� p�
k � 	p etc� The whole index range from � to n� � is covered provided that the involved processors
have ID�s � consecutively ranging from � to p� ��

Splitting into subgroups can� in contrast to the implicit subdivision at private branch conditions�
also be done explicitly� by the fork statement� Executing

fork � e�� �e
� ��e� � �stmt�

means the following� First� the shared expression e� is evaluated to the number of subgroups to
be created� Then the current leaf group is split into that many subgroups� Evaluating e
� every
processor determines the number of the newly created leaf group it will be member of� Finally� by
evaluating e�� the processor can readjust its current processor number within the new leaf group�
Note that empty subgroups �with no processors� are possible� an empty subgroup�s work is imme�
diately �nished� though� Continuing� we partition the parent group�s shared memory subspace into
that many equally�sized slices and assign each of them to one subgroup� such that each subgroup has
its own shared memory space� Now� each subgroup continues on executing �stmt�� the processors
within each subgroup work synchronously� but di�erent subgroups can choose di�erent control �ow
paths� After the body �stmt� has been completed� the processors of all subgroups are synchronized�
the shared memory subspaces are re�merged� the parent group is reactivated as the current leaf
group� and the statement following the fork statement is executed synchronously by all processors
of the group�

�

��� Pointers and heaps

Fork�� o�ers pointers� as opposed to its predecessor FORK� The usage of pointers in Fork�� is
as �exible as in C� since all private address subspaces have been embedded into the global shared
memory� In particular� one needs not distinguish between pointers to shared and pointers to private
objects� in contrast to some other parallel programming languages� for example C� ��
� Shared
pointer variables may point to private objects and vice versa� the programmer is responsible for such
assignments making sense� Thus�

sh int �sharedpointer�

declares a shared pointer which may point either to a private or to a shared location�

For instance� the following program fragment

pr int privatevar� �privatepointer�

sh int sharedvar�

privatepointer � �sharedvar�

causes the private pointer variable privatepointer of each processor participating in this assignment
to point to the shared variable sharedvar� � Accordingly� if all processors execute the following
statement simultaneously

sharedpointer � �privatevar� ��concurrent write� result is deterministic��

the shared pointer variable sharedpointer is made point to the private variable privatevar of the
processor with the highest processor ID participating in this assignment� Thus� a shared pointer
variable pointing to a private location nevertheless represents a shared value� all processors in the
scope of the group that declared that shared pointer see the same private object privatevar through
that pointer� In this way� private objects can be made globally accessible�

Fork�� supplies three kinds of heaps� one permanent� private heap for each processor� one automatic
shared heap for each group� and a global� permanent shared heap� Space on the private heaps can
be allocated and freed by the asynchronous functions malloc�� and free�� known from C� Space
on the permanent shared heap is allocated and freed accordingly using the asynchronous functions
shmalloc�� and shfree��� The automatic shared heap is intended to provide fast temporary storage
blocks which are local to a group� Consequently� the life range of objects allocated on the automatic
shared heap by the synchronous shalloc�� function is limited to the life range of the group by
which that shalloc�� was executed� Thus� such objects are automatically removed if the group
allocating them is released� For better space economy� there is a synchronous function shallfree��
which frees all objects shalloced so far in the current �synchronous� function�

Pointers to functions are also supported� However� special attention must be paid when using private
pointers to functions in synchronous mode� Since each processor may then call a di�erent function
�and it is statically not known which one�� calling a function using a private pointer in synchronous
mode would correspond to a huge switch� opening a separate subgroup for each function possibly
being called � a tremendous waste in shared memory space� For this reason� calls to functions via
private pointers automatically switch to the asynchronous mode if they are located in synchronous
regions� Private pointers may thus only point to async functions�

�

��� Multipre	x operators

The SB�PRAM supports powerful built�in multipre�x instructions called mpadd� mpmax� mpand and
mpor� which allow the computation of multipre�x integer addition� maximization� and and or for
up to ��� processors within two CPU cycles� We have made available these machine instructions
as Fork�� operators �atomic expression operators� not functions�� These can be used in synchronous
as well as in asynchronous mode�

For instance� assume that the statement

k � mpadd� ps� expression ��

is executed simultaneously by a set P of processors �e�g�� a group�� ps must be a �potentially private�
pointer to a shared integer variable� and expression must be an integer expression� In this way�
di�erent processors may address di�erent sharedvars� thus allowing for multiple mpadd computa�
tions working simultaneously� Let Qs � P denote the subset of the processors in P whose pointer
expressions ps evaluate to the same address s� Assume the processors qs�i � Qs are subsequently
indexed in the order of increasing physical processor ID ��PROC�NR�� �� First� each processor qs�i
in each Qs computes expression locally� resulting in a private integer value es�i� For each shared
memory location s addressed� let vs denote the contents of s immediately before executing the mpadd
instruction� Then� the mpadd instruction simultaneously computes for each processor qs�i � Qs the
�private� integer value

vs � es� � es�� � � � �� es�i��

which is� in the example above� assigned to the private integer variable k� Immediately after execution
of the mpadd instruction� each memory location s addressed contains the global sum

vs �
X
j�Qs

es�j

of all participating expressions� Thus� mpadd can as well be �misused� to compute a global sum by
ignoring the value of k�

For instance� determining the size p of the current group� including consecutive renumbering ��������p�
� of the group�relative processor ID �� could be done by

sh int p � ��

� � mpadd� �p� ��

where the integer variable p is shared by all processors of the current group�

The mpadd instruction executed in the course of the evaluation of a mpadd�� expression is assumed to
work atomically� on the SB�PRAM it executes within one cycle �plus one delay cycle for availability
of the private result values at each processor�� Thus� mpadd�� and the other multipre�x operators
can be directly used as atomic fetch�op primitives �	�
 which are very useful to access semaphores
in asynchronous mode� e�g�� simple locks which should sequentialize access to some shared resource
�critical section� see e�g� �	�
�� Let

sh int l � �� �� simple lock ��

be a global shared variable realizing a simple lock� where a zero value means that the lock is open�
and a nonzero value means the lock to be locked� l is initialized to zero at the beginning of the
program� Let � denote the address of variable l� A processor leaving the critical section clears the
lock�

�Note that this order is inherited from the hardware and does not depend on the current value of the user�de�ned
processor ID ��

��

l � ��

Waiting for access to the critical section to be guarded by l could be realized by the following
program fragment�

while �mpadd� �l� �� �� �� �

As long as l is locked �i�e�� v� is nonzero�� the mpadd�� expression evaluates to a nonzero value
on any processor� Thus� a processor iterates until it obtains a zero from the mpadd�� expression
�i�e�� it becomes q�� in our notation used above�� Since all other iterating processors �the q��i with
i � �� obtain nonzero values� it is guaranteed that only one processor enters the critical section�
Fork�� o�ers several types of locks� simple locks� safe locks� fair locks� and reader�writer locks� The
routines manipulating these are implemented in SB�PRAM assembler� because they are often used
in asynchronous computations�

The generalization of mpadd�� etc� to arrays of arbitrary size n with time complexity O�n�p� on p
processors is straightforward �see Appendix A����

Beyond mpadd��� Fork�� also supports the multipre�x operators mpmax��� mpand�� �bitwise and�
and mpor�� �bitwise or�� which make the corresponding multipre�x instructions of the SB�PRAM
directly available to the programmer at the language level� Unfortunately� the SB�PRAM hardware
designers supplied these powerful multipre�x instructions only for integer computations� because of
hardware cost considerations� Floatingpoint variants of mpadd and mpmax clearly would have been
of great use in parallel linear algebra applications �	�
� For instance� parallel pre�x allows for a fast
solution of recurrence equations �	�
�

Furthermore� many parallel algorithms� also nonnumerical ones like sorting� can be implemented
using parallel pre�x operators as basic building blocks ���
� And last but not least� global sum� or�
and� max� min and similar reductions are an important special case of parallel pre�x computation�

Generic Fork�� multipre�x routines for any data type are provided in the PAD library ���
� with
time complexity O��n�p� � log p���

��
 Caveats in Fork�� programming

����	 Spaghetti jumping

All non�structured statements a�ecting control �ow �goto� longjmp� break� return� continue� are
dangerous within a synchronous environment since the jumping processors may not enter or leave
groups on the normal way �via subgroup construction or subgroup merge��

For jumps of type break� continue� and return� the target group is statically known� it is a
predecessor of the current leaf group in the group hierarchy tree� In this case� the compiler can
provide a safe implementation even for the synchronous mode�

For a goto jump� however� the target group may not yet have been created at the time of executing
the jump� Even worse� the target group may not be known at compile time� Jumps across syn�
chronization points usually will introduce a deadlock� For this reason� goto jumps are under the
programmer�s responsibility� However� as long as source and destination of a goto are within the
same asynchronous region� there is no danger of deadlock�

����
 Shared memory fragmentation

The reader may already have noticed that it is not wise to have more fork or private if statements
on the recursive branch of a recursive procedure �like parallel depth��rst�search� for instance� than

��

absolutely necessary� Otherwise� after only very few recursion steps� the remaining shared memory
fraction of each subgroup has reached an impracticably small size thus resulting in early stack
over�ow�

If all leaf groups consist of only one processor� one should better switch to asynchronous mode
because this avoids the expensive time penalty of continued subgroup formation and throttling of
computation by continued shared memory space fragmentation�

� Compilation issues of Fork��

To compile Fork�� programs� we �rst install a shared stack in each group�s shared memory subspace�
and a private stack in each processor�s private memory subspace� A shared stack pointer sps and a
private stack pointer spp are permanently kept in registers on each processor�

As in common C compilers� a procedure frame is allocated on each processor�s private stack� holding
private arguments �pointed to by a private argument pointer app�� saved registers� and private local
variables� pointed to by a private frame pointer fpp� In special cases� up to private arguments can
be passed in registers�

When calling a synchronous function� a shared procedure frame is allocated on the group�s shared
stack if the callee has shared arguments �pointed to by aps� or shared local variables �pointed to by
fps�� An asynchronous function never has a shared procedure frame�

��� Group frames and synchronization

To keep everything consistent� the compiler builds shared and private group frames at each group�
forming statement�

A shared group frame is allocated on each group�s shared memory subspace� It contains the syn�
chronization cell� which normally contains the exact number of processors belonging to this group�
At a synchronization point� each processor decrements �see Figure �� this cell by a mpadd������

instruction� and waits until it sees a zero in the synchronization cell� Thereafter the processors are
desynchronized by at most 	 clock cycles� After correcting this� the synchronization cell is restored
to its original value� The overhead of this synchronization routine �i�e� the time that is consumed if
the processors are already synchronous at entry� is �� to �� clock cycles �depending on the current
value of the modulo bit�� this may still be optimized to �	 cc if the compiler would inline the function
and statically keep track of the modulo bit where possible�

The corresponding private group frame is allocated on each processor�s private memory subspace� It
mainly contains the current values of the group ID � and the group�relative processor ID �� Private
loops only build a shared group frame for the group of iterating processors� A private group frame
is not necessary as long as there are no changes of the values for � and ���

Intermixing procedure frames and group frames on the same stack is not harmful� since subgroup�
creating language constructs like private if and fork are always properly nested within a function�
Thus� separate stacks for group frames and procedure frames are not required� preserving scarce
memory resources from additional fragmentation�

��� Pointers and heaps

The private heap is installed at the end of the private memory subspace of each processor� For
each group� its shared heap is installed at the end of its shared memory subspace� The pointer

�Changes to � and � inside a loop are currently not supported by the compiler�

�	

�globl forklib�sync
forklib�sync� ��no parameter� uses r��� r�	��
bmc 	 ��force next modulo 	��
getlo
��r�� ��load constant
� 	��
mpadd gps���r�� ��decr� sync cell ���

FORKLIB�SYNCLOOP�
ldg gps���r�	 ��load sync cell 	��
getlo ��r�� ��load constant � ���
add r�	�	�r�	 ��compare with zero 	��
bne FORKLIB�SYNCLOOP ��until zero seen ���

ldg gps���r�	 ��load sync cell 	��
mpadd gps���r�� ��repair sync cell ���
add r�	�	�r�	 ��compare with zero 	��
bne FORKLIB�SYNCHRON ��late wave� bypass ���
nop ��delay early wave 	��
nop ��delay early wave ���
FORKLIB�SYNCHRON�
return ��sync� finished 	��
nop ��delay
slot return ���

Figure �� The exact group�local barrier syn�
chronization routine in fcc� as proposed by
J�org Keller �Saarbr�ucken University�� A pro�
cessor�s current leaf group�s synchronization
cell� located in the shared group frame� is
addressed by gps�� The bmc instruction
causes the processors to enter the SYNCLOOP
loop only if the modulo bit is �� Because the
SYNCLOOP loop has length � all iterating pro�
cessors leave the loop �as soon as they see a
zero in the synchronization cell� in two waves
which are separated by two machine cycles�
This delay is corrected in the last part of the
routine� Processors that belong to the late
wave see already a number di�erent from zero
in the synchronization cell� because the pro�
cessors of the early wave already incremented
them� When returning� all processors are ex�
actly synchronous�

eps to its lower boundary is saved at each subgroup�forming operation which splits the shared
memory subspace further� and restored after returning to that group� Testing for shared stack or
heap over�ow thus just means to compare sps and eps�

��� Example� Translation of private if statements

As an illustration for the compilation of subgroup�creating constructs� we pick the if statement
with a private condition e�

if �e� statement else statement�

It is translated into the following pseudocode to be executed by each processor of the current group�

��� divide the remaining free shared memory space of the current group �located between shared
stack pointer and shared heap pointer� into two equally�sized blocks B and B�

�	� evaluate e into a register reg

��� allocate a new private group frame on the private stack� copy the old values of � and � to their
new location

�� if �reg �� goto ����

��� set shared stack pointer and shared heap pointer to the limits of B

��� allocate a new shared group frame on that new shared stack

��� determine current �sub�group size by mpadd��synccell��

��� execute statement

��� goto ���

���� set shared stack pointer and shared heap pointer to the limits of B�

���� allocate a new shared group frame on that new shared stack

��	� determine current �sub�group size by mpadd��synccell��

���� execute statement�

��� remove shared and private group frame� restore shared stack pointer� heap pointer� and the
group pointers� call the synchronization routine �Figure ��

��

construct overhead in SB�PRAM clock cycles

exact group�local barrier synchronization �� � tsync � ��
program startup code �� � �� jprivate �data sectionj
start� �� � tsync

synchronous loop with private exit condition � � ���iterations � tsync

synchronous if with private condition �� � tsync

fork � � tdivision � tsync

farm tsync

call to a synchronous function �� ���saved regs� � ��args� � tsync

call to an asynchronous function � ���saved regs� � ��args�
shalloc�� �
integer division �� � tdivision � � �data dependent�

Table ii� Overheads for Fork�� language constructs

Important optimizations �as ��	� ��
 did for the old FORK standard� will address waste of memory
in the splitting step ��rst item�� For instance� if there is no else part� splitting and generation of
new group frames is not necessary� A private group frame is also not required if � and � are not
rede�ned in statement resp� statement�� If the memory requirements of one branch are statically
known� all remaining memory can be left to the other branch�

In the presence of an else part� the synchronization could be saved if the number of machine cycles
to be executed in both branches is statically known� then the shorter branch can be padded by a
sequence or loop of nop instructions�

��� Translation of break� continue� and return

Processors that leave the current group on the �unusual� way via break� return and continue� have
to cancel their membership in all groups on the path in the group hierarchy tree from the current leaf
group to the group corresponding to the target of that jump statement� The number of these groups
is� in each of these three cases� a compile�time constant� For each interjacent group �including the
current leaf group�� its private group frame �if existing� has to be removed� its synchronization cell
has to be decremented by a mpadd instruction� and the shared stack� group� and heap pointers have
to be restored� Finally� the jumping processors wait at the synchronization point located at the end
of the current iteration �in the case of continue�� at the end of the surrounding loop �in the case of
break�� or directly after the call of the function �in the case of return�� respectively� for the other
processors of the target group to arrive at that point and to re�synchronize with them�

��� Implementation

A �rst version of a compiler for Fork�� has been implemented� It is partially based on lcc ��� a one�
pass ANSI C�compiler developed by Chris Fraser and David Hanson at Princeton� NY ��� ��� ��
�

Table ii shows the overheads introduced by the di�erent constructs of the language� Division has
to be implemented in software� therefore the huge �and varying� number in the last line� Also� in a
synchronous region� extra synchronization has to occur afterwards� The cost of calls clearly can be
reduced by passing arguments in registers �this is standard for most library functions�� The cost of
ifs can be reduced drastically whenever at most one of the branches contains function calls�

The compiler generates assembler code which is processed by the SB�PRAM�assembler prass into
object code in COFF format� The SB�PRAM�linker produces executable code that runs on the

�

SB�PRAM�simulator pramsim but should also run on the SB�PRAM as well once it is available� A
window�based source level debugger for Fork�� is currently in preparation�

��
 Limitations of the Compiler

Currently� conditional expressions e!l � r in synchronous mode do � unlike the private if statement
� not cause splitting of the current group if e is a private condition�� Thus� a private condition emay
introduce asynchronity if the evaluations of expressions l and r take di�erent time on the PRAM�
which may cause wrong results or even a deadlock� a warning is emitted in this case� Nevertheless�
this does not restrict the programmer� he could use the if statement instead�

The same holds for switch statements in synchronous mode� Currently� there is no group splitting
provided� Thus� a private selector may introduce a deadlock �warning is given�� If a synchronous
switch over a private selector cannot be avoided� the programmer should replace it by a �if possible�
balanced� if cascade�

Attention must be paid if continue is used in a loop� If between the continue and the end of the
loop body some synchronization will take place �e�g�� at the end of a private if� of a private loop�
of a sync function call or of a farm�� a deadlock may be introduced� This problem will disappear
in a future release of fcc by enabling the user to indicate such situations a priori by specifying a
compiler option that introduces an extra shared group frame for each loop� A general implementation
of continue is not reasonable for a one�pass�compiler like fcc�

The C library is not yet fully implemented� but we have provided the most important routines� e�g�
for screen and �le input�output� string manipulation� qsort��� pseudo�random number generation�
and mathematical functions� Extending the functionality of asynchronous mode programming� we
are also working on a set of assembler�coded primitives to handle self�scheduling parallel loops and
parallel queues �	�
�

The following further optimizations may be useful in a future implementation but cannot be imple�
mented in the current prototype due to the one�pass�nature of the compiler�

� Due to the possibility of multiple occurrences of return in a called function� the caller has
to provide a shared group frame for each synchronous function call� If the callee were stati�
cally known to have just one such exit point� the overhead of creating this group frame and
synchronizing after the return could be avoided�

� Opening a loop group also for a shared loop exit condition is not necessary if the loop body
contains no break or return statement inside a one�sided if statement�

�� Availability of the compiler

The Fork�� compiler including all sources is available from ftp�informatik�uni�trier�de in direc�
tory �pub�users�Kessler by anonymous ftp� This distribution also contains documentation� exam�
ple programs and a preliminary distribution of the SB�PRAM system software tools including assem�
bler� linker� loader and simulator� The Fork�� documentation is also available on the WWW via the
URLs http���www�wjp�cs�uni�sb�de�fork���index�htmland http���www�informatik�uni�trier�de�
�kessler�fork���html�

� Parallel programming paradigms supported by Fork��

�This is partly due to technical reasons� namely the strange construction of expression DAGs in the lcc�

��

parallel hardware

parallel programming model

parallel computation model

parallel algorithm

problem

Figure � The levels of parallel programming

A parallel architecture can be �very roughly� characterized as a combination of features from each
of the following three hardware categories��

synchronous
asynchronous

��
shared memory
message passing

��
MIMD
SIMD

�

where� in each category� the upper feature is widely regarded as stronger than the lower feature�
Not all of these combinations make sense� such as e�g� asynchronous SIMD� The SB�PRAM o�ers
the top combination of the stronger hardware features�

Usually� �parallel� programming languages do not o�er direct access to the hardware but establish�
as an abstract view of the hardware� a programming model which can more or less e�ciently be
emulated by the hardware� E�g�� physical wires may be abstracted by logical channels� as in Occam
���
 and CSP ���
� or a virtual shared memory may be simulated on top of a distributed memory
message passing system�

The goal of the programming language Fork�� is to make the bene�ts of each category of hardware
features available as a programming model� Thus the other common parallel programming models
can easily be emulated in Fork��� E�g�� asynchronous processes with monitors can be implemented
using the multipre�x operators in a straightforward way� as we exempli�ed in subsection ���� or
synchronous operations on processor arrays may be implemented using dataparallel loops� as we
mentioned in subsection ����

Even more abstract are parallel computational models� sometimes also referred to as skeletons in the
literature �e�g�� ��	
�� They allow for a high�level organization of parallel tasks� Here we consider
three general and widely used computational models� farming� parallel divide�and�conquer� and
pipelining�

��� Farming

Farming means that several slave threads are spawned and work independently on their local tasks�

If these do not need to communicate nor synchronize with each other� farming can be achieved in
asynchronous mode with no additional overhead� This is� clearly� also possible in synchronous mode�
at the expense of subgroup creation at each private conditional� incurring super�uous overhead�

Nevertheless� in the case of data dependencies that have to be preserved� synchronous mode may be
even more suitable than asynchronous mode� For instance� a �D Jacobi�like relaxation step may be
programmed in synchronous mode just as follows�

��

sync void relax� sh float a	
 �

�

pr int k � ���

a	k
 � ������a	k�
���a	k
�a	k�
�� ��compute weighted average ��

� ��over neighboured elements��

In asynchronous mode� though� one would need a temporary array temp	
 and a barrier statement
to preserve the inter�task data dependences�

async void a�relax� float a	
� float temp	
 �

�

pr int k � ���

temp	k
 � ������a	k�
���a	k
�a	k�
��

barrier�

a	k
 � temp	k
�

�

In asynchronous mode� the mpadd�� operator is very useful to program self�scheduling parallel
loops� Self�scheduling �see e�g� ���
 for a survey� dynamically assigns loop iterations to processors
if the iterations are independent but take di�erent execution times to complete� which are typically
unknown at compile time� A shared loop counter

sh int loopcounter � ��

initialized to zero serves as a semaphore to indicate the next loop iteration to be processed� A
processor that becomes idle applies a mpadd�� to fetch its next iteration�

pr int i�

for � i�mpadd��loopcounter��� i�N� i�mpadd��loopcounter�� �

iteration � i ��

On a hardware platform with built�in mpadd instruction such as the SB�PRAM� parallel accesses to
the loopcounter are not sequentialized� and the additional overhead is marginal�

Furthermore� when partial results computed by farming are to be composed in parallel into a shared
array data structure� the mpadd�� operator may also be of great help� as we have shown in ��
 for
an implementation of a solver for a system of linear inequalities in Fork���

��� Parallel Divide�and�Conquer

Parallel divide�and�conquer means that the problem and the processor set working on it is recursively
subdivided into subsets� until either the subproblem is trivial or the processor subset consists of
only one processor� The partial solutions are computed and combined when returning through the
recursion tree�

Parallel divide�and�conquer is a natural feature of the synchronous mode of Fork��� A generic
parallel divide�and�conquer algorithm DC may look as follows�

sync void DC � sh int n� ��� �

�

sh int d�

��

if �trivial�n��

conquer� n� ��� ��

else �

d � sqrt�n��

fork � d� ����d� ����d � �

DC�d� �����

combine � n� ��� ��

�

�

�

If the size n of the given problem is small enough� a special routine conquer�� is called� Otherwise�
the present group is subdivided into a suitable number of subgroups of processors �in this case�
sqrt�n� many� where each one is responsible for the parallel and synchronous solution of one of
the subproblems� After their solution� the leaf groups are removed again� and all processors of the
original group join together to synchronously combine the partial results� Section has shown that
the compile�time overhead to manage this type of programs is quite low�

Subdivision into two subgroups can also be achieved using the if statement with a private condition�
as exempli�ed in the FFT example �see Appendix A�	�� More example programs for parallel DC
are contained in the examples directory of the Fork�� distribution� e�g� a parallel implementation
of Strassen�s recursive algorithm for matrix multiplication ��
 which uses a fork subdividing into
seven subgroups �see also �	
��

��� Pipelining

For pipelining and systolic algorithms� several slave processes are arranged in a logical network of
stages which solve subproblems and propagate their partial solutions to subsequent stages� The
network stepwise computes the overall solution by feeding the input data into its source nodes one
by another� The topological structure of the network is usually a line� grid� or a tree� but may be
any directed graph �usually acyclic and leveled�� The time to execute one step of the pipeline is
determined by the maximum execution time of a stage�

Pipelining through an arbitrary graph can be implemented in a rather straight forward manner�
The graph may be de�ned as a shared data structure the data for every node of the graph through
which the data are piped are grouped in a structure Node�

struct Node �

Data �data� �� buffer to pass intermediate values to next stage ��

int �pre� �� array of indices of predecessor nodes in graph	
 ��

int stage� �� depth in pipeline ��

�

This structure contains a pointer to some local data� a vector of references to predecessors in the
graph� together with the integer component stage containing the number of the round in which the
node is going to be activated�

All nodes together are grouped within the vector graph�

sh struct Node graph	n
� �� Pipeline graph consisting of n nodes ��

The graph nodes are allocated� and the �elds data and pre are initialized by some routine

��

sync void init�graph��� �� initializes nodes ��

The proper work to be done by a processor at each stage of the pipeline is given by a routine

sync void work��� �� specifies work to be done ��

For simplicity� let us �rst assume that the n node pipeline is executed by exactly n processors�
We assign to each processor j one node graph	j
 of the pipeline graph� To execute the pipeline
with n processors� a processor starts to work on its node as soon as the �rst wave of computation�
implemented by a time step counter t� reaches its stage in the pipeline graph�

sh int t�

init�graph���

for�t � �� t � end� t���

if �t �� graph	�
�stage�

work���

Besides the data structure Data� the programmer essentially must provide the two functions init graph��

and work���

init graph��� Processor j executing init graph�� initializes the entries of node graph	j
� For
this� it especially needs to compute the predecessors of node j in the graph� Finally� the value of
stage must be computed� In case the graph is acyclic� one possibility for this might be�

sh int t�

graph	�
�stage � �� ��initialize stage entry of all nodes��

for �t � �� t � depth� t���

if �graph	�
�stage � � �� non�neg�graph	�
�pre��

��stage values of all predecessors computed��

graph	�
�stage � t�

All stage entries are initialized with ��� The call to non neg�� tests whether all predecessor nodes
of graph	j
 have been assigned a non�negative stage entry� The stage of a node is determined as
the number t of the �rst iteration where all its predecessors already obtained values � � while its
current stage entry still equals ���

work��� speci�es the operation to by executed by processor j at node graph	j
� Input data should
be read from the data entries of the nodes graph	i
 which are predecessors of graph	j
�

Note that this generic implementation both covers pipelining through multidimensional arrays as
used by systolic algorithms and all sorts of trees for certain combinatorial algorithms�

It may happen� though� that we would like to dedicate more than one processor to each node� To
handle this case we modify our generic algorithm as follows�

sh int t�

init�graph���

for �t � �� t � end� t���

fork �n� ��select�t�� ��rename�� � ��create n subgroups��

if �t �� graph	�
�stage�

work���

��

Now a new group is created for every node in the graph� At the beginning of iteration t� each
processor selects the node in whose group it wants to be member of� Thus� the index of this node
can be accessed through the group ID �� At the end of work��� the groups are removed again to
allow for a synchronization of all processors in the pipeline and a redistribution at the beginning of
the next iteration�

We observe that pipelining and systolic computations can be easily and �exibly implemented in
Fork�� using the available language features� An additional construct for pipelining is not required�

 Conclusion

We have presented the Fork�� language and a prototype compiler for the SB�PRAM machine� We
have further shown that Fork�� allows to express important parallel computation models that occur
in parallel algorithms for real problems� Fork�� enables easy integration of existing �sequential� C
codes� for instance� a register allocator consisting of ���� lines of C code has been successfully ported
to Fork�� within a few hours�

Fork�� can be e�ciently implemented on the SB�PRAM machine� The compiler and required tools
are available�

Fork�� o�ers a broad basis for experiments on parallelism� We have used Fork�� successfully as
a �rst parallel programming language in a parallel programming course at the University of Trier�
A library of frequently used basic PRAM algorithms like parallel pre�x computations� searching�
merging and sorting� is currently being implemented in Fork�� ���
�

Future research may address the implementation of Fork�� �or a closely related modi�cation� on
further hardware platforms� The language itself may gain much attractivity by integrating object�
oriented features� e�g� by extending the base language from C to C���

Acknowledgement

The authors thank Jesper L� Tr�a� for his helpful comments on an earlier version of this paper�

References

��� F� Abolhassan� J� Keller� and W�J� Paul� On Physical Realizations of the Theoretical PRAM Model�
Technical Report ������� Sonderforschungsbereich ��� VLSI�Entwurfsmethoden und Parallelit	at� Uni�
versit	at Saarbr	ucken� Universit	at des Saarlandes� Saarbr	ucken �Germany�� ����

��� J	org Keller� Wolfgang J� Paul� and Dieter Scheerer� Realization of PRAMs� Processor Design� In Proc�
WDAG��� �th Int� Workshop on Distributed Algorithms� Springer Lecture Notes in Computer Science
vol� ���� pages ������ �����

��� A� Geist� A� Beguelin� J� Dongarra� W� Jiang� R� Manchek� and V� Sunderam� PVM � user�s guide
and reference manual� Technical Report ORNL�TM������� Oak Ridge National Laboratory� Oak Ridge�
Tennessee ������ Sept� �����

��� Ralph Butler and Ewing L� Lusk� User�s Guide to the P� Parallel Programming System� Technical
Report ANL������� Argonne National Laboratory� Oct� �����

��� R� Butler and E�L� Lusk� Monitors� Messages� and Clusters� The P� Parallel Programming System�
Parallel Computing� ������������� April �����

��� Michael Philippsen and Markus U� Mock� Data and Process Alignment in Modula���� In C�W� Ke�ler
�Ed�	
 Automatic Parallelization � New Approaches to Code Generation� Data Distribution and Per�
formance Prediction� pages �������� Wiesbaden� Vieweg� �����

��� K��C Li and H� Schwetman� Vector C� A Vector Processing Language� Journal of Parallel and Distributed
Computing� ���������� �����

	�

��� J� Rose and G� Steele� C�� an Extended C Language for Data Parallel Programming� Technical Report
PL����� Thinking Machines Inc�� Cambridge� MA� �����

��� Philip J� Hatcher and Michael J� Quinn� Data�Parallel Programming in MIMD Computers� MIT Press�
�����

��� Judith Schlesinger and Maya Gokhale� DBC Reference Manual� Technical Report TR������� Super�
computing Research Center� �����

���� P�C�P� Bhatt� K� Diks� T� Hagerup� V�C� Prasad� T� Radzik� and S� Saxena� Improved Deterministic
Parallel Integer Sorting� Information and Computation� ��� �����

���� M�I� Cole� Algorithmic Skeletons
 Structured Management of Parallel Computation� Pitman and MIT
Press� �����

���� P� de la Torre and C�P� Kruskal� Towards a Single Model of E�cient Computation in Real Parallel
Machines� Future Generation Computer Systems� ��������� �����

���� T� Heywood and S� Ranka� A Practical Hierarchical Model of Parallel Computation� Part I� The Model�
Journal of Parallel and Distributed Computing� ����������� �����

���� T� Heywood and S� Ranka� A Practical Hierarchical Model of Parallel Computation� Part II� Binary
Tree and FFT Algorithms� Journal of Parallel and Distributed Computing� ����������� �����

���� Y� Ben�Asher� D�G� Feitelson� and L� Rudolph� ParC � An Extension of C for Shared Memory Parallel
Processing� Software Practice and Experience� �������������� May �����

���� Robert D� Blumofe� Christopher F� Joerg� Bradley C� Kuszmaul� Charles E� Leiserson� Keith H� Randall�
and Yuli Zhou� Cilk� an e�cient multi�threaded run�time system� In Proc� �th ACM SIGPLAN Symp�
on Principles and Practices of Parallel Programming� pages ������� �����

���� T� Hagerup� A� Schmitt� and H� Seidl� FORK� A High�Level Language for PRAMs� Future Generation
Computer Systems� ���������� �����

���� C� Le�on� F� Sande� C� Rodr�iguez� and F� Garc�ia� A PRAM Oriented Language� In EUROMICRO PDP���
Workshop on Parallel and Distributed Processing� pages �������� Los Alamitos� IEEE Computer Society
Press� Jan� �����

��� F� Abolhassan� R� Drefenstedt� J� Keller� W�J� Paul� and D� Scheerer� On the physical design of PRAMs�
Computer Journal� �������������� Dec� �����

���� Jochen R	ohrig� Implementierung der P��Laufzeitbibliothek auf der SB�PRAM� Diploma thesis� Univer�
sit	at des Saarlandes� Saarbr	ucken �Germany�� �����

���� T� Gr	un� T� Rauber� and J� R	ohrig� The Programming Environment of the SB�PRAM� In Proc� ISMM����
����� http� ��www
wjp� cs�uni
sb�de �SBPRAM��

���� Arno Formella� J	org Keller� and Thomas Walle� HPP� A High�Performance PRAM� In Proc� �nd Int�
Euro�Par Conference� Springer LNCS� �����

���� ANSI American National Standard Institute� Inc�� New York� American National Standards for Infor�
mation Systems� Programming Language C� ANSI X����������� ����

���� Christoph W� Ke�ler and Helmut Seidl� Language Support for Synchronous Parallel Critical Sections�
In Proc� APDC��� Int� Conf� on Advances in Parallel and Distributed Computing� Shanghai� China� Los
Alamitos� IEEE Computer Society Press� March �����

���� A� Gottlieb� B� Lubachevsky� and L� Rudolph� Basic Techniques for the E�cient Coordination of Large
Numbers of Cooperating Sequential Processes� ACM Transactions on Programming Languages and Sys�
tems� ������������� April ����� �see also� Ultracomputer Note No� ��� Dec� ���� New York University��

���� Henri Bal� Programming Distributed Systems� Prentice Hall� ����

���� Christoph W� Ke�ler� Automatische Parallelisierung numerischer Programme durch Mustererkennung�
PhD thesis� Universit	at des Saarlandes� Saarbr	ucken �Germany�� �����

���� Peter M� Kogge and Harold S� Stone� A Parallel Algorithm for the E�cient Solution of a General Class
of Recurrence Equations� IEEE Transactions on Computers� C��������������� Aug� �����

��� Guy E� Blelloch� Scans as Primitive Parallel Operations� IEEE Transactions on Computers� ������������
����� Nov� �����

���� C�W� Ke�ler and J�L� Tr	a�� A Library of Basic PRAM Algorithms and its Implementation in FORK� In
Proc� �th Annual ACM Symposium on Parallel Algorithms and Architectures� pages �������� New York�
ACM Press� June ����� �����

	�

���� Karin K	appner� Analysen zur 	Ubersetzung von FORK� Teil �� Diploma thesis� Universit	at des Saarlandes�
Saarbr	ucken �Germany�� �����

���� Markus Welter� Analysen zur 	Ubersetzung von FORK� Teil �� Diploma thesis� Universit	at des Saarlandes�
Saarbr	ucken �Germany�� �����

���� C� W� Fraser and D� R� Hanson� A code generation interface for ANSI C� Software Practice and
Experience� �������������� Sept� �����

���� C� W� Fraser and D� R� Hanson� A retargetable compiler for ANSI C� SIGPLAN Notices� ������������
Oct� �����

���� C� W� Fraser and D� R� Hanson� A Retargetable C Compiler
 Design and Implementation� Benjamin
Cummings Publishing Company� �����

���� G� Jones and M� Goldsmith� Programming in Occam �� Prentice�Hall� �����

���� C�A�R� Hoare� Communicating Sequential Processes� Prentice�Hall International Series in Computer
Science� �����

���� Constantine D� Polychronopoulos� Parallel Programming and Compilers� Kluwer Academic Publishers�
�����

��� C�W� Ke�ler� Parallel Fourier�Motzkin Elimination� In Proc� �nd Int� Euro�Par Conference� pages ������
Springer LNCS ����� Aug� ����� �����

���� Volker Strassen� Gaussian elimination is not optimal� Numerische Mathematik� �������������� �����

���� Christoph W� Ke�ler and Helmut Seidl� Fork�� Language and Compiler for the SB�PRAM� In E�L�
Zapata� editor� Proc� �th Workshop on Compilers for Parallel Computers� pages ������� Dept� of
Computer Architecture� University of Malaga� Spain� Report No� UMA�DAC������ June ���� �����
http���www�informatik�uni
trier�de� �kessler�fork��html�

A Appendix

A�� Example� Multipre	x sum

The following routine performs a general integer multipre�x�ADD implementation in Fork��� It
takes time O�n�p� on a p�processor SB�PRAM with built�in mpadd operator running in O��� time�
This is optimal� Only one additional shared memory cell is required �as proposed by J� Roehrig��
The only precondition is that group�relative processor ID�s � must be consecutively numbered from
� to groupsize�� � �if they are not� this can be provided in O��� time by a mpadd operation��
Run time results for the SB�PRAM are given in Table iii�

sync void parallel�prefix�add�
sh int �in� ��operand array��
sh int n� ��problem size��
sh int �out� ��result array��
sh int initsum� ��global offset��

�
sh int p � groupsize���
sh int sum � initsum� ��temporary accumulator cell��
pr int i�

��step over n�p slices of array���
for �i��� i�n� i��p�

out	i
 � mpadd� �sum� in	i
 ��
�

		

" processors cc� n ����� cc� n ������

	 ����� ������
 	����� 	������
� ����� �������
�� ���� �����
�	 	��		 	�����
� ��� ����		
�	� ���� �����
	�� � ����
��	 	�	 �����
��	 ��� ���	
	�� ��� ����
��� ���	 ���

Table iii� Run time results �in SB�PRAM clock cycles� for parprefix�c

A�� Divide�and�conquer using private if� Recursive FFT

The following recursive core routine of a simple parallel implementation of the Fast Fourier Transform
requires as parameters the complex operand array� its size� and an array containing all powers �� w�
w
�����wn�� of a complex nth root of unity� w� We assume n is a power of 	� The operand array a is
not overwritten� The routine returns the Discrete Fourier Transform of a� Run time results for the
SB�PRAM are shown in Table iv�

sync cplx �fft� sh cplx �a� sh int n� sh cplx �w �
�
sh cplx �ft� ��result array��
sh cplx �even� �odd� �fteven� �ftodd� ��temporary pointers��
sh int p � ��
sh int ndiv��
pr int i�

� � mpadd� �p� �� �� ensure consecutive numbering of procs ��

if �n��� �
farm if ������ �

ft � shmalloc���
ft	�
 � cnum� a	�
��re� a	�
��im ��

�
return ft�

�
if �p��� return seq�fft� a� n� w ��

�� general case� compute temporary arrays even	
� odd	
 �
� and in parallel call fft for each of them ��
ft � �cplx �� shmalloc� n �� �� allocate result array ��
ndiv� � n���
even � �cplx �� shalloc� ndiv� ��
odd � �cplx �� shalloc� ndiv� ��
for� i��� i�ndiv�� i��p � � ��dataparallel loop��

even	i
 � a	��i
� �� copy pointer to same number ��
odd	i
 � a	��i�
�

�

	�

processors SB�PRAM clock cycles
� �������
 	���	�
�� �������
� 	����	
	�� ���	�
��	 	����

Table iv� Run time results for the FFT implementation� measured for a complex array of ���
elements�

if ���p��� ��split current group into two equally sized subgroups���
fteven � fft� even� ndiv�� w ��

else ftodd � fft� odd� ndiv�� w ��

for� i��� i�ndiv�� i��p � � ��dataparallel loop��
pr cplx t � cmul� w	i
� ftodd	i
 ��
ft	i
 � cadd� fteven	i
� t ��
ft	i�ndiv�
 � csub� fteven	i
� t ��
freecplx� t ��

�
shfreecplxarray� fteven� ndiv� �� shfreecplxarray� ftodd� ndiv� ��
shallfree��� �� free even� odd ��
return ft�
�

	

