
fcc Fork95 Compiler Reference Manual

Christoph W. Keßler
Fachbereich 4 – Informatik

Universität Trier
D-54286 Trier, Germany

e-mail: kessler@psi.uni-trier.de

Current version: 2.0

released: Aug 20, 1999

The SB-PRAM is a lock–step–synchronous, massively parallel computer with a (from the programmer’s view)
physically shared memory [1, 10, 19].

Fork95 [11, 12, 13] is a C–based redesign of the PRAM language FORK proposed in [8]. For an in–depth
introduction to programming in Fork95 we recommend the Fork95 tutorial [18]. A library of basic PRAM
algorithms and data structures implemented in Fork95 is described in [14, 15].

The most recent version of the language, Fork95 version 2.0 (Aug. 1999), is just denoted as Fork. It is described
in the forthcoming textbook Practical PRAM Programming by J. Keller, C. Keßler, and J. Träff, to appear in
spring 2000 at Wiley, New York.

fcc is the Fork95 compiler for the SB-PRAM. The fcc implementation is partially based on the lcc compiler
[5, 6, 7] for ANSI-C [3]. Parts of the standard library routines have been taken from the GNU C library, while
others have been completely rewritten from scratch. I have also completely rewritten the compiler driver. Finally,
version 1.9 features a graphical trace file visualization tool, trv.

This report describes installation, use, and implementation principles of fcc.

1 Installing fcc

1.1 Hardware platforms

fcc and the SB-PRAM system tools run on SUN workstations under SunOS and Solaris.

In principle fcc should also compile for LINUX machines, but the SB-PRAM assembler prass and linker ld
which are called by the compiler were, up to now, not LINUX–proof. A port of the system tools for LINUX is
currently in a testing stage by the SB-PRAM group at Saarbrücken.

Prof. E. Mayordomo from the University of Zaragoza, Spain, reports on a successful installation of both compiler
and system tools on an HP K250/3 with 3 PA8000 processors (512 MB memory and 20 Gb disk) under HPUX
10.20.

Please notify us if you manage to install fcc and/or the system tools on a platform different from these listed
above.

1

1.2 Compatibility problems

For the installation of fcc and the SB-PRAM system tools you need an ANSI C compiler like the GNU C
compiler.

Make sure that you are using the version of the SB-PRAM system tools which is distributed at the Fork web
page. Recent versions of e.g. the linker and the simulator distributed at Saarbrücken are no longer compatible
with Fork, since these contain bug fixes for the current SB-PRAM prototype and require the existence of the
SB-PRAM operating system PRAMOS, which is neither required nor compatible with Fork95 programs.

1.3 Installation procedure

Extract the distribution into its own directory. All paths below are relative to this directory. It includes the
following top-level directories;

src source files of proper compiler and driver
man man page
doc documentation
include include files
examples example programs, example makefile
bin driver
lib proper compiler, libraries, compiler-specific files
util useful Fork routines (parallel data structures, MPI)

Before installing, you should specify two shell variables in your .cshrc file that are required to set up the
paths properly: Set PRAMDIR to the directory where you have installed the SB-PRAM system software, and set
FORKDIR to the directory where you have located the Fork95 distribution, e.g.,

setenv PRAMDIR /myhomedirectory/pram

setenv FORKDIR /myhomedirectory/fork

Add the $FORKDIR/bin and the $PRAMDIR/bin directory to the search path in your local environment
specification.

To recompile the compiler for your system, go to the fork directory. Run make all. This installs rcc, the
proper Fork95 compiler, in directory lib, and fcc, the driver, in directory bin.� Furthermore, several library
object files are created in the lib directory by the fcc compiler just built, which are required at the link phase
of fcc. In addition, the example programs in the examples directory are built using fcc (there should be
warnings, but no errors), and this documentation is also created in the doc directory if not yet available.

The resulting executables (see the section on the example programs) should run properly on the SB-PRAM
simulator pramsim. Call it by pramsim executable file.

To run pramsim properly, you need the resource files .ldrc and .pramsimrc in your current working
directory. The examples directory contains suitable versions. Nevertheless you may need to adapt .ldrc to
your purposes. Set up the resources for number of processors and sizes of private and shared memory subspaces
in the file .ldrc depending on your local workstation’s performance and memory resources. Note that the

�Note that compilation of rcc requires an ANSI C compiler like the GNU C compiler. You must specify this compiler in the
Makefile first. If you want to change the internal directory structure, you will have to edit fcc.h and maybe also the Makefile
to adjust the paths according to your wishes. You also will have to edit fcc.h if you prefer, for compiling Fork95 programs, a C
preprocessor other than the GNU preprocessor from your current gcc installation.

2

memory requirements are to be indicated in PRAM words, where a word is 4 bytes. The number p of simulated
processors can be changed interactively in the simulator by typing the command init u� v with � � u � ���,
� � v � ��, where p � u � v. A forthcoming version of pramsim will allow to change memory sizes
interactively. A window–based user interface is in preparation.

Finally, install the man page by adding $FORKDIR/man/man1 to your $MANPATH.

2 Running fcc

You can use fcc in a way similar to your standard C compiler cc. Fork95 sources can be compiled only if the
-FORK compiler flag is set (see the options below). For instance, you may compile one of the demo example
programs by typing

fcc -I$FORKDIR/include -FORK -m parprefix.c

which generates an executable a.out. (To simplify this command, use make or write a shell alias.)

After starting pramsim, type the command

g

to execute the entire program. You can stop the simulator with Ctrl-C. The simulator automatically stops if a
processor reaches the end of the program, or if the C function exit() is called by a processor. — Alternatively,
you can step through the program execution (see the simulator help menu for details).

Example programs

The example directory contains several example programs:

� bus.c is a test for the join statement implementing a very simple parallel shared heap memory allocator.

� conjgrad.c is an implementation of a conjugate gradient solver. It uses the header file bpl.h. No
output is provided.

� crcwqs.c is an implementation of the parallel CRCW quicksort algorithm by Chlebus/Vrto (JPDC
1991).

� eratosthenes.c is an implementation of the prime number sieve by Eratosthenes. It uses synchronous
mode for the sieve itself and then computes prime twins using a self–scheduled parallel loop in asyn-
chronous mode. See also the files primes.sync.c, primes.async.c and primes.balanc.c

for computation of prime twins using the standard algorithm in various modes.

� fft.c Fast Fourier Transform for complex arrays

� gauss.c Gaussian Elimination

� hello.c prints “Hello world” by each processor.

� mpadd.c is a demonstration of Fork95’s built–in mpadd()–operator.

Note: Be careful with mpadd(&shvar,somevar): It includes one side–effect for each of its two pa-
rameters: shvar (first parameter) is set to the global sum of all somevars, and somevar, if a variable,
is set to the result value. These side effects are part of the SB-PRAM’s multiprefix operators and cannot
be changed.

3

� parprefix.c shows, at the example of parallel prefix sum computation, how parallel programs should
be written to become independent of the number of processors.

� philo.c is an implementation of the dining philosophers problem. See also philo.naiv.c for a
version that is not deadlock–free.

� pipe.c demonstrates how pipelining could be programmed in Fork95 at the problem of computing the
global sum of n elements.

� quicksort.c is a parallel quicksort implementation for n array elements on p processors which allows
arbitrary values for n and p.

� mergesort.c is a parallel divide–and–conquer implementation of mergesort. This implementation
assumes for simplicity that all array elements are different.

� quickhull.c is a parallel divide–and–conquer algorithm that computes the convex hull of n points in
the 2D Euclidean plane. It also demonstrates the usage of the simple graphics interface: it plots the points,
the edges of the resulting hull, and all bisection lines at recursive calls, visualizing the quality of pivoting.
You may view HULL.xpm e.g. by xv.

� koch.c is a parallel implementation of a recursive plotting algorithm for fractals known as Koch curves.
View the resulting picture KOCH.xpm using xv.

� qsort.c demonstrates the random number generator (seed it, if at all, only by a large, odd, processor–
individual number, please!) and the (sequential) qsort() routine from <stdlib.h>.

� strassen.c implements Strassen’s well–known recursive algorithm for matrix–matrix–multiplication.
The divide–and–conquer step is parallelized using the fork statement.

� pqueue.c implements a parallel queue with put and get operations. It can be used e.g. for program-
ming task queues which can be accessed at low overhead and with practically no sequentialization.

� mandel.c computes the Mandelbrot set and generates a graphical output in X-pixmap format. Julia
sets are computed and drawn by julia.c.

� queens.c is a synchronous implementation of the N -Queens problem. The join statement is used to
aggregate a certain number (up to 8) of solutions for synchronous line–wise graphical output.

� aqueens.c is an asynchronous implementation of the N -queens problem, based on the parallel FIFO
queue as parallel task queue implementation. Parallel output is as in queens.c.

� divconcmerge.c is a mergesort implementation based on the divide conquer skeleton routine.

� dcsum.c is a parallel sum implementation based on the divide conquer skeleton routine.

� recdoub.c implements the recursive doubling method for solving first–order linear recurrence equa-
tions.

Possible extensions to multiprefix operators are discussed in the files mpmax.c and incl mpadd.c. Thanks
go to Marcus Marr from Edinburgh for providing these.

More complex Fork95 software (library routines for sorting, searching, etc.) is available in the PAD library
[14, 15]; see the PAD web page

http://www.mpi-sb.mpg.de/guide/activities/alcom-it/PAD/

4

header file type of library functions

fork.h (mandatory) group heap; locks; parallel loop macros
assert.h the assert() macro
stdlib.h as in C (rand(), qsort(), etc.
string.h string handling functions
math.h mathematical functions (only single precision)
ctype.h character classification (as in C)
stdarg.h macros for handling a variable number of function arguments
io.h input/output routines
graphic.h graphics routines
myfcntl.h file I/O flags from PRAM-OS
syscall.h routines for interaction with PRAM-OS

Table 1: The library header files for the Fork95 compiler. In the present stage not all functions known from usual
ANSI C libraries are available yet.

or ask Jesper L. Träff at MPI Saarbrücken (email: traff@mpi-sb.mpg.de).

The asynchronous complement to PAD is my APPEND library of asynchronous data structures like parallel
hashtable, parallel FIFO queue, parallel skip list and (soon) parallel random search tree. It is distributed with
this Fork95 compiler package in the util directory. It features a pseudo–object–oriented programmer interface
for the implemented operations. A thorough description will be given in our forthcoming textbook.

3 Options

� -g0 drops debugging directives; -g, -g2...-g9 emit several levels of dbx–type debugger directives.

� -Gpath tells the compiler the path of the source program which is required when -g is set.

� -K generates code that checks for stack overflow.

� -m generates code for alignment according to the MODULO flag of the SB-PRAM. This should be
switched on if you use concurrent write facilities or multiprefix operators.

� -P prints full type headers for each function declaration.

� -T causes instrumentation of the code to collect profiling information about shared memory access statis-
tics. This information can either be printed to the screen by printAccStat() (now deprecated). The
other variant, which looks much nicer, is to use the tracing commands and trv/trvc to see the informa-
tion in the graphical visualization of the trace file.

� -A emit more warnings (e.g., unused variables, potential programming errors etc.), -A -A emit even more
warnings.

Further options taken from lcc can be looked up in the fcc or lcc manpage.

4 Library Functions

The file forklib2.asm contains the PRAM assembler source of the startup code and several functions closely
related to the Fork95 language: The other C sources, in particular async.c, contain C library functions and
wrapper functions for routines in forklib2.asm.

5

� malloc (private malloc on permanent private heap, asynchronous),
shalloc (shared malloc on automatic group–local shared heap),
shmalloc (allocate on global permanent shared heap),
realloc (realloc on permanent private heap, dummy),
free (free malloc objects, dummy),
shallfree() (free all shalloc’ed objects in current function),
shfree (free shmalloc’ed objects).

The shalloc()ed objects generally live until the group defining them terminates, although there is also
a possibility for explicit release: shallfree() releases all objects shalloc()ed so far in the current
function (applicable to synchronous functions only).

pravail returns the number of free private memory words for this processor, and shavail returns the
number of free shared memory words for the current group.

� exit to leave the program, atexit() to register cleanup functions that should be called when exiting
by exit

� barrier (straight, internally called forklib sync) synchronizes the current group.

� groupsize (number of processors in current group, straight, by inspecting the synchronization cell).

� forklib divi (integer division), forklib divu (unsigned integer division), and forklib fdiv

(floatingpoint division) are for compiler–internal use only; itof, ftoi (conversions int–float, straight),

� memcpy (internally: forklib movb) for block copy, strcpy, strcmp, strncmp, memcmp,
strlen.

� srand, rand, random; the latter routine takes the address of the seed as parameter and stores the new
random number there as a side effect.

� read, write, open, close etc.: the syscalls.

� reltoabs computes an absolute address from a base–relative (private) address. This may be required
if asm() is used to read private global addresses. The compiler generates only absolute addresses for
private variables and heap objects.

� syncadd(), ..., syncor() provide the corresponding SB-PRAM operators as library functions.
syncadd m0 denotes a syncadd that is performed only when the modulo bit is cleared, and syncadd m1

is performed only when it is set. Corresponding modulo–sensitive functions exist for syncmax, syncand,
and syncor.

� getct returns the current value of the (global) round counter of the SB-PRAM, giving 256 times the
parallel execution time (consumed since start of the program) in milliseconds.

� printAccStat in io.h prints an ASCII-text summary of the executing processor’s shared memory
accesses and barriers to the screen. This requires that the user program to be examined has been compiled
with the option -T. This information may be used to estimate the performance on non-PRAM architec-
tures. The function is now deprecated, use the tracing routines instead.

Internally defined library functions that are not accessible to the Fork programmer take their parameters from
parameter registers, not from the (private) stack. If necessary, there are wrapper Fork routines that provide a
proper call interface to them.

6

Four different kinds of locks have been implemented: simple locks, fair locks, reader-writer-locks, and reader-
writer-deletor locks, the first three of which were suggested by Jochen Röhrig at Saarbrücken University. The
locks are documented in <fork.h>. To use them for mutual exclusion in asynchronous mode, we recommend
the macros given in <fork.h>.

I/O routines are declared in the io.h header file. Input/Output to/from screen can be done using the usual
scanf() and printf() functions. File–I/O has been implemented from scratch, partially by reusing sources
from other C libraries, also fscanf() works but sscanf() still does not work properly. Buffering is not
provided. sprintf() and vsprintf() are still missing. All I/O routines are asynchronous. Make sure
to place I/O functions in critical sections to keep your screen display readable. A unified locking mechanism
for FILE I/O is planned. For faster printing of strings and floatingpoint numbers you can use the routines
puts() resp. prF(), see io.h. In addition, there is the routine pprintf() which works like printf()
(no floatingpoint output) but emits the physical processor ID at the beginning of the printed line. This may be
useful for debugging.

The mathematical library still needs much work to be done, see the math.h header file. The implemented func-
tions work for single precision floatingpoint numbers (IEEE 754 format); the double keyword is automatically
converted to float in order to make things work at least for single precision. The available functions are:
fabs(), ceil(), floor(), modf(), ftoi() and itof(). The trigonometric functions sin(), cos(),
asin(), acos(), atan() are available as well as the base 10 logarithm log10() and the base e logarithm
ln(). Most domain errors are checked for. The routines have been tested; though no guarantee is given for the
accuracy.

Profiling and tracing is now also available. Tracing is initialized by initTracing(bufsiz), taking the
trace buffer size as parameter (10000 to 100000 should be a good choice). A piece of program to be traced
should be preceded by a startTracing() and ended by a stopTracing() call. The trace buffer and the
collected profiling information is written to a file with the call writeTraceFile(filename, title), which
takes as parameters the file name and an optional title string. The trace file can be converted to a FIG file by
calling the trv tool with the file name filename as argument. The resulting fig file filename.fig can be edited
and converted to other formats by xfig. The version trvc produces a more colored image which is better
suitable for screen display, while the trv output is better suitable for greyscale printers.

We have also provided some simple graphics routines. A two–dimensional array of 32-bit pixels with ex-
tents x and y is allocated by init pict(x,y). One may switch between several pixel arrays with
switch to pict(cp) to cp as the current pixel array. The picture can be cleared by clear pixels()

in parallel. A single pixel �u� v� may be set by set pixel(u,v,1) and its color be inspected by
get pixel(u,v). The parallel routine line() plots lines. The parallel routine write pixmap(filename),
writes the pixel array to a file in monochromatic X-Bitmap format (which may be viewed e.g. using xv). The
origin (0,0) of the pixel array is mapped to the upper left corner of the picture. For more details please see the
tutorial [18]. An advanced graphics library for Fork95 is currently in preparation.

5 Reserved key words

Additionally to the ANSI C key words, the words sh, pr, start, join, fork, farm, sync, async,
straight, ilog2, mpadd, mpmax, mpor and mpand are reserved key words, and this holds also for the
library function names.

The sign $ denotes the (relative) process ID, $$ the group rank, and @ the group ID of the processor executing
this expression. $ is a private integer variable that can be assigned any integer value. $$ is a constant private
integer variable (read–only) that is automatically set by the system to a unique integer between 0 and the current

7

group size minus one. @ is a constant shared integer variable (read–only) that is automatically set by the system
and allows to distinguish the subgroups of a split group with respect to each other. # is a constant shared integer
variable that holds the current group size.

The number of processors started in the simulator can be accessed by the programmer in the variable
__STARTED_PROCS__. The variable __PROC_NR__ contains a unique (absolute) processor number for
each processor, ranging from 0 to __STARTED_PROCS – 1. The group–relative process ID $ is initialized to
__PROC_NR__ at the beginning of the program execution. Although __PROC_NR__ may later be assigned a
(different) value by the programmer, he should not change it; there is $ for this purpose.

The names of standard library functions cannot be overloaded by user routine names. In this sense, they are also
reserved key words.

The header file <fork.h> which should be included into each Fork95 source program contains also useful
macros like

forall(i,lb,ub) <statement>

that executes <statement> within a parallel loop with loop variable i, ranging from lb to ub, using all
__STARTED_PROCS__ started processors. This is especially useful for dataparallel applications.

6 The bus tour concept: join

The join statement, first introduced in [17], is now fully integrated into the compiler. See the Fork95 Tutorial
for an in–depth description of its semantics and the excursion bus analogy.

join (SMsize; delayCond; stayInsideCond) <busTour> else <otherWork>

where

� SMsize is an expression evaluating to an integer that determines the shared stack size (in memory words)
for the group executing the bus tour. It should be at least 100 for simple “bus tours”.

� delayCond is an integer expression evaluated by the “driver” (i.e., the first processor arriving at the
join when the bus is waiting). The driver waits until this condition becomes nonzero.

� stayInsideCond is an integer expression evaluated by all processors in the “excursion bus”. Those
processors for which it evaluates to zero branch to the else part. The others barrier–synchronize, form a
group, and execute busTour in synchronous mode.

� delayCond and stayInsideCond can access the number of processors that meanwhile arrived at
this join statement by the macro __NUM_PR__ and their own rank in this set of processors (their “ticket
code”) by the macro __RANK__.

� busTour is a synchronous statement.

� the else branch is executed by the processors missing the “excursion bus” or springing off when testing
the stayInsideCond condition. otherWork is an asynchronous statement.

� Inside the else branch, processors may return to the entry point of this join statement by continue,
and leave the join statement by break. This syntax corresponding to loops in C is motivated by the
fact that the else clause indeed codes a loop that is executed until the processor can participate in the
following bus excursion or leaves the loop by break.

8

� The else clause is optional; a missing else clause is equivalent to else break;

Example:

join(100; __NUM_PR__>=1; __RANK__<2)

farm pprintf("JOIN-BODY! $=%d\n",$);

else {

pprintf("ELSE-PART!\n");

continue; /* go back to join head */

/* break would leave it */

}

The join statement is used e.g. in the example programs jointest.c and queens.c.

7 Reserved registers

fcc generates symbolic names for the special-purpose-registers. Registers r18,...,r29 are general–purpose
registers that can be used for expression evaluation.

number symbolic name comment

0 sr,R0 status register, Zero depending on the instruction
1 pc program counter ignored as target of compute
2 sp system stack pointer do not change it!
3 fpp frame pointer, private
4 app argument pointer, private
5 Ret value/address of function return value
6 spp stack pointer, private
7 par1 first parameter register
8 par2 second parameter register
9 par3 third parameter register
10 par4 fourth parameter register
11 epp heap pointer, private
12 sps stack pointer, shared
13 fps frame pointer, shared
14 eps heap pointer, shared
15 gpp group pointer, private
16 gps group pointer, shared
17 aps argument pointer, shared
18...29 r18,..., r29 general purpose registers saved at function calls
30,31 r30, r31 scratch registers not saved at function calls

The parameter registers are used only to call internal library functions and operating system functions. They can
be used as scratch registers elsewhere.

9

8 Frame layout

8.1 Procedure frames

8.1.1 Parameter passing at function calls

Functions listed in the file libfnames pass their first four private parameters in registers par1,...,par4 (this
is mainly to optimize calls to library routines). The fcc user can take advantage of this scheme by adding own
function’s names to this file. However this does not work when these functions should be called by function
pointer dereferencing. The first line in libfnames contains the total number of its entries, with each line
containing one function name.

Functions with a variable number of arguments pass their private parameters located on variable argument posi-
tions via the private stack. Shared parameters must not be located on variable positions.

A function using shared parameters must have an ANSI–style prototype.

fpp and fps are set even if the callee has no (shared) local variables. This is to restore the group pointers
properly after a return statement in the callee. There is an exception of this, however, if the callee is an
asynchronous function.

8.1.2 Private procedure frame for synchronous functions

spp��

last private local variable
... not initialized

first private local variable
fpp�� $$ (rank)

old eps
old gps
old gpp callee–saved
old fps
old fpp
old pc call–saved

last saved register
... caller–saved

first saved register
last private argument only if the callee

... has private arguments
first private argument not passed in registers;

app�� old app caller–saved

10

8.1.3 Private procedure frame for asynchronous functions

spp��

last private local variable
... not initialized

first private local variable
fpp�� (reserved for returning a struct)

old fpp callee–saved
old pc call–saved

last saved register
... caller–saved

first saved register
last private argument only if the callee

... has private arguments
first private argument not passed in registers;

app�� old app caller–saved

The compiler uses the most significant bit of the pointer stored in fpp,-1 to allow for run–time inspection
whether this is a synchronous (eps, i.e. an absolute address) or asynchronous (old fpp, i.e. a private address)
function.

8.1.4 Shared procedure frame

sps��

last shared local variable the shared locals
... defined at top level

first shared local variable of the function
synchronization cell this function’s

fps, gps�� old gps group frame
last shared argument only if the callee

... has shared arguments;
first shared argument

aps�� old aps caller–saved

For each synchronous function an extra group frame (see next subsection) is allocated. This is technically
required in order to re-synchronize at the end of function execution when some processors returned earlier.

An asynchronous function does not have a shared procedure frame. Note that it can nevertheless allocate shared
variables inside a start body, since these are local to the group frame built by start.

8.2 Group frames

Group–forming operations are start and fork, and the constructs if, for, while, do with (maybe) private
branch condition.

8.2.1 Private group frame built by if and fork

The loops (for, while, do) build only shared group frames.

11

(new) process ID $ copied from parent group
(new) group ID @ copied from parent group

gpp�� old gpp points to parent priv. group frame
if: split cell; fork: group’s shared memory size debug info

if: 0; fork: # new groups opened debug info
old sps
old eps

8.2.2 Private group frame built by start

(new) process ID $ numbered 0... STARTED PROCS -1

@ = 0 the only group’s ID
gpp�� old gpp points to parent priv. group frame

old sps
old eps
old fps

8.2.3 Shared group frame

sps��

last group-local shared variable the shared variables
... defined locally to the

first group-local shared variable construct building this group
synchronization cell initialized by # processors in this group

fps�, gps�� old gps points to parent shared group frame

� The fps is set only by start and join.

Note that the cost of adressing a local shared variable depends on the site of definition as well as of the site of
the access.

sync void foo(...)

{ sh int i; /*exists once for each group entering this function*/

fork (...) {

sh int j; /*exists once for each subgroup*/

fork (...) {

sh int k; /*exists once for each subgroup*/

k = i * j ... ;

}

}

}

In synchronous functions, the shared variables defined at top level of the function (e.g., variable i in the example
code above) are addressed via the fps and thus one instruction is sufficient.

In the other cases, the chain of gps pointers has to be traversed backwards from the current group frame to the
group frame of the group that defined that variable. The cost of addressing is �x�� where x denotes the number
of group frames between the current and the defining group frame (including the defining frame). Thus, in the
example above, calculation of the address of j costs 3 instructions while the calculation of the address of k can
be done in one instruction.

12

9 Optimizations

fcc performs a limited set of optimizations automatically.

� Integer division and modulo computation are very expensive. Divisions and Modulo–computations are
realized by shifts if the value of the divisor (or modulus) at run-time is a power of two.

� Synchronization after synchronous divisions is suppressed if the divisor is shared or constant.

� Alignment to the MODULO flag is suppressed for accesses to the private stack.

� Small integer (char, pointer, short, unsigned int) constants are loaded by a getlo instead of two instruc-
tions.

� The group synchronization immediately after a synchronous function call is suppressed if the callee does
not contain return statements nested in subgroup–creating constructs (thanks go to Adrian Perez Jorge
for pointing me to this simple solution).

� Profiling/tracing code is only executed if explicitly desired by the -T option. This has been made possible
by using a profiling and a non–profiling version of the responsible library files.

The following further optimizations may be useful, but cannot be implemented due to the one-pass-nature of the
lcc:

� creating a loop group also for a shared loop exit condition is not necessary if the loop body contains no
break or return statement inside a one-sided if statement.

� static analysis for keeping track of the MODULO flag of the SB-PRAM. This optimization may speed
up shared-memory-intensive user code by up to 33%. The assembler library routines are already hand–
optimized.

� and some more ...

10 Limitations

The maximal number of processors used is a compile-time constant and must be at most 4096 for the SB-PRAM
prototype at Saarbrücken.

Conditional expressions e�l 	 r do — unlike the private if statement — not build group frames. As a private
condition e may introduce a deadlock, a warning is emitted in this case. This is due to the strange construction
of expression DAGs in the lcc. Nevertheless, this does not prohibit the programmer — he can use the if
statement instead.

The same holds for switch statements: Currently, there are no group frames provided. Thus, a private selector
may introduce a deadlock (warning is given). If a synchronous switch over a private selector cannot be avoided,
the programmer should replace it by a (if possible, balanced) if cascade.

Attention must be paid if continue is used in a loop. If between the continue and the end of the loop body
some synchronization will take place (e.g., at the end of a private if, of a private loop, of a sync function call
or of a farm), a deadlock may be introduced. This problem will disappear in a future release of fcc by enabling
the user to indicate such situations a priori by specifying a compiler option that introduces an extra shared group
frame for each loop. A general implementation of continue is not sensible for a one–pass–compiler like fcc.

13

It is illegal to access within a start or join body a shared local variable declared outside the start (the
effects are undetermined, the compiler does not warn). We generally discourage nesting of more than one start
or join within the same function.

11 Known Bugs

� Make sure to have all needed header files included. There is no complaint from the compiler and linker
if one is omitted, but parameter passing may be done the wrong way in such cases. An example is
memcpy() declared in string.h: it passes its arguments in registers instead of pushing them on the
private stack. A similar problem holds if a function has shared formal parameters: They are passed on the
private stack if there is no prototype available. The compiler does not complain as long as the parameter
types match (i.e., they are implicitly assumed to be integer—this is standard C semantics).

� Never use old–style function definitions such as

void foo(x, y, z) char x; int y, z; { }

this will often cause the compiler to crash with a segmentation fault. Rather use the more convenient
new–style declaration (which is the only possibility if shared parameters occur!):

void foo(char x, int y, int z) { }

Note that also for equal types of subsequent parameters the type identifier (here: int) has to be replicated.

� Structures cannot be returned by functions. This may be possible in a future release of fcc; for now, you
can work around by returning a pointer to the structure, which is, by the way, more efficient since calling
the copy routine is not required.

� Something may be wrong with switches (maybe a lcc 1.9 bug). Moreover, switch statements do
not lead to group splitting in synchronous mode, i.e. may cause asynchrony. If you have problems with a
switch, try to avoid it and use if cascades instead.

� pprintf() and fpprintf() are mainly intended for debug output and do not work for floatingpoint
numbers. Use instead either usual printf() or the fast and simple prF routine (see io.h).

� Passing structs as arguments or returning a struct from a function doesn’t work. This is why the
function ldiv() is defined in a different way to ANSI C.

� Parameter sharity declarations for doubly nested function pointer declarations are ignored:

sync int f(

sh float x, // sh x recognized

sh sync void (*g)(sh int k), // sh k recognized

sh sync void (*h)(sh sync int (*h2)(sh int k2))

// sh k2 not recognized

) {

... H2 = ...

... h(H2) ... // ! no check for sharities of H2 parameters

}

14

12 Reporting Bugs

Bugs can be reported by sending mail with the shortest program that exposes them and the details reported by
fcc’s -v option to kessler@psi.uni-trier.de. Other questions, comments, and requests can be sent
to the same address. If you wish that we notify you on future releases of fcc, please send a short email message.

References

[1] F. Abolhassan, J. Keller, and W.J. Paul. On Physical Realizations of the Theoretical PRAM Model. Tech-
nical Report 21/1990, Sonderforschungsbereich 124 VLSI Entwurfsmethoden und Parallelität, Universität
Saarbrücken, 1990.

[2] P. Bach, M. Braun, A. Formella, J. Friedrich, Th. Grün, H. Leister, C. Lichtenau, and Th. Walle. Building
the 4 Processor SB-PRAM Prototype. Technical Report 05/1996, Sonderforschungsbereich 124 VLSI–
Entwurfsmethoden und Parallelität, Universität des Saarlandes, Saarbrücken (Germany), 1996.

[3] American National Standard Institute, Inc., New York. American National Standards for Information
Systems, Programming Language C ANSI X3.159–1989, 1990.

[4] A. Formella and T. Grün and C.W. Keßler, The SB-PRAM: concept, design, construction, Proc. 3rd Int.
IEEE Conference on Massively Parallel Programming Models, Nov. 1997, London, IEEE CS Press.

[5] C. W. Fraser and D. R. Hanson. A code generation interface for ANSI C. Software—Practice & Experience,
21(9):963–988, Sept. 1991.

[6] C. W. Fraser and D. R. Hanson. A retargetable compiler for ANSI C. SIGPLAN Notices, 26(10):29–43,
Oct. 1991.

[7] C. W. Fraser and D. R. Hanson. A retargetable C compiler. Benjamin Cummings, 1995.

[8] T. Hagerup, A. Schmitt and H. Seidl. FORK: A High–Level Language for PRAMs. Future Generation
Computer Systems 8 (1992), 379–393.

[9] J. Keller, C. Kessler, and J. Träff. Practical PRAM Programming. Textbook, approx. 550 pages, to appear
in Spring 2000 at Wiley, New York.

[10] J. Keller, W. J. Paul and D. Scheerer. Realization of PRAMs: Processor Design. Proc. WDAG’94, 8th Int.
Workshop on Distributed Algorithms, Springer LNCS vol. 857, 17–27, 1994

[11] C. W. Kessler and H. Seidl. Making FORK Practical. Technical Report 95-01, SFB 124, Universität
Saarbrücken.

[12] C. W. Kessler and H. Seidl. Fork95 language and compiler for the SB-PRAM. Proceedings of 5th Workshop
on Compilers for Parallel Computers, Malaga, Spain, June 28–30, 1995. Technical Report UMA-DAC-
95/09, University of Malaga, Department of Computer Architecture.

[13] C. W. Kessler and H. Seidl. Integrating synchronous and asynchronous paradigms: The Fork95 program-
ming language. Technical Report 95-05, Universität Trier. See also: Proceedings of MPPM-95 Int. IEEE
Conference on Massively Parallel Programming Models, Berlin, Germany, Oct. 9–12, 1995.

[14] C. W. Kessler and J. L. Träff. A Library of Basic PRAM Algorithms and its Implementation in FORK. 8th
Annual ACM Symposium on Parallel Algorithms and Architectures. pp. 193–195, ACM press, 1996.

[15] C. W. Kessler and J. L. Träff. Language and Library Support for Practical PRAM Programming. 5th
EUROMICRO Workshop on Parallel and Distributed Processing, London, IEEE CS Press, Jan. 1997.

15

[16] C. W. Kessler and J. L. Träff. Language and Library Support for Practical PRAM Programming. Parallel
Computing 25(2), pp. 105–135, Elsevier, 1999.

[17] C. W. Kessler and H. Seidl. Language Support for Synchronous Parallel Critical Sections. Technical Report
95-23, Universität Trier, Nov. 1995. Proc. Int. Conf. on Advances in Parallel and Distributed Computing
(APDC’97), Shanghai, China, 1997. IEEE CS Press.

[18] C. W. Kessler. Practical PRAM Programming with Fork95 — A Tutorial. Technical Report 97-12, Univer-
sität Trier, 1997. Contained in the doc directory of the fcc distribution.

[19] D. Scheerer. Der SB-PRAM Prozessor. PhD dissertation, Universität Saarbrücken, 1995.

16

