
Parallel Fourier�Motzkin Elimination

Christoph W� Ke�ler�

Fachbereich � � Informatik
Universit�at Trier

D������ Trier� Germany
e�mail	 kessler�psi�uni�trier�de

Abstract� Fourier�Motzkin elimination is a computationally expensive
but powerful method to solve a system of linear inequalities for real and
integer solution spaces
 Because it yields an explicit representation of the
solution set� in contrast to other methods such as Simplex� one may� in
some cases� take its longer run time into account

We show in this paper that it is possible to considerably speed up
Fourier�Motzkin elimination by massively parallel processing
 We present
a parallel implementation for a shared memory parallel computer� and
sketch several variants for distributed memory parallelization

� Introduction

Given a system Ax � b� A � Rn�m� b � Rn� of n linear inequalities in m
variables� we ask for the existence of ��� a real solution x � Rm of Ax � b� and
��� an integer solution x � Zm� Furthermore we are interested in an explicit
representation of the set of solutions�

Problem ���� a special case of linear programming� is polynomial in time�
Geometrically� it corresponds to determining whether the intersection polytope
of n halfspaces of them�dimensional space is nonempty� It is usually solved using
the well�known Simplex algorithm �see e�g� �	
 for a survey� which has expected
run time O�nm�n�m�� but takes exponential time O�nm�n� in the worst case�
� Problem ���� the interior point problem for integer linear programming �cf�
�	
� is NP�complete� Geometrically� it asks whether the intersection polytope of
n halfspaces of the m�dimensional space contains any integer point�

Already in �
��� Fourier proposed an elimination method ��
 that solves both
problems� As expected� this algorithm takes non�polynomial run time� Indeed�
the complexity can grow dramatically� Consequently� the method did not become
widely known� and was re�invented several times� e�g� by Motzkin in ���	� For
certain cases� however� it is a quite useful tool� because it is constructive� If a
solution exists� it yields a representation of the convex intersection polytope�
This representation may� of course� be used to determine the complete set of
all feasible integer solutions x by an enumeration procedure� provided that this
set is �nite� But it can also be used to supply a symbolic solution� This feature
is used e�g� when applying restructuring loop transformations to a numerical
program with the goal of parallelizing it� see ��
 for a detailed discussion�

Clearly� its high worst�case computational complexity made Fourier�Motzkin
elimination impractical as a general tool to solve the integer case� But even if
medium�sized problems would already take too much time on a uniprocessor

� The full version of this paper can be obtained from the author

system� they could nevertheless be solved on a massively parallel computer� We
show that Fourier�Motzkin elimination o�ers a great potential for the exploita�
tion of massive parallelism� We give an implementation for a shared�memory
multiprocessor and sketch variants for a distributed�memory implementation�

� Fourier�Motzkin Elimination

Since the �sequential� algorithm is not widely known� we give a summary of the
excellent description given in ��
�

The algorithm is subdivided into seven steps�
Step �� We are given A � �aij�i�j � Rn�m and b � Rn� representing the system
Ax � b� We set up a �working system�� consisting of a matrix T � Rn�m and a
vector q � Rn� We initialize tij � aij and qi � bi for � � i � n� � � j � m� and
initialize the current problem sizes r� s by r � m and s � n�
Step �� We sort the s inequalities and determine indices n�� n� � N� � � n� �
n� � s such that� after renaming of the indices of the inequalities� tir � � for
� � i � n�� ti�r � � for n� � � � i� � n�� and ti��r � � for n� � � � i�� � s�
Step �� We normalize the �rst n� inequalities by tij � tij�tir and qi � qi�tir
for � � i � n�� � � j � r � �� Now the system looks as follows�

ti�x� � ti�x� � � � � �ti�r��xr�� � xr � qi� � � i � n� ���
ti��x� � ti��x� � � � � �ti�r��xr�� � xr � qi� � n� � � � i� � n� ���
ti���x� � ti���x� � � � � �ti�r��xr�� � qi�� � n� � � � i�� � n�� ���

Step �� From subsystem ��� we obtain xr � qi �
Pr��

j�� tijxj for � � i � n��

thus BU
r �x�� ���� xr��� � min��i�n��qi�

Pr��
j�� tijxj� is an upper bound for xr� If

n� � �� we set BU
r �x�� ���� xr��� � ���

In the same way� ��� yields xr � qi� �
Pr��

j�� ti�jxj for n� � � � i� � n�� thus

BL
r �x�� ���� xr��� � maxn����i��n��qi� �

Pr��

j�� ti�jxj� is a lower bound for xr �

If n� � n�� we set BL
r �x�� ���� xr��� � ��� Thus� the range BL

r �x�� ���� xr��� �
xr � BU

r �x�� ���� xr��� of feasible values for variable xr is given in terms of feasible
values for variables x�� ���� xr��� We record these bounds for later use�
Step �� If r � �� we are done� since the bounds BL

� � B
U
� are constants �maybe

���� In this case we can return the answer to the original problem�
If and only if BL

� � BU
� and qi�� � � for all i��� n� � � � i�� � s� then the

original system has a real solution x � Rm� This feature installs correctness of the
algorithm� provided that exact arithmetic has been used� A proof by induction
is straightforward�

Otherwise� if r � �� we have to continue�
Step �� We eliminate xr� As minimizations and maximizations cannot be di�
rectly expressed in a linear system� we do this by setting each component of the
lower bound for xr less than or equal to each component of the upper bound for
xr� This produces n��n� � n�� new inequalities in r � � variables�

qi��

r��X

j��

ti�jxj � xr � qi�

r��X

j��

tijxj for all i� i�� with � � i � n�� n��� � i� � n��

To these we add the s�n� old inequalities from ���� This yields a new system
with s� � s�n��n��n��n�� inequalities in r�� variables� The new system has

a real solution i� system ������� has a real solution� By induction� we obtain that
the new system has a real solution i� the original system has a real solution�

If s� � �� we are done� then the variables x�� ���� xr�� can be chosen arbitrarily�
the system has in�nitely many solutions� Otherwise� we continue�
Step �� In the new system� we renumber the coe�cients as ti�j and qi with
� � i � s� and � � j � r � �� We set s � s�� r � r � � and iterate from step ��

The algorithm determines whether Ax � b has a real solution x � Rm� and�
if yes� supplies� as a byproduct� an explicit representation of the solution set�

Due to the construction of the algorithm� any real solution x � Rm ful�lls
BL
r �x�� ���� xr��� � xr � BU

r �x�� ���� xr��� for � � r � m� However� if an integer
solution x � Zm is required� the answer �yes� by Fourier�Motzkin elimination
does not su�ce to guarantee an integer solution� This means that we have to
test explicitly whether the following system is ful�lled�

dBL
m�x�� ���� xm���e � xm � bBU

m�x�� ���� xm���c

dBL
m���x�� ���� xm���e � xm�� � bBU

m���x�� ���� xm���c
���

���
��� ���

dBL
� e � x� � bBU

� c

If the �integer� solution set is �nite� i�e� there are no in�nite upper or lower
bounds BU

r � B
L
r for some r� � � r � m� the following loop nest produces the

complete solution set�

forall x� � fdBL
� e� ���� bB

U
� cg

forall x� � fdBL
� �x��e� ���� bB

U
� �x��cg

forall xm � fdBL
m���x�� ���� xm���e� ���� bB

U
m���x�� ���� xm���cg

print x

This makes� of course� only sense if the solution set does not become too large�
thus a�priori knowledge on the maximum size of the solution set is required here�
Clearly� if only the existence of an integer solution x is in question� it su�ces to
abort all these forall loops after the �rst feasible x has been found�

Moreover� if one is interested in a symbolic representation of the solution set�
e�g� when determining the new loop limits for a restructured loop nest �see ��

for an example�� the bounds for x due to ��� directly supply this representation�

The run time of Fourier Motzkin elimination may be disastrous in the worst
case because the number of inequalities may square in each iteration �if always
n� � n� � s���� Nevertheless� on the average it should be considerably lower�
The probability that the �rst argument of T is maximal in each recursion step is
rather small� Moreover� the sparsity structure of A has a considerable in�uence
on the run time� because n� � s if the matrix contains many zero elements� At
least for the inequalities ��� that do not participate in a speci�c elimination step�
the sparsity pattern is preserved by the algorithm� For the other inequalities� the
number of non�zero coe�cients may� in the worst case� double in each iteration�

� Parallelization for Shared Memory

We found the following shared data structure useful for speeding up the sorting
steps �� and ��� Pointers to the inequalities of each iteration are stored in a

dynamically allocated array t with s entries� Thus� interchanging of inequalities
can be done in constant time by just interchanging the pointers to them�

2

s-1
1 30 2

1

0

3

...

...

...

...

...

...

13

t

s-1,
1

s-1,

01 02 03

11 12

21 22 23

t t

t t t

ttt

t t t

t33t32t31

...ts-1,
2 r

q0

q
1

q
2

q
3

qs-1

r

t

t

t

t

0r

1r

2r

3r

The coe�cients tij of each inequality i in r vari�
ables are stored in a dynamically allocated array
t�i� with r�� entries� For simplicity and space
economy� we store the right hand side values qi
as the zeroth entry t�i���� of each inequality
array� The pointers t to the overall system of all
iterations r are� in turn� stored in an array that
later allows accessing the lower and upper bound
expressions for each xr �

If the original matrix A is sparse� it su�ces to store the nonzero elements tij
for each inequality� together with the column index j� We implemented only the
dense variant because �a� sparsity becomes worse in the course of the algorithm�
and �b� exploiting sparsity only pays o� if m exceeds a certain value� which� on
the other hand� may lead to very long run times�

We assume a multiprocessor with p processors� Each processor has constant
time access to a large shared memory� Concurrent write operations are resolved
by using an atomic fetch�add construct that takes constant time� independent
of the number of processors participating in this operation� A research prototype
of a machine with this ideal behaviour� the SB�PRAM ��� �
� is currently being
built by W�J� Paul�s group at the University of Saarbr�ucken� As programming
language� we use Fork��� an extension of ANSI C for general�purpose PRAM
programming� See ��
 and http� ��www�wjp�cs�uni�sb�de�fork��� for further
details�

Step � of the algorithm can be done in parallel� The mpadd instruction� an
atomic fetch�add primitive� performs in � CPU cycle on the SB�PRAM� regard�
less of the number of participating processors�

This feature is very helpful here� the over�
all sorting step �see on the right� producing
a sorted system t from an unsorted system
t old� is performed by p � s processors in
time O�s�p�� gforall	i
lb
ub
p� is a macro
that denotes a parallel loop whose �private�
loop index variable i globally ranges from lb
to ub��� with iterations being cyclically dis�
tributed over the participating p processors� If
p exceeds the number ub�lb of iterations� the
remaining processors remain idle and could be
used for further �interior� levels of parallelism�
pr is a type quali�er that declares a variable
as private to each processor�

pr int mypos� i� j� ii�
n���� nn � s���
gforall 	i� �� s� p
 �

if 	t�old
i�
r� �� �

mypos � mpadd	�n�� �
�

else mypos � mpadd	�nn���
�
t
mypos� � t�old
i�� �

gforall 	i� �� s� p

t�old
i� � t
i��

n� � �� �� nn is now n��� ��
gforall 	i� �� n�� p
 �

if 	t�old
i�
r� � �

mypos � mpadd	�n�� �
�

else mypos � mpadd	�nn���
�
t
mypos� � t�old
i�� �

free	 t�old
�

Step � contains n��r � �� divisions� these can
completely execute in parallel provided that a
data dependency cycle is resolved by a tempo�
rary shared array f�� �see code on the right��
Thus� step � runs in time O�n��r � ���p� on
p � n��r � �� processors�

�determine pi�pj with pi�pj�p�
pi��min	n��n��n�
 maximal �
gforall 	i� �� n�� pi

f
i� � ��� � t
i�
r��
gforall 	i� �� n�� pi

gforall 	j� �� r��� pj

t
i�
j� �� f
i��

Step � records the inequalities from ��� and ���
that install upper resp� lower bounds on xr� for
later use� Thus� storage for these inequalities
cannot be freed�

gforall 	i� n�� n�� pi

f
i� � �	��� � t
i�
r�
�

gforall 	i� n�� n�� pi

gforall 	j� �� r��� pj

t
i�
j� �� f
i��

Step � handles the special case r � �� Explicit computing ofBU
� andBL

� is done in
time O��n� log p��p� on p processors� If we are interested in an integer solution�
we can� compared to conventional parallel minimization maximization� save
the log p factor using fast integer maximization minimization which is supplied
by the mpmax operator� a multipre�x maximization instruction that performs in
constant time on the SB�PRAM�

Step 	 constructs a new system of inequal�
ities �see the kernel on the right�� If p �
n��n��n��r� then this kernel executes in time
O�n��n��n��r�p�� Note that we may here also
compute the position of each new inequality
as mypos
 i�n��ii� without using the mpadd
instruction� alloc	� performs memory alloca�
tion of permanent shared heap blocks� Using
mpadd� it runs in constant time� regardless of
the number of participating processors�

� comp� pi�pii�pj with pi max�
and pi�pii�pj�p �

gforall 	i� �� n�� pi
 �
gforall 	ii� n�� n�� pii
 �

pr ineq myineq�
farm �
mypos � mpadd	�s�new��
�
myineq � 	ineq
 alloc	

r�sizeof	double

�
gforall 	j� �� r� pj

myineq
j� � t
i�
j�

� t
ii�
j���
t�new
mypos��myineq� � �

Appending the old s � n� inequalities from
���� we only need to copy the pointers to them
�see code on the right�� resulting in run time
O��s � n���p� on p � s� n� processors�

gforall 	i� n�� s� p

t�new
mpadd	�s�new��
��t
i��

The renumbering as indicated in step � is implicitly performed during step
	� thus step � takes only constant time�
Results Table � shows some measurements for our implementation� Since the
SB�PRAM hardware is not yet operational� we use the SB�PRAM simulator
running on a SUN workstation� The simulator produces exact timings� one SB�
PRAM clock cycle �cc� will take � microseconds on the SB�PRAM prototype
with ���	 processors currently being built at Saarbr�ucken University�

We have ported the Fork�� program to a Cray EL�
 with
 processors� using
Cray Microtasking� The vector units of this machine are exploited best if interior
loops �e�g� the j loops� are vectorized� which is generally possible here� Longer
vectors are possible if chaining features are exploited� this enables processing all
inequalities owned by a processor as one large vector update operation� However�
because there is no equivalent to mpadd	� on the Cray� step � is sequentialized�
thus the speedup observed is rather modest ����� for �� and ��	 for
 processors�
applied to a ��� � random problem��

� Parallelization for Distributed Memory

We sketch� three di�erent scenarios for distributing data across p processors of
a distributed memory system� Each possibility has advantages and drawbacks�
��� The s inequalities are equally distributed among the processors� Step � of

each iteration installs the invariant that each processor holds approximately

� For space limitations we cannot go into more detail here
 See the full version

dense n
 ��� m
 �
p time �cc� speedup
� �������� �
��
� ������� �
��
� ������� �
��
� ������� �
��
�� ������� ��
��
�� ������ ��
��
�� ������ ��
��
��� ������ ��
��

dense n
 ��� m
 �
p time �cc� speedup
� ��������� ����

� ����	

� ����

� ��	�����
���

� ��
�
�
� ����

�	 ��	��		
 ���
�

� 	������
����

	�
�		��� 	����

��� �	����� ������

��	 �	�	�� �����	

��� ����	�
�����

����
����� �	����

sparse n
 ���� m
 ��
p time �cc� speedup
� �������� �
��
� �������� �
��
� �������� �
��
� ������� �
��
�� ������� ��
��
�� ������� ��
��
�� ������ ��
��
��� ������ ��
��
��� ������ ���
��

Table �� Measurements on the SB�PRAM for feasible dense random systems� All entries
are nonzero and chosen such that n� � n� � n� and n�
 s in each iteration� Speedup is
almost linear� Slight speedup degradations for large numbers of processors arise from many
processors being idle in the �rst� least expensive iterations� and from some sequential over�
head� Nevertheless� the combinatorial explosion� especially regarding space requirements� is
discouraging for larger dense systems� � The right hand column shows measurements on
the SB�PRAM for a sparse random system� ����	 of the entries aij are nonzero� Sparsity
considerably delays the combinatorial explosion�

the same amount of inequalities of each of the three categories ���� ��� and
���� namely n��p� �n� � n���p� and �s� n���p� respectively� Computational
load is perfectly balanced� This causes much communication for step � but
modest communication for step 	�

��� The s inequalities are equally distributed among the processors� but the lo�
cal ratios of inequality categories do not necessary correspond to the global
ratio of n� to n� to s� Computational load is perfectly balanced� Less com�
munication is required in step � but slightly more in step 	�

��� The r variables are cyclically distributed among the processors� Computa�
tional load is not perfectly balanced for the last p � � iterations which are
probably computationally most expensive �requires thus combining with ���
or ����� Steps � and 	 do not require any communication at all� but Step �
now requires a broadcast for each inequality�

References

�
 F
 Abolhassan� R
 Drefenstedt� J
 Keller� W
J
 Paul� and D
 Scheerer
 On the phys�
ical design of PRAMs
 Computer Journal� �����	�������� Dec
 ����

�
 F
 Abolhassan� J
 Keller� and W
J
 Paul
 On the cost�e�ectiveness of PRAMs

Proc� �rd IEEE Symp� on Parallel and Distributed Processing� ���� ����

�
 U
 Banerjee
 Loop Transformations for Restructuring Compilers� The Foundations

Kluwer Academic Publishers� ����

�
 J
B
J
 Fourier
 �reported in	� Analyse des travaux de l�Acad�emie Royale des Sci�
ences pendant l�ann�ee ����� Partie math�ematique� ����
 Engl
 transl
 �partially� in	
D
A
 Kohler� Translation of a report by Fourier on his work on linear inequalities�
Opsearch �� ������ �����

�
 C
W
 Ke�ler and H
 Seidl
 Integrating Synchronous and Asynchronous Paradigms	
The Fork�� Parallel Programming Language
 Proc
 MPPM��� Int
 Conf
 on Mas�
sively Parallel Programming Models� Berlin� Germany� ����

�
 A
 Schrijver
 Theory of Linear and Integer Programming
 Wiley� ����

This article was processed using the LATEX macro package with LLNCS style

