
Language and Library Support for Practical PRAM Programming�

Christoph W� Ke�ler

FB � Informatik� Universit�at Trier
D������ Trier� Germany

kessler�psi�uni�trier�de

Jesper Larsson Tr�a�y

Max�Planck�Institut f�ur Informatik
D���	�
 Saarbr�ucken� Germany

traff�mpi�sb�mpg�de

Abstract We investigate the well�known PRAM
model of parallel computation as a practical paral�
lel programming model� The two components of this
project are a general�purpose PRAM programming
language called Fork��� and a library� called PAD�
of e�cient� basic parallel algorithms and data struc�
tures� We outline the primary features of Fork�� as
they apply to the implementation of PAD� We give a
brief overview of PAD and sketch the implementation
of library routines for pre�x�sums and bucket sorting�
Both language and library can be used with the SB�
PRAM� an emulation of the PRAM in hardware�

� Introduction

We describe a project investigating the PRAM �see
e�g� ���� as a practical programming model� The com�
ponents of the project are a general�purpose program�
ming language for PRAMs� called Fork��� and a li�
brary of basic PRAM Algorithms and Data structures�
called PAD� The central theme of the project is ef�
�ciency	 The programming language must be ade�
quate for the implementation of parallel algorithms
as found in the literature� and e
ciently compilable
to the target machine� the library should include the
most e
cient algorithms �in terms of parallel work�
as well as constants�� and support easy implementa�
tion of more involved algorithms� Although not depen�
dent on a particular physical realization of the PRAM
model� this work is immediately applicable to the SB�
PRAM ���� a physical realization of a Priority CRCW
PRAM built by W� J� Pauls group at the University
of Saarbr�ucken� A ��� PE prototype is operational�
the full ���� PE version is under construction�
This paper reports on work in progress� A very

brief outline was given in ����� Fork�� is described in
detail in� ���� ���� PAD�in ���� ����

�This work was partially supported by ESPRIT LTR Project
no� ����� � ALCOM�IT

yThis author was supported by DFG� SFB ����D�� VLSI
Entwurfsmethoden und Parallelit�at�

�These reports are available at the Fork	
 homepage at
http���www�informatik�uni�trier�de��kessler�fork���html
or ftp���ftp�informatik�uni�trier�de�pub�users�Kessler�
The Fork	
 kit contains the compiler� documentation� a sim�
ulator for the SB�PRAM� and small example programs�

�Documentation and a �rst release of PAD is available at
http���www�mpi�sb�mpg�de�guide�activities�alcom�it�PAD�

� Fork�� features used in PAD

Fork�� is a language for explicit programming of syn�
chronous shared memory computers �PRAMs� in the
SPMD �Single Program� Multiple Data� paradigm�
Hence concepts like processors� processor IDs� shared
memory� and synchronicity are explicit to the pro�
grammer� In contrast to the unlimited number of pro�
cessors often assumed in the PRAM literature� Fork��
supports only a �xed number of processors� as de�
termined by the underlying hardware� Fork�� o�ers
means for deviating from strictly synchronous exe�
cution� in particular asynchronous program regions
where exact statement�level synchrony is not enforced�
Fork�� grew out of a proposal ��� for a strictly syn�
chronous PRAM programming language� but has been
based on the C programming language� from which
it inherits features like pointers� dynamic arrays� etc�
Carefully chosen defaults permit inclusion of existing
C sources without any syntactical change� The asyn�
chronous mode of computation �the default mode� al�
lows to save synchronization points and enables more
freedom of choice for the programming model�
For e
ciency reasons the signi�cant run time over�

head of virtual processor emulation has been aban�
doned by restricting the number of processes to the
hardware resources� resulting in a very lean code gen�
eration and run time system� To compensate for this
conceptual drawback� the library routines of PAD can
be called by any number of processors and with data
instances of arbitrary size� Additionally� �parallel it�
erators� are provided for common data types such as
arrays� lists� trees etc�� which helps the programmer
to schedule the processors evenly over data instances
larger than the number of processors�
Fork�� supports many parallel programming

paradigms� such as data parallelism� strictly syn�
chronous execution� farming� asynchronous sequential
processes including parallel critical sections� pipelin�
ing� parallel divide�and�conquer� and parallel pre�x
computation �����

��� Shared and private variables

The entire shared memory of the PRAM is partitioned
into private address subspaces �one for each proces�
sor� and a shared address subspace� as con�gured by
the programmer� Accordingly� variables are classi�ed

either as private �declared with the storage class qual�
i�er pr� this is the default� or as shared �sh�� where
�shared� always relates to the group of processors �see
Subsection ���� that de�ned that variable� Private
variables and objects exist once for each processor�
The usage of pointers in Fork�� is as �exible as in

C� since all private address subspaces have been em�
bedded into the global shared memory� In particular�
one does not have to distinguish between pointers to
shared and pointers to private objects� in contrast to
some other parallel programming languages� for exam�
ple C� �see eg� ������ The following program fragment

pr int prvar� �prptr�
sh int shvar� �shptr�
prptr � �shvar�

causes a private pointer variable prptr of each pro�
cessor to point to the shared variable shvar�
Fork�� maintains three kinds of heaps	 a global�

permanent shared heap� an automatic shared heap for
each group of processors� and a private heap for each
processor� Space on the private heaps is allocated and
freed by malloc�� and free�� as in C� Objects al�
located on the automatic shared heap by shalloc��
exist as long as the group of processors that executed
shalloc��� Permanent shared objects allocated on
the permanent shared heap by shmalloc�� exist until
they are explicitly freed by shfree���
Fork�� makes no assumption about concurrent

read�write operations� but inherits the con�ict resolu�
tion mechanism of the target machine� In case of the
SB�PRAM both simultaneous read and write opera�
tions are allowed� In case of simultaneous writing to
the same memory cell� the lowest numbered processor
wins� and its value gets stored� Assume all processors
execute the following statement simultaneously	

shptr � �prvar� �� concurrent write ��

This makes the shared pointer variable shptr point
to the private variable prvar of the processor with the
lowest processor ID� In this deterministic way� private
objects can be made globally accessible�
Processors in Fork�� are identi�ed by their proces�

sor ID� which is accessible as a special private variable
�� initially set to the physical processor ID� At any
point during execution of a Fork�� program the pro�
cessors form groups �see Section ����� a special variable
� shared by all processors belonging to the same group
holds the current group ID� � and � are automatically
saved and restored at group�splitting operations�

��� Synchronous and asynchronous mode

Fork�� o�ers two di�erent programming modes that
are statically associated with source code regions	 syn�
chronous and asynchronous mode� In synchronous
mode� processors work strictly synchronous	

Synchronicity Invariant �SI�� All processors
belonging to the same �active� group have their
program counters equal at each time step�

In asynchronous mode� the SI is not enforced�
Functions are classi�ed as either synchronous �de�

clared with type quali�er sync� or asynchronous
�async� this is the default�� A synchronous function
is executed in synchronous mode� except from blocks
starting with a farm statement

farm 	stmt

which enters asynchronous mode and re�installs syn�
chronous mode after execution of �stmt� by an exact
barrier synchronization�
An asynchronous function is executed in asyn�

chronous mode� except from the body of a join state�
ment which enters synchronous mode� beginning with
an exact barrier synchronization� The join statement

join� 	lower
� 	upper
� 	groupspace
 �
	stmt
 else 	otherstmt
 �

�cf� ����� o�ers a means for several asynchronously
operating processors to meet at this program point�
form a new group� and execute �stmt� in synchronous
mode� The �rst two parameters may be used to install
a lower resp� upper bound on the number of collected
processors� Statement �stmt� is executed by at most
one group of processors at any time� and can thus be
viewed as a synchronous parallel critical section� A
shorthand for a common special case of join is

start 	stmt

which collects all available processors to enter the syn�
chronous region �stmt��
Synchronous functions can only be called from syn�

chronous regions� Calling asynchronous functions is
possible from asynchronous and synchronous regions�
where a synchronous caller causes the compiler to in�
sert an implicit farm around the call� maintaining
asynchronous execution mode for the callee�

The importance of being synchronous� In syn�
chronous mode� shared variables need not be protected
by locks because they are accessed in a deterministic
way	 the programmer is guaranteed a �xed execution
time for each statement which is the same for all pro�
cessors� Thus no special care has to be taken to avoid
race conditions� This is due to the absence of virtual
processing in Fork��� For instance� in

sync void foo� sh int x� a �
���� if ��	��� a � x� else y � a� ����

all processors of the else part must� by the semantics
of synchronous mode� read the same value of a� To
guarantee this in the presence of virtual processing
would require a group lock for each shared variable�

Due to the presence of pointers and weak typing in C�
a lock would be required for each shared memory cell�

The importance of being asynchronous� In
asynchronous program regions there are no implicit
synchronization points� Maintaining the SI requires
a signi�cant overhead also for the cases where each
group consists of only one processor� or when the SI
is not required for consistency because of the absence
of data dependencies� Marking such regions as asyn�
chronous can lead to substantial savings� Considerate
usage of farm and asynchronous functions can result in
signi�cant performance improvements �see Sect� �����

��� Explicit Parallelism

A Fork�� program is executed by all started PRAM
processors in SPMD mode� Thus� parallelism is stat�
ically present from the beginning of program execu�
tion� rather than being spawned dynamically from a
sequential thread of control�
As mentioned Fork�� does not support virtual

processing� The PAD library compensates for this
inconvenience by having its routines be implicitly
parametrized by the number of executing processors�
A work�time framework ��� �� is thus convenient for
describing the performance of the routines in the li�
brary� A library routine implementing an algorithm
with running time t �assuming an unbounded number
of processors� while performing w operations in total
to do its job� runs in time O�t � w�p� when called
by a group of p synchronously operating processors�
We will say that a routine which runs in O�n�p� time
on a data instance of size n takes �pseudo�constant
time �this is indeed so when p � n�� � In order to
make a program independent of the number of pro�
cessors� PAD provides parallel iterators on common
data structures� The number of calling processors is
determined by the routines themselves by the Fork��
routine groupsize��� and needs not be supplied by
the caller�
For instance� a dataparallel loop over n array ele�

ments using p processors with IDs � �� �� � � � � p� �

sh int p�groupsize��� ��get � procs in my group��
pr int i�
for �i��� i	n� i��p� ai� � bi� � ci��

could also be written using a PAD macro
par�array�i�n� ai� � bi� � ci��

which causes the private variable i of the processor
with ID � to step through the values �� ��p� ���p�
� � � � up to n� This takes �pseudo�constant time and
works both in synchronous and asynchronous mode�

��� Multipre�x operations

Multipre�x operations are essential parallel program�
ming primitives� which can be provided at practically

no extra cost in massively parallel shared memory em�
ulations �theoretically� ie� with no asymptotic loss in
e
ciency� as well as in the number of extra gates
needed�� The SB�PRAM o�ers highly e
cient mul�
tipre�x instructions which execute in only two CPU
cycles� independent of the number of processors�
The atomic multipre�x operators of Fork�� are in�

herited from the SB�PRAM� but should be thought of
as part of the language� The expression

prvar � mpadd� �shvar� 	exp
 �

atomically adds the �private� integer value of �exp� to
the shared integer variable shvar and returns the old
value of shvar �as it was immediately before the ad�
dition�� The operators mpmax �multipre�x maximum��
mpand and mpor �multipre�x bitwise and resp� or�
work analogously� The Fork�� run�time library o�ers
routines for various kinds of locks� semaphores� barri�
ers� self�balancing parallel loops� and parallel queues�
All these are based on multipre�x operators�
The multipre�x operators also work if executed by

several processors at the same time and even with dif�
ferent shared integer variables shvar� Among the pro�
cessors participating in an mpadd instruction on the
same shared integer variable shvar at the same time�
the processor with the ith�largest physical processor
ID �contributing an expression �exp� evaluating to a
private integer value ei� receives the �private� value
s��e��e�� � � ��ei��� where s� denotes the previous
value of shvar� Immediately after the execution of this
mpadd instruction� shvar contains� as a side e�ect� the
global sum s��

P
j ej of all participating expressions�

Thus� the multipre�x operators provide fast reduction
operators for integer arrays which can be used in syn�
chronous as well as in asynchronous mode�
An immediate application of the mpadd operator is

a PAD library routine to compute� in constant time�
the pre�x sums over an array of n integers	

sync void prefix�add� sh int x�� sh int n�
sh int y�� sh int offset�

� sh int sum � offset�
pr int i� s�
par�array�i�n� � �� n�p segments of size p ��

s � xi��
yi� � mpadd� �sum� xi���
yi� �� s� � �

For an input array x of size n� prefix�add�� computes
in array y the pre�x sums of the input array� o�set by
offset� Ie�� y�i� is assigned x�	�
���
x�i�� The
actual number of calling processors is implicitly deter�
mined by the parallel iterator par�array���
The fact that multipre�x operators can be exe�

cuted with di�erent shared variables shvar� provides
for easy implementation of even more powerful prim�
itives� For instance� �colored pre�x summation� in
which each element of the input array has an associ�
ated color �an integer between � and c � � � n� and

pre�x sums are to be computed colorwise� can also be
done in constant� ie� O�n�p� time	

sync void colorprefix� sh int x�� sh int n�
sh int color�� sh int c� sh int ccount��

� pr int i� s�
par�array�i�c� ccounti� � ��
�� ccounti� will count elements of colori� ��
par�array�i�n� �

s � xi��
xi� � mpadd��ccountcolori���xi���
xi� �� s� � �

Upon return from this routine� x�i� holds the sum of
all elements up to and including i of the same color as
x�i� �ie� color�i��� and ccount�i� holds the sum of
all elements with color color�i�� We give a surprising
application of this primitive in Section ����

��� The group concept

In synchronous mode� the processors are partitioned
into independent� synchronous groups� Shared vari�
ables and objects exist once for the group that cre�
ated them� global shared variables are visible to all
processors� Processors within an �active� group main�
tain the SI� but there is no enforced synchrony among
processors belonging to di�erent groups� Such proces�
sors� although synchronous at the instruction level �as
guaranteed by the hardware�� may be executing dif�
ferent instructions of the program at the same time�
Splitting the current group of processors into sub�

groups can be done explicitly by the fork statement

fork �	exp�
� ��	exp�
� ��	exp�
� 	stmt

which evaluates the shared expression �exp�� to an
integer g and splits the current leaf group in g sub�
groups� with local group IDs � numbered ��������g���
Each processor decides by the value of �exp� which
of the new subgroups it will join� i�e� all processors
for which the private expression �exp� evaluates to
the same value i join group i with � i� The assign�
ment to the group�relative processor ID � permits local
renumbering of � inside each new subgroup� The SI is
only maintained within subgroups� The parent group
is restored �by exact barrier synchronization� when all
subgroups have �nished their execution of �stmt��
As long as control �ow depends only on �shared�

conditions that evaluate to the same value on each
processor� the SI is preserved without changes� If con�
trol �ow diverges� due to �private� conditions in if or
loop statements� the active group is deactivated and
split into new subgroups� in order to preserve the SI
within the subgroups� These are active until control
�ow reuni�es again� Then� after exact barrier syn�
chronization� the SI holds again for the parent group
which is reactivated� Thus� at any point during pro�
gram execution� the groups form a tree�like hierarchy�
with the root group consisting of all started proces�
sors� and the leaf groups being the currently active

ones� for which the SI currently holds� Subgroup cre�
ation can be directly used for parallel Divide!Conquer
implementations� as eg� in PADs quicksort routine�
In asynchronous mode� there is no �implicit� split�

ting of groups required as no statement�level syn�
chrony is to maintain�

� The PAD library structure

The PAD library of parallel algorithms provides
support for implementation of parallel algorithms
as found in the current theoretical literature by
making basic PRAM algorithms and computational
paradigms� like pre�x sums� sorting� list ranking� tree
computations etc� available� PAD provides a set of
abstract parallel data types like arrays� lists� trees�
graphs� dictionaries� However� the user of the library
is responsible for ensuring correct use of operations on
data objects� since Fork�� does not support abstract
data types as such �see Section ��� PAD contains type
de�nitions for some common parallel data types� and
is organized as a set of routines which operate on ob�
jects of these types� Computational paradigms� e�g�
pre�x sums over arrays of arbitrary base type with a
given associative function are provided for by library
routines with function parameters� The standard op�
erations have often certain �canonical� instances� e�g�
pre�x sums for integer arrays� Library routines for
both general and special cases are normally available�

��� The pre�x library

The pre�x library contains basic operations for the ar�
ray data type� mainly of the �pre�x�sums� kind� Op�
erations like computation of all pre�x sums� total sum�
pre�x sums by groups etc� for arrays over arbitrary
base types with a user speci�ed associative function
are available� For instance� �pre�x sums� of an array
x of n objects of type struct x�object� with a func�
tion f implementing an associative function f on the
set of struct x�object� can be computed by

Prefix� x� n� sizeof�struct x�object�� PR� f��

Here f is a �user�de�ned� Fork�� function which im�
plements the assignment x f�y� z� when called with
pointers to objects x� y and z� The macro PR� per�
forms the necessary type casting� The recursive rou�
tine takes O�logn�n�p� time� in contrast to the con�
stant time routine prefix�add�� for integer arrays�

��� The merge library

The merge library contains operations for parallel
searching and merging of ordered arrays� and sort�
ing of arrays� The merge routine implements the
CREW algorithm in ���� which runs work�optimally
in O��m � n��p � log�m � n�� time� m and n be�
ing the lengths of the input arrays� The implementa�
tion is very e
cient when compared to a �reasonable�

sequential merge routine� The running time of the
parallel algorithm with one processor �almost� equals
the running time of the sequential implementation�
and the parallel algorithm gives very close to perfect
speed�up ����� This can be partly ascribed to the use
of asynchronous mode� The algorithm partitions the
input arrays into p pairs of subsequences of size at
most d�m � n��pe� which are then merged together�
one pair for each processor� Obviously the concurrent
mergings are independent and therefore executed in
asynchronous mode� which reduces running time con�
siderably� up to a factor �� A trick in ��� makes it easy
to implement a work�optimal parallel merge sort algo�
rithm� which runs in O�log� n�n logn�p� time� using
the abovementioned general merge routine� Speed�up
of up to �� with ��� processors has been achieved for
arrays of only �K integers� see Tab� ��
With colorprefix�� we can implement a paral�

lel bucket sort which sorts n integers in the interval
�� � � � n � � in �pseudo�constant time� The routine is
surprisingly short and simple	 colorprefix�� com�
putes for each input element x�i� the number of ele�
ments before x�i� that are equal to x�i�� if we simply
use� as the color of element x�i�� x�i� itself� This
yields the rank of each element x�i�� A pre�x sums
computation over the rank array su
ces to determine�
for each element x�i�� how many elements in array
x are strictly smaller than x�i�� The �nal position
rank�i� of x�i� in the output is the rank of x�i�
plus the number of strictly smaller elements	

sync void smallperm� sh int keys�� n� rank��
� sh int �count � �int �� shalloc�n�sizeof�int���

pr int i�
par�array�i�n� ranki� � ��
colorprefix� rank� n� keys� n� count��
preprefix�add� count� n� count� ���
par�array�i�n�

ranki� � ranki� � � � countkeysi��� �

preprefix�add� count� ���� stores in count�i�
the pre�x sum count�	�
���
count�i���� it is im�
plemented similar to prefix�add�� in Section ����
Bucket sorting just calls smallperm�� and permutes
the input according to the computed rank array�

Proposition � On the SB�PRAM �or other paral�
lel shared memory machine with constant time multi�
pre�x addition� pre�x sums� colored pre�x sums with
n colors� and bucket sorting of integer arrays with
n elements in the range �� � � � � n � � can be done in
�pseudo�constant� i�e� O�n�p�� time with p processors�
The constant hidden in the O�notation is very modest�

Some results� Tab� � gives the results of sort�
ing integer arrays using PADs quicksort� mergesort
and smallsort routines as described above� Timings
are given in SB�PRAM clock cycles �using the sim�
ulator for the machine� which explains the small in�
put sizes�� The parallel routines are compared to a

n���	� mergesort SU quicksort SU smallsort SU
Seq ����� ����
�	 �����
�
�
����
 ������ � �����	 �
�� ����� 	 �����
 �	�	 ��
�� ���
� �� ������ � ����	 ��
�� ���
�� �	 �	�
�� �� ���	 ��
��� ���
�� �
 ���
� �� 	��	 ���

n�
���
Seq� 	��	��	 ����	�� �������

� ������
 ������ � ����		 �
�� 	�
�� �� �����
� � �����	 ��
�� ���� �� �����
� 	 ����		 ��
�� ������ � �	���� ��
��	 ��
��� ���	�� �� ����� �
 ����	 ���

Table �	 Sorting results� SU � absolute speed�up�

reasonable corresponding sequential implementation�
Bucket sorting is very e
cient and gives speed�up very
close to p� Small deviations �eg� ��� instead of ����
are due to allocation of the auxiliary arrays� Merge�
sort is somewhat more e
cient than quicksort� both
in absolute terms and wrt� speed�up�

��� Parallel lists

A parallel list data type gives direct access to the ele�
ments of an ordinary linked list� and is represented as
an array of pointers to the elements of the list� The
primary operation on parallel lists is ranking� i�e� the
operation of determining for each element of the list
its distance from the end of the list ���� A parallel
list contains in addition to element pointers the nec�
essary �elds for the list ranking operations� Currently
a simple� non�optimal list ranking operation based on
pointer jumping is implemented in PAD� as well as two
work�optimal algorithms from the literature ��� ���� At
present� pointer jumping is at least twice as fast as the
best of the work�optimal algorithms ���� for lists of up
to ��K elements� Other operations on lists include re�
versal� catenation� permutation into rank order� and
others� A parallel iterator par�list�elt�i�n�list�
is available for processing the elements of a parallel
list in �virtual� parallel�

��� Trees and Graphs

Trees are represented in PAD by an array of edges
and an array of nodes� where edges directed from the
same node form a segment of the edge array� An edge
is represented by pointers to its tail and head nodes�
and to its reverse edge� A �next edge� pointer is used
to represent Euler tours� PAD o�ers routines which al�
low a single processor to access and manipulate nodes
and edges� as well as collective� parallel operations on
trees� Parallel operations on trees include computing
an Euler tour� rooting a tree� computing pre� and pos�
torder traversal number� level numbers etc�
PAD also supports least common ancestor prepro�

cessing and querying� The currently implemented
routines are based on the reduction to the range
query problem� which is part of the pre�x library�

In the current implementation� preprocessing takes
O�logn � n logn�p� time �non�optimal�� and proces�
sors can then answer least common ancestor queries
in constant time� Other parallel operations on trees
include routines for generic tree contraction
A data type for directed graphs similar to the tree

data type is de�ned� Parallel operations include �nd�
ing the connected components of a graph� and com�
puting a �minimum� spanning tree

��� Parallel dictionaries

Currently PAD contains one non�trivial parallel dic�
tionary data structure based on ��� trees ����� Dictio�
naries can be de�ned over base types ordered by an
integer key� A parallel dictionary constructor makes
it possible to build a dictionary from an ordered ar�
ray of dictionary items� Dictionary operations include
�parallel� searching and parallel �pipelined� insertion
and deletion� Dictionaries can also maintain the value
of some associative function� and provide a generic
search function� ���� gives the full implementation�

� Status� conclusion� and future work

A compiler for Fork��� together with the system soft�
ware required� is available for the SB�PRAM� Due
to the powerful multipre�x instructions of the SB�
PRAM� the overheads for locking�unlocking� barrier
synchronization and group splitting are very modest�
PAD complements some inconveniences in Fork���

On the other hand� PADs implementation exempli�es
the usability and expressivity of Fork�� for larger scale
parallel programming� A �rst version of PAD� as out�
lined in Section �� is available from October ����� It
will be extended with more advanced graph and com�
binatorial algorithms� e�g� graph decompositions and
maximum �ow algorithms� An important test for both
language and library design will be the ease with which
such more involved algorithms can be implemented�
Further developments of Fork�� are foreseen� possi�

bly by including new language constructs� possibly in
the direction of making �parts of� the language use�
ful for other machine models or PRAM variants� A
Fork���� based on C�� would make a safer and
more elegant library interface possible�

� Related work

Other PRAM�oriented languages NESL ��� is a
functional dataparallel language partly based on ML�
Its main data structure is the �multidimensional� list�
Elementwise operations on lists are converted to vec�
tor instructions �by 	attening� and executed on SIMD
machines� In contrast� the MIMD�oriented Fork��
also allows for asynchronous and task parallelism� low�
level PRAM programming and direct access to shared
memory locations� � Dataparallel variants of Mod�
ula ��� ��� support a subset of Fork��s functional�
ity� The main constructs to express parallelism are

synchronous and asynchronous parallel loops� How�
ever no strict synchronicity is supported� and there
is no group concept� ��� compiles to a PRAM sim�
ulator while ���� o�ers back�ends for several existing
machines� ll ����� a similar approach� uses Pascal as
base language� Further dataparallel languages in this
tradition �see e�g� ����� are C�� Dataparallel C ���� and
dataparallel Fortran dialects such as HPF� The latter
ones are mainly targeted towards distributed memory
machines and require data layout directives to perform
e
ciently� Exact synchronicity is not supported as it
is not available on the target architectures considered�
Other PRAM�oriented parallel libraries A large
number of PRAM�inspired algorithms has already
been implemented in NESL ���� ��� reports on con�
crete implementations on a MasPar for many of the
same algorithms as those in PAD�

References
��� F� Abolhassan� R� Drefenstedt� J� Keller� W�J� Paul� and

D� Scheerer� On the physical design of PRAMs� The Com�
puter Journal� ��	
�������� �����

��� G�E� Blelloch� Programming parallel algorithms� Communi�
cations of the ACM� ��	���
���� �����

��� R� Cole and U� Vishkin� Deterministic coin tossing with ap�
plications to optimal parallel list ranking� Information and
Control� �������� ��
��

��� T� Hagerup and C� R�ub� Optimal merging and sorting on the
EREW PRAM� Inform� Processing Letters� ����
���
�� ��
��

��� T� Hagerup� A� Schmitt� and H� Seidl� FORK� A high�level
language for PRAMs� Future Generation Computer Systems�

�������� �����

��� P�J� Hatcher and M�J� Quinn� Data�Parallel Programming�
MIT Press� �����

�� T��S� Hsu� V� Ramachandran� and N� Dean� Implementation of
parallel graph algorithms on a massively parallel SIMD com�
puter with virtual processing� In �th International Parallel
Processing Symposium� pp �������� �����

�
� J� J�aJ�a� An Introduction to Parallel Algorithms� Addison�
Wesley� �����

��� S� Juvaste� The Programming Language pm� for PRAM� Tech�
nical Report B�������� Dept� of Computer Science� University
of Joensuu� Finland� �����

���� C�W� Ke�ler and H� Seidl� Integrating Synchronous and Asyn�
chronous Paradigms� The Fork�� Parallel Programming Lan�
guage� Tech� Report ������ FB � Informatik� Univ� Trier� �����

���� C�W� Ke�ler and H� Seidl� Language Support for Synchronous
Parallel Critical Sections� Tech� Report ������ FB � Infor�
matik� Univ� Trier� �����

���� C�W� Kessler and J�L� Tr�a�� A library of basic PRAM al�
gorithms and its implementation in FORK� In �th Annual
ACM Symposium on Parallel Algorithms and Architechtures
�SPAA�� pp �������� ����� Research Summary�

���� C�P� Kruskal� L� Rudolph� and M� Snir� The power of parallel
pre�x� IEEE Trans� on Computers� C���	����������
� ��
��

���� C� Le�on� F� Sande� C� Rodriguez� and F� Garcia� A PRAM
Oriented Language� In EUROMICRO PDP��� Workshop on
Parallel and Distributed Processing� pp �
������ �����

���� W� Paul� U� Vishkin� and H� Wagener� Parallel dictionaries on
��� trees� In Proc� �	th ICALP� Springer LNCS ���� ��
��

���� M� Philippsen and W�F� Tichy� Compiling for Massively Par�
allel Machines� In Code Generation
 Concepts� Tools� Tech�
niques� pp ������� Springer� �����

��� M�J� Quinn� Parallel Computing� Theory and Practice� �nd
edition� McGraw�Hill� �����

��
� J�L� Tr�a�� Explicit implementation of a parallel dictionary�
Tech� Report SFB ����D� ������ Univ� Saarbr�ucken� SFB ���
VLSI Entwurfsmethoden und Parallelit�at� ����� �� pp�

���� J�L� Tr�a�� Parallel searching� merging and sorting� Tech� Re�
port SFB ����D� ����� Univ� Saarbr�ucken� SFB ��� VLSI En�
twurfsmethoden und Parallelit�at� ����� �� pp�

