
APPEND

Asynchronous Parallel Data Structures in Fork��

Christoph W� Ke�ler Oliver Fritzen

FB IV � Informatik� Universit�at Trier� ����� Trier� Germany

kessler�psi�uni�trier�de

April �� 	




APPEND �Asynchronous Parallel Programming Environment for Non�static Data structures� is a
library of basic parallel data structures like hashtables� trees� dictionaries� priority queues� skip lists
etc� written in Fork��� It is a parallel equivalent of LEDA focusing mainly on the asynchronous case�
in contrast to J� Tr�a�	s PAD library that mainly covers synchronous parallel algorithms and data
structures�

Contents

� PQueue� A Parallel FIFO Queue �

��� De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Creation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Operations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Parallel Hashtables �

��� HashTable� A Parallel Rehashable Hashtable � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Creation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Operations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� hashtable� A Simple Parallel Hashtable � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Creation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Operations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� PSkipList� A Parallel Skip List �

��� PSkipListItem data type � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Creation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Implementation note � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� PSkipList data type � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

����� De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	






����� Creation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

����� Operations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	

����� Implementation notes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


�



� PQueue� A Parallel FIFO Queue

��� De�nition

A k�way parallel FIFO queue is a data structure that distributes the queued items across k disjoint
sublists that are accessed by both put and get in a round�robbin way� Hence� up to k accesses can
perform in parallel� See 
Roehrig 	��� or 
Keller�Kessler�Tr�a� 	��� for a detailed description�

��� Creation

PQItem new PQItem� void �data �

generates a new PQItem containing a generic data pointer� A PQItem can be freed by

void free PQItem� PQItem e �

Furthermore�

PQueue new PQueue� int k �

creates a new k�way parallel FIFO queue� For performance reasons� k should be a power of ��

��� Operations

� void ��print�� PQueue q �

prints the current contents of q to standard output� print should be called by one processor
only� Note that print is not protected against concurrent accesses of q�

� int ��empty�� PQueue q �

returns a nonzero value if q is empty� and zero otherwise�

� int ��size�� PQueue q �

returns the current number of elements in q� including the number of pending put operations
minus the number of pending get operations�

� PQueue ��put�� PQueue q� void �x �

appends the data item x to q� The put operation blocks until the appending is �nished�

� void ���get�� PQueue q �

dequeues a data item from q and returns it� If q is empty� a NULL pointer is returned� Otherwise�
the get operation blocks until the dequeueing is �nished�

�



� Parallel Hashtables

��� HashTable� A Parallel Rehashable Hashtable

����� De�nition

The data type HashTable implements a hashtable� An instance H of HashTable stores void pointers
to �furthermore unspeci�ed� data elements�

The hashtable mainly consists of an array of list headers� The list elements� of type HashTableItem�
consist of a pointer to the next list element and one pointer to the contained data element�

The size of the hashtable is the number of list headers in the array� the length of a list is the number
of list elements in that list� A hashtable where all list headers are NULL is called empty�

If the lists containing the data items grow too big� a rehash with a larger hash table size �and� perhaps
a better hash function� should be considered�

The hash function maps a data item referenced by a void pointer to an integer� It is to be supplied
by the user and passed as a parameter to the constructor function of the hashtable�

Some operations require an additional parameter� equals denotes a pointer to a user�de�ned� integer�
valued comparison function that takes two data pointers as parameters and returns � if it considers
those data equal� and nonzero otherwise�

����� Creation

Hashtable H � new HashTable� int �hashFn��void ��� int Size�

creates a HashTable instance with size Size and hash function hashFn�

����� Operations

� void HashTableEnter� HashTable �H� void �entry�

inserts data item referenced with entry into hashtable�

� void HashTableSingleEnter� HashTable �H� void �entry� int ��equals��void ��void ���

same as HashTableEnter��� except that only those items are inserted into the hash table that
aren	t already in it� The meaning of equality of data items must be provided by the user�supplied
function pointer equals�

� void �HashTableLookup� HashTable �H� void �entry� int ��equals��void �� void ���

Looks if data equal to �entry is in the hash table H� if so� returns pointer to data� otherwise it
returns NULL� The hash table remains unchanged� If equals matches several entries in H� then
only one of these elements is returned�

� void �HashTableExtract� HashTable �H� void �entry� int ��equals��void �� void ���

Looks if data �entry is in the hash table H� if so� removes data from hashtable and returns
pointer to data� otherwise it returns NULL� If equals matches several entries in H� then only
one of these elements is extracted�

� sync void �HashTableRehash� HashTable �H� int ��newHashFn��void ��� int newSize�

�



reallocates the header array in hash table H with size newSize and rehashes all data contained in
hashtable H according to the new hash function newHashFn� � Note that this function stands
in �sync��context�

� int HashTableSize� HashTable �H�

Returns current size of hashtable H�

� int HashTableNumElts� HashTable �H�

Returns number of data elements currently stored in the hash table H�

� int HashTableListLength� HashTable �H� int i�

Returns number of data items in list with hashvalue i�

�Rehash uses a reader�writer�lock �with Rehash as writer and all other hash�changing operations as readers
 to ensure
that no concurrent rehashing can take place

�



��� hashtable� A Simple Parallel Hashtable

����� De�nition

hashtable is a downgrade from the previously de�ned HashTable data structure� It features no
rehashing and keeps no list length variables� All other functions and variables do the same as their
counterparts in HashTable�

The list items used by hashtable are identical to these used by HashTable� namely HashTableItem�

hashtable avoids the performance penalty incurred by maintaining the option of rehashing in HashTable�
Rehashing demands explicit exclusion of reader�writer�con�icts during rehashing� due to this� all criti�
cal HashTable operations are protected by reader�writer locks� which are relatively expensive� Hence�
if no rehashing is required� hashtable should be preferred over HashTable�

����� Creation

hashtable H � new Hashtable� int �hashFn��void ��� int Size�

creates an instance of hashtable with size Size and hash function hashFn�

����� Operations

� void hashtableEnter� hashtable �H� void �entry�

inserts data item referenced by entry into hash table H�

� void hashtableSingleEnter� hashtable �H� void �entry� int ��equals��void ��void ���

same as hashtableEnter��� except that only those items are inserted into the hashtable H that
aren	t already in H�

� void �hashtableLookup � hashtable �H� void �entry� int ��equals��void �� void ���

Looks if data �entry is in hashtable� if so� returns pointer to data� otherwise it returns null�
hashtable remains unchanged� If equals matches several entries in H� then only one of these
entries is returned�

� void �hashtableExtract� hashtable �H� void �entry� int ��equals��void �� void ���

Looks if data �entry is in hash table H� if so� removes it from H and returns pointer to data�
otherwise it returns null� If equals matches several entries in H� then only one of these elements
is extracted�

� int hashtableSize�hashtable �H�

Returns current size of hashtable H�

� int hashtableNumElts�hashtable �H�

Returns number of data elements currently situated in the hashtable�

�



� PSkipList� A Parallel Skip List

The data type PSkipList with its item type PSkipListItem implements a parallel skip list in Fork���
The implementation has been contributed by Christoph W� Ke�ler in March 
����

As bibliographical references we recommend�

� W� Pugh� Communications of the ACM 
����

� M� Weiss� Data Structures and Algorithm Analysis� �nd ed�� Benjamin�Cummings� 
����

In order to use the implementation� the header �le ����util�skip�h� must be included� It contains
the necessary type de�nitions and function prototypes� Also� the user program must be linked with
the object �le �util�skip�o�

The implementation is generic for user�speci�ed Key and Inf data types�

typedef void �Key	

typedef void �Inf	

The comparison function for Keys must be supplied by the user when generating an instance of the
PSkipList data type�

Note that� due to its available operations� this parallel skip list may be used as

� a parallel dictionary�

� a parallel sorted sequence� and as

� a parallel priority queue�

Note that a sequence of concurrent insert� delete� deleteMin or decreaseKey operations needs not
be committed to the skip list in the same order of time as the operations were called� If the user must
guarantee that a certain set of operations is �nished before another one can be started� she should
put a barrier statement in between�

�



��� PSkipListItem data type

����� De�nition

The data type PSkipListItem is used to store an item in a parallel skip list� It mainly contains a
key entry that is used to compare and retrieve items� and an information entry that contains non�key
data�

It has the following programmer interface�

typedef struct skiplistnode 


Key key	 �� points to a key element

Inf inf	 �� points to a data element

�� ��� plus some hidden fields

� �PSkipListItem	

����� Creation

The constructor for a new skip list item

PSkipListItem new PSkipListItem� int h� Key k �	

takes as parameters the skip list node height h and the key entry k� The inf entry may be later set
separately�

There is also a destructor available�

void PSkipListItemFree� PSkipListItem y �	

For debugging purposes� the following routine can be used to print the current state of a skip list item
y to standard output�

void PSkipListItemPrint� PSkipListItem y �	

����� Implementation note

The memory to store a PSkipListItem instance is allocated on the permanent shared heap�

�



��� PSkipList data type

����� De�nition

The skip list consists of linked nodes whose height is between 
 and some maximum height m speci�ed
by the user� The maximum height m should be approximately the �oor of the base � logarithm of
the average number of elements to be stored� It must not exceed the limit PSKIPLISTMAXHEIGHT

prede�ned in skip�h �if necessary� modify this limit appropriately��

����� Creation

The constructor for an instance of PSkipList

PSkipList new PSkipList� int ��cmp��Key�Key�� int m� Key minKey �

takes three parameters� the compare function for Keys� the maximum node height� and a very small
Key value that must be smaller than the key of any element that may ever be inserted� looked up� or
deleted from the skip list�

����� Operations

We use an OO�like programmer interface based on function pointers for the important operations on
parallel skip lists� Because C �and thus Fork��� is not an OO language� we simulate this by passing
the this object explicitly as �rst parameter� For instance�

l�print� l �	

prints the current contents of l to standard output�

On a PSkipList instance l� the following operations are possible�

� void ��print�� PSkipList l �

prints the current contents of l to standard output�

� int ��empty�� PSkipList l �

returns a nonzero value if l contains at least one element� and zero otherwise�

� int ��size�� PSkipList l �

returns the current number of elements in l� including the number of pending insert operations�

� PSkipListItem ��insert�� PSkipList l� Key k� Inf i �

inserts the item �k� i� into l� If there exists already an item with key k in l� the new item is
inserted before it�

� PSkipListItem ��locate�� PSkipList l� Key k �

returns a pointer to an item �k� i� if there is one in l� and NULL otherwise�

� Inf ��access�� PSkipList l� Key k �

like locate� but returns the Inf entry i only�

� PSkipListItem ��delete�� PSkipList l� Key k �

deletes an item �k� i� from l and returns a pointer to it if there is one� and returns NULL
otherwise� If there are several items with key k in l� only one of them is deleted from l�

�



� PSkipListItem ��deleteMin�� PSkipList l �

deletes the item from l that currently has the minimum key value� If l is empty� deleteMin
returns NULL� If there exist several items with same minimum key value� deleteMin�� deletes
only one of them�

� sync int ��deleteMins�� PSkipList l� int n� PSkipListItem �a �

deletes the n items that currently have the n smallest key values in l� assigns pointers to these
items in the item array pointed to by a� and returns the number r of found �and assigned�
minimum entries� If l contains only r � n elements� all of them will be assigned� If several
deleteMins�� operations are in progress concurrently� atomicity of these operations is not guar�
anteed �i�e� the operations may report non�contiguous sequences of minimum elements��

� PSkipListItem ��findMin�� PSkipList l �

returns a pointer to the item that currently has minimum key value in l� If l is empty� findMin
returns NULL�

� PSkipListItem ��pred�� PSkipList l� Key k �

returns a pointer to the item �k�� i�� in l with next smaller key k�� i�e� k� is maximal with k� � k�
If there are several items with key k� in l� a pointer to the �rst of them is returned� If k is the
element with minimum key in l� a NULL pointer is returned�

� PSkipListItem ��decreaseKey�� PSkipList l� Key k� Key k� �

changes the Key value k of an item �k� i� in l to the smaller value k�� and returns a pointer to
the modi�ed item �k�� i�� If several items with same key k are in l� the operation is applied only
to the �rst of them� If no key value k exists in l� or if k� � k� the operation returns NULL�

� PSkipListItem ��changeInf�� PSkipList l� Key k� Inf i �

changes the Inf entry of an item with key k in l to the new value i�

����� Implementation notes

The implementation uses RWD�locks �see lib�async�c�� The order of locking of nodes proceeds
strictly from the �left� to the �right�� i�e� follows the total order induced by the next�
� pointers�
Hence� the implementation is deadlock�free�

Inserting or deleting a �high� node limits simultaneous access to the data structure much more than for
a �small� node� By random coin tossing� the expected number of nodes of height h is ��h� 
 � h � m�

By toggling the value of the preprocessor variable SILENCE in util�skip�h �and recompiling�� the
operations on the skip list can be traced�

The implementations of the following operations are left to the reader as an exercise�

PSkipListItem ��deleteMax�� PSkipList �	

PSkipListItem ��findMax�� PSkipList �	

PSkipListItem ��succ�� PSkipList� Key �	

PSkipListItem ��locatePred�� PSkipList �	

PSkipListItem ��locateSucc�� PSkipList �	

void ��split�� PSkipList� PSkipList �� PSkipList ��	

void ��concat�� PSkipList� PSkipList �	


�


