
pelab

FDA149
Software Engineering

Design Patterns
Examples

Peter Bunus
Dept of Computer and Information Science
Linköping University, Sweden
petbu@ida.liu.se

Peter Bunus 2TDDB84 Design Patterns

pelab

Decorator
Pattern

Peter Bunus 3TDDB84 Design Patterns

pelab
Extending the Business

Joe, people are not coming to our
pizza places in the morning. They
need coffee in the morning. I
decided to open a coffee shop
next to each pizzeria. Could you
please implement an application
for ordering coffee?

Peter Bunus 4TDDB84 Design Patterns

pelab
The First Design of the Coffee Shop

No problem boss. I can fix this. I have
now experience with the pizza store so
this will be a piece of cake

+getDescription()
+cost()

-description
Beverage

+cost()

HouseBlend

+cost()

DarkRoast

+cost()

Decaf

+cost()

Expresso

Each subclass implements cost() the cost of the beverage

The cost() method is
abstract; subclasses need to
define their implementation

Peter Bunus 5TDDB84 Design Patterns

pelab
Class Explosion

+getDescription()
+cost()

-description
Beverage

+cost()

HouseBlend

+cost()

DarkRoast

+cost()

Decaf

+cost()

Expresso

+cost()

Mocaccino

????????
????????

????????

????????

????????

????????????????

????????

????????

???????? ????????

????????

????????

????????

????????

????????
???????? ????????

????????

????????

????????
????????

????????

????????

What I’m doing wrong here?

Which of the design principles we
are violating here?

Peter Bunus 6TDDB84 Design Patterns

pelab
The Constitution of Software Architectcts

Encapsulate that vary.

Program to an interface not to an

implementation.

Favor Composition over Inheritance.

?????????

?????????

?????????

?????????

?????????

?????????

Peter Bunus 7TDDB84 Design Patterns

pelab

Why do we need so many classes ???

We add instance variables to represent whether
or not each beverage has milk, soy, mocha and
whip...

Now we’ll implement cost() in Beverage (instead
of keeping it abstract), so that it can calculate the
costs associated with the condiments for a
particular beverage instance.

Subclasses will still override cost(), but they will
also invoke the super version so that they can
calculate the total cost of the basic beverage
plus the costs of the added condiments.

Peter Bunus 8TDDB84 Design Patterns

pelab

Excellent Joe, good job. Five
classes. This will decrease the
complexity of our ordering
system

I’m not so sure about this. My
experience with high management
is not so good. They change the
requirements all the time. An the
customers they want new things
all the time

Peter Bunus 9TDDB84 Design Patterns

pelab
What can happend?

New condiments will appear and will force us to
add new methods and change the cost method
each time

Price changes for condiments so we need to
change the cost method.

New beverages like iced tea. The iced tee class
will still inherit the methods like hasWhip().

How about double espresso.

Peter Bunus 10TDDB84 Design Patterns

pelab
Decorating Coffee

Inheritance doesn’t worked very well for us. What we should do?

Hi Jamie. One of my
guys have problem with
coffee classes. Could
you please help him out. 1. Take the DarkRoast object

2. Decorate it with a Mocha
object

3. Decorate it with the Whip
object

4. Call the cost() method and
relay on delegation to add to the
condiment cost.

Peter Bunus 11TDDB84 Design Patterns

pelab

cost()
Whip

cost()
Mocha

Jamie’s recipe

cost()
DarkRoast

1. Take the DarkRoast object

2. Decorate it with a Mocha object

3. Decorate it with the Whip object

4. Call the cost() method

class DarkRoast : public Beverage{
public:

DarkRoast();
double cost();

};

class Mocha : public CondimentDecorator{
Beverage *beverage;

public:
Mocha(Beverage *p_beverage) ;
string getDescription();
double cost();

};

class Whip : public CondimentDecorator{
Beverage *beverage;

public:
Whip(Beverage *p_beverage) ;
string getDescription();
double cost();

};

Peter Bunus 12TDDB84 Design Patterns

pelab

class DarkRoast : public Beverage{
public:

DarkRoast();
double cost();

};

class Beverage{
public:

string description;
Beverage();
virtual string getDescription();
virtual double cost()=0;

};

Barista Training for Sofware Engineers
Beverage acts
like an abstract
component
class

+getDescription()
+cost()

-description
Beverage

+cost()

HouseBlend

+cost()

DarkRoast

+cost()

Decaf

+cost()

Expresso

+getDescription()()

CondimentDecorator

+cost()
+getDescription()

-beverage : Beverage
Milk

+cost()
+getDescription()

-beverage : Beverage
Soy

+cost()
+getDescription()

-beverage : Beverage
Whip

+cost()
+getDescription()

-beverage : Beverage
Mocha

1

*

class Mocha : public CondimentDecorator{
Beverage *beverage;

public:
Mocha(Beverage *p_beverage){

beverage = p_beverage;
};
string getDescription(){

return beverage->getDescription()+ " Whip";
};
double cost(){

return beverage->cost() + 0.76;
};

};

class CondimentDecorator : public Beverage{
public:

CondimentDecorator(){};
virtual string getDescription()=0;

};

Peter Bunus 13TDDB84 Design Patterns

pelab
Running the Coffe Shop

House
blend

void main(){
cout << "Testing the Coffe Shop application" << endl;

Beverage *beverage1 = new Expresso();
cout << beverage1->getDescription() << endl;
cout << "Cost: " << beverage1->cost() << endl << endl;

Beverage *beverage2 = new DarkRoast();
beverage2 = new Mocha(beverage2);
beverage2 = new Mocha(beverage2);
beverage2 = new Whip(beverage2);
cout << beverage2->getDescription() << endl;
cout << "Cost: " << beverage2->cost() << endl << endl;

Beverage *beverage3 = new HouseBlend();
cout << beverage3->getDescription() << endl;
cout << "Cost: " << beverage3->cost() << endl << endl;

}

A Whipped Dark
Roast with double

Mocha

expresso

Peter Bunus 14TDDB84 Design Patterns

pelab
Running the Coffe Shop

void main(){
cout << "Testing the Coffe Shop application" << endl;

Beverage *beverage1 = new Expresso();
cout << beverage1->getDescription() << endl;
cout << "Cost: " << beverage1->cost() << endl << endl;

Beverage *beverage2 = new DarkRoast();
beverage2 = new Mocha(beverage2);
beverage2 = new Mocha(beverage2);
beverage2 = new Whip(beverage2);
cout << beverage2->getDescription() << endl;
cout << "Cost: " << beverage2->cost() << endl << endl;

Beverage *beverage3 = new HouseBlend();
cout << beverage3->getDescription() << endl;
cout << "Cost: " << beverage3->cost() << endl << endl;

}

Peter Bunus 15TDDB84 Design Patterns

pelab
How is the Cost Computed?

cost()
Whip

cost()
Mocha

.....
Beverage *beverage2 = new DarkRoast();
beverage2 = new Mocha(beverage2);
beverage2 = new Mocha(beverage2);
beverage2 = new Whip(beverage2);
cout << beverage2->getDescription() << endl;
cout << "Cost: " << beverage2->cost() << endl;
.....

cost()
Mocha

cost()
DarkRoast

0.99
0.99+0.90.99+0.9+0.9

0.99+0.9+0.9 + 0.76 = 3.55

double Whip::cost(){
return beverage->cost() + 0.76;

}

double Mocha::cost(){
return beverage->cost() + 0.9;

}

double DarkRoast::cost(){
return 0.99;

}

Peter Bunus 16TDDB84 Design Patterns

pelab
The Decorator Pattern

Attach additional responsibilities to an object dynamically. Decorators provide
a flexible alternative to subclassing for extending functionality

Peter Bunus 17TDDB84 Design Patterns

pelab
The Constitution of Software Architectcts

Encapsulate that vary.

Program to an interface not to an

implementation.

Favor Composition over Inheritance.

Classes should be open for extension but closed for modification

?????????

?????????

?????????

?????????

?????????

Peter Bunus 18TDDB84 Design Patterns

pelab
Decorating Text

Peter Bunus 19TDDB84 Design Patterns

pelab
Decorator – Non Software Example

Peter Bunus 20TDDB84 Design Patterns

pelab
The Decorator Advantages/Disadvantages

Provides a more flexible way to add responsibilities to a class than
by using inheritance, since it can add these responsibilities to
selected instances of the class
Allows to customize a class without creating subclasses high in the
inheritance hierarchy.

A Decorator and its enclosed component are not identical. Thus,
tests for object types will fail.
Decorators can lead to a system with “lots of little objects” that all
look alike to the programmer trying to maintain the code

Peter Bunus 21TDDB84 Design Patterns

pelab
What we have learned?

Inheritance is one form of extension, but not necessarily he best way
to achieve flexibility in our design
In our design we should allow behavior to extended without the
need to modify the existing code
Composition and delegation can often be used to add new
behaviors at runtime
The Decorator Pattern involves a set of decorator classes that are
used to wrap concrete components
Decorators change the behavior of their components by adding new
functionality before and/or after (or even in place of) method calls to
the component
Decorators can result in many small objects in our design, and
overuse can be complex

Peter Bunus 22TDDB84 Design Patterns

pelab

The Mediator

Peter Bunus 23TDDB84 Design Patterns

pelab
The Mediator – Non Software Example

The Mediator defines an object that controls how a set of objects interact.
The pilots of the planes approaching or departing the terminal area communicate with
the tower, rather than explicitly communicating with one another.
The constraints on who can take off or land are enforced by the tower.
the tower does not control the whole flight. It exists only to enforce constraints in the
terminal area.

Control Tower
Mediator

Air Force One Flight 111

Flight 456

Flight 34

Peter Bunus 24TDDB84 Design Patterns

pelab
The Mediator – Another Example

Bob lives in the HouseOfFuture where everthing is automated:
When Bob hits the snooze button of the alarm the coffee maker starts
brewing coffee
No coffee in weekends
.......

onEvent(){
checkCalendar();
checkSprinkler();
startCoffee();
//do more stuff

}

onEvent(){
checkDayOfTheWeek();
doShower();
doCoffee();
doAlarm();
//do more stuff

}

onEvent(){
checkCalendar();
checkAlarm();
//do more stuff

}

onEvent(){
checkCalendar();
checkShower();
checkTemperature
//do more stuff

}

Peter Bunus 25TDDB84 Design Patterns

pelab
The Mediator in Action

With a Mediator added to the system all the appliance objects can be
greatly simplified

They tell the mediator when their state changes
They respond to requests from the Mediator

if(alarmEvent)(){
checkCalendar();
checkShower();
checkTemp();
//do more stuff

}
if(weekend){

checkWeather();
}
if(trashDay){

resetAlarm();
}

It’s such a relief,
not having to
figure out that

Alarm clock picky
rules

Peter Bunus 26TDDB84 Design Patterns

pelab
Mediator and MFC (Microsoft Foundation Classes)

The Client creates aFontDialog and invokes it.
The list box tells the FontDialog (it's mediator) that it has changed
The FontDialog (the mediator object) gets the selection from the list box
The FontDialog (the mediator object) passes the selection to the entry field edit box

Peter Bunus 27TDDB84 Design Patterns

pelab
Actors in the Mediator Pattern

Mediator
defines an interface for communicating with Colleague objects

ConcreteMediator
implements cooperative behavior by coordinating Colleague objects
knows and maintains its colleagues

Colleague classes (Participant)
each Colleague class knows its Mediator object (has an instance of the
mediator)
each colleague communicates with its mediator whenever it would have
otherwise communicated with another colleague

+broadcasEvent()

«interface»
Mediator

+broadcastEvent()

ConcreteMediator

for each c in theConcreteClients
 c.handleEvent()

*

*

+handleEvent()
+changed()

ConcreteColleague1

+handleEvent()
+changed()

ConcreteCollague2

+handleEvent()
+changed()

«interface»
Collegue

theMediator.broadcastEvent()

* **

*

Peter Bunus 28TDDB84 Design Patterns

pelab
Yet Another Example

Robbery in
progress. I

need backup
Officer down,

officer
down!!! We

have
casualties

Peter Bunus 29TDDB84 Design Patterns

pelab
Mediator advantages and disadvantages

Changing the system behavior means just sub classing the mediator. Other
objects can be used as is.

Since the mediator and its colleagues are only tied together by a loose
coupling, both the mediator and colleague classes can be varied and
reused independent of each other.

Since the mediator promotes a One-to-Many relationship with its
colleagues, the whole system is easier to understand (as opposed to a
many-to-many relationship where everyone calls everyone else).

It helps in getting a better understanding of how the objects in that system
interact, since all the object interaction is bundled into just one class - the
mediator class.

Since all the interaction between the colleagues are bundled into the
mediator, it has the potential of making the mediator class very complex and
monolithically hard to maintain.

Peter Bunus 30TDDB84 Design Patterns

pelab
Issues

When an event occurs, colleagues must communicate that event
with the mediator. This is somewhat reminiscent of a subject
communicating a change in state with an observer.

One approach to implementing a mediator, therefore, is to
implement it as an observer following the observer pattern.

Peter Bunus 31TDDB84 Design Patterns

pelab
Seven Layers of Architecture

Objects

Micro-Architecture

Macro-Architecture

Application-Architecture

System-Architecture

Enterprise-Architecture
Global-Architecture

Design-Patterns

OO Programming

Frameworks

Subsystem

OO Architecture

Peter Bunus 32TDDB84 Design Patterns

pelab
Antipatterns Sources

Peter Bunus 33TDDB84 Design Patterns

pelab
Congratulations: You have now completed TDDB84

