
1

pelab

CUGS SE Design Patterns
part
Mediator, Memento,
Interpreter

Peter Bunus (slides), Peter Fritzson (lecture)
Dept of Computer and Information Science
Linköping University, Sweden

pelab
Summary

What make a good OO Design
Behavioral Patterns

Mediator Pattern

Memento Pattern

Interpretor Pattern

2

pelab
What Make a Good Object-Oriented Design?

Encapsulate that varies.

Favor composition over inheritance

Program to interfaces not to implementation

Strive for loosely coupled designs between objects that interact

Classes should be open for extension but closed for modification

Depend on abstraction. Do not depend on concrete classes

Only talk to your friends

Don’t call us, we’ll call you.

A class should have only one reason to change

pelab
The Mediator – Non Software Example

The Mediator defines an object that controls how a set of objects interact.
The pilots of the planes approaching or departing the terminal area communicate with
the tower, rather than explicitly communicating with one another.
The constraints on who can take off or land are enforced by the tower.
the tower does not control the whole flight. It exists only to enforce constraints in the
terminal area.

Control Tower
Mediator

Air Force One Flight 111

Flight 456

Flight 34

3

pelab
The Mediator – Another Example

Bob lives in the HouseOfFuture where everthing is automated:
When Bob hits the snooze button of the alarm the coffee maker starts
brewing coffee
No coffee in weekends
.......

onEvent(){
checkCalendar();
checkSprinkler();
startCoffee();
//do more stuff

}

onEvent(){
checkDayOfTheWeek();
doShower();
doCoffee();
doAlarm();
//do more stuff

}

onEvent(){
checkCalendar();
checkAlarm();
//do more stuff

}

onEvent(){
checkCalendar();
checkShower();
checkTemperature
//do more stuff

}

pelab
The Mediator in Action

With a Mediator added to the system all the appliance objects can be
greatly simplified

They tell the mediator when their state changes
They respond to requests from the Mediator

if(alarmEvent)(){
checkCalendar();
checkShower();
checkTemp();
//do more stuff

}
if(weekend){

checkWeather();
}
if(trashDay){

resetAlarm();
}

It’s such a relief,
not having to
figure out that

Alarm clock picky
rules

4

pelab
Mediator and MFC (Microsoft Foundation Classes)

The Client creates aFontDialog and invokes it.
The list box tells the FontDialog (it's mediator) that it has changed
The FontDialog (the mediator object) gets the selection from the list box
The FontDialog (the mediator object) passes the selection to the entry field edit box

pelab
Actors in the Mediator Pattern

Mediator
defines an interface for communicating with Colleague objects

ConcreteMediator
implements cooperative behavior by coordinating Colleague objects
knows and maintains its colleagues

Colleague classes (Participant)
each Colleague class knows its Mediator object (has an instance of the
mediator)
each colleague communicates with its mediator whenever it would have
otherwise communicated with another colleague

5

pelab
Yet Another Example

Robbery in
progress. I

need backup
Officer down,

officer
down!!! We

have
casualties

pelab
Mediator advantages and disadvantages

++++ Changing the system behavior means just sub classing the mediator.
Other objects can be used as is.

++ Since the mediator and its colleagues are only tied together by a loose
coupling, both the mediator and colleague classes can be varied and
reused independent of each other.

++++ Since the mediator promotes a One-to-Many relationship with its
colleagues, the whole system is easier to understand (as opposed to a
many-to-many relationship where everyone calls everyone else).

++ It helps in getting a better understanding of how the objects in that system
interact, since all the object interaction is bundled into just one class - the
mediator class.

--- Since all the interaction between the colleagues are bundled into the
mediator, it has the potential of making the mediator class very complex and
monolithically hard to maintain.

6

pelab
Issues

When an event occurs, colleagues must communicate that event
with the mediator. This is somewhat reminiscent of a subject
communicating a change in state with an observer.

One approach to implementing a mediator, therefore, is to
implement it as an observer following the observer pattern.

pelab
Mediator versus Observer

7

pelab
Mediator versus Observer

receive notification of changes

Observer

Mediator

receive notification of changes

Observer does so
through an abstract
mechanism. Allows
source of
notification to be
independent of its
observers.

In Mediator, the source
must know its mediator.
This makes it possible for
mediator to define
reactions to each stimulus.

One mediator per pattern

Multiple observers

Each observer knows how
to query the state change
in its subject

All the response actions
are stored in the mediator.
The mediator may modify
states of the concrete
colleagues

pelab
Mediator versus Facade

Mediator

Façade abstracts a
subsystem of objects
to provide a convenient
interface.
Unidirectional. Enables cooperative

behaviour, that colleagues
don’t or can’t provide.
Multidirectional.

Façade objects make
requests of the
subsystem, but not vice-
versa.

Façade

8

pelab
The Interpreter – Non Software Example

The Interpreter pattern defines a grammatical representation for a language and an
interpreter to interpret the grammar.
Musicians are examples of Interpreters.
The pitch of a sound and its duration can be represented in musical notation on a
score
Musicians playing the music from the score are able to reproduce the original pitch
and duration of each sound represented

Musical Notation (Abstract Expression)

Notes (Terminal Expression) Signatures

#

pelab
The Interpreter

Use the Interpreter to build and interpreter for a language
Define a language grammar

Each grammar rule is represented by a class
Represent sentences

Sentences within language can be represented by abstract
syntax trees of instances of these classes

9

pelab
The Interpreter – How it Works

We need to implement an educational tool for
children to learn programming.

Using our tool, each child gets to control Ugly
Duckly with the help of a simple language.

Here is a example of the language:
right;

while (daylight) fly;

quack;

pelab
The Ugly Dukly Language

right;

while (daylight) fly;

quack;

expression ::= <command> | <sequence> | <repetition>

sequence ::= <expression> ’;’ <expression>

command ::= right | quack | fly

repetition := while ’(’ <variable> ’)’ <expression>

variable :=[A-Z,a-z];

We got the grammar, now all we need is a way to represent and
interpret sentences in the grammar

10

pelab
The Ugly Dukly Language Classes

We define a class based representation for the grammar along
with an interpreter to interpret the sentences

expression ::= <command> | <sequence> | <repetition>

sequence ::= <expression> ’;’ <expression>

command ::= right | quack | fly

repetition := while ’(’ <variable> ’)’ <expression>

variable :=[A-Z,a-z];

pelab
Interpreter UML

Client AbstractExpression
Interpret(Context)

TerminalExpression
Interpret(Context)

NonterminalExpression
Interpret(Context)

Context

Builds abstract syntax tree
representing a particular
sentence in the language
and invokes the interpret
operation.

Declares an abstract
Interpret operation
that is common to
all nodes in the
abstract syntax tree.

Implements an
Interpret operation
associated with
terminal symbols in
the grammar.

Implements an Interpret
operation for nonterminal
symbols in the grammar.

Contains information
that’s global to the
interpreter

11

pelab
Interpreter – Looks familiar?

Client AbstractExpression
Interpret(Context)

TerminalExpression
Interpret(Context)

NonterminalExpression
Interpret(Context)

Context

pelab
Composite (Structural Pattern)

Client Component
Operation()

Leaf
Operation()

Composite
Operation()

12

pelab
Interpretor Advantages and Disadvantages

+++ Representing each grammar rule in a class makes the
language easy to implement
++ Because the grammar is represented by classes, you can easily
change or extend the language
++By adding additional methods to the class structure, you can add
new behaviors beyond interpretation (pretty printing)
--- Use Interpreter when you need to implement a simple language
---- Appropriate when you have a simple grammar and simplicity is
more important than efficiency
++ Use for scripting and programming languages
It can become cumbersome when the number of grammar rule is
large. In this cases a parser/compiler generator may be more
appropiate.

pelab
The Memento – Non Software Example

The Memento captures and externalizes an object's internal state, so the object can
be restored to that state later.
This pattern is common among do-it-yourself mechanics repairing drum brakes on
their cars. The drums are removed from both sides, exposing both the right and left
brakes .
Only one side is disassembled, and the other side serves as a Memento of how the
brake parts fit together
Only after the job has been completed on one side is the other side disassembled.
When the second side is disassembled, the first side acts as the Memento

13

pelab
Memento

• The Originator has a “CreateMemento” method, which creates a new Memento object
and initializes it with the Originator’s internal state.

•The Memento object is stored in a Caretaker object, which acts as a supervisor to the
storing and restoring of the state of Originator objects. A Caretaker object stores the
Memento object, but cannot access its internal data.

•When an undo or similar operation is called, the Caretaker calls the “Set Memento” method
of the Originator and passes in the appropriate Memento object. The Originator’s “Set
Memento” method sets all of its internal variables to the ones recorded earlier in that
Memento object. Once all of the variables are reset its earlier state is restored and it will
behave as it did before the Memento was originally recorded

Originator o = new Originator();
o.State = "On";

// Store internal state
Caretaker c = new Caretaker();
c.Memento = o.CreateMemento();

// Continue changing originator
o.State = "Off";

// Restore saved state
o.SetMemento(c.Memento);

pelab
Memento – Another Non Software Example

Originator

Caretaker

34-55-09

Memento

14

pelab
Memento Example

Originator
-State
+CreateMemento()
+SetMemento(in Memento)

Memento
-State
+GetState()
+SetState()

Caretaker

Owner
-State
+DepositCombination(in Memento)
+WriteCombination()

Safety Deposit
-State
+GetCombo()
+GiveCombo()

Security Guard

Owner o = new Owner();
o.State = “123-45-78-45";

// Store code
SecurityG c = new SecurityG();
c.SafetyDeposit = o.DepositCombination();

// Continue changing code
o.State = “4444444444";

// Restore saved code
o.writeCombination(c.SafetyDeposit);

pelab
Memento – Rules of Thumb

Rules of thumb

If you only need one Memento, combine the Originator
and Caretaker into one object (Brown, 1998).

If you need many Mementos, store only incremental
changes (Brown, 1998) . This will help to save space.

Memento often used in conjunction with Command,
Iterator and Singleton.

Implementation of the Memento design pattern varies
depending on the programming language. Implement
the Originator as a friend class to the Memento in C++.
Implement the Memento as an inner-class of the
Originator in Java (Achtziger, 1999) .

15

pelab
A Java Implementation of Memento

public class Originator {
private T state;
private class Memento { // value object

private T mstate;
private Memento(T state) { mstate = copy_of(state); }
private T getState() { return mstate; }

}
public Memento createMemento() {

return new Memento(state);
}
// continued...

pelab
A C++ Implementation of Memeto

class Originator {
public:

Memento* CreateMemento();
void SetMemento(const Memento*);

private:
State* _state; // internal data structures

};
class Memento {

public:
virtual ~Memento();

private:
// private members accessible only to Originator
friend class Originator;
Memento();
void SetState(State*);
State* GetState();
// ...

private:
State* _state; // ... };

Only talk to your friends

16

pelab
Memento Advantages and Disadvantages

+++Since object oriented programming dictates that objects should encapsulate their
state it would violate this law if objects’ internal variables were accessible to external
objects. The memento pattern provides a way of recording the internal state of an
object in a separate object without violating this law

++It eliminates the need for multiple creation of the same object (i.e. Originator) for
the sole purpose of saving its state. Since a scaled down version of the Originator is
saved instead of the full Originator object, space is saved.

+++It simplifies the Originator since the responsibility of managing Memento storage
is no longer centralized at the Originator but rather distributed among the Caretakers.

--The Memento object must provide two types of interfaces: a narrow interface to the
Caretaker and a wide interface to the Originator. That is, it must acts like a black box
to everything except for the class that created it

--Using Mementos might be expensive if the Originator must store a large portion of
its state information in the Memento or if the Caretakers constantly request and return
the Mementos to the Originator. Therefore, this pattern should only be used if the
benefit of using the pattern is greater than the cost of encapsulation and restoration

pelab
GOF 10th Anniversary

17

pelab
Additional Reading

