
Aspect-Oriented Programming
and AspectJ

Mikhail Chalabine
(a number of) slides by

Jens Gustavsson

Outline

 Problems with OOP
 Introduction to AOP
 AspectJ

Object Oriented Programming

 Objects represents things in the real world
 Data and operations combined
 Encapsulation
 Objects are self contained
 Separation of concerns

Example

class Account {

private int balance = 0;

public void deposit(int amount) {

balance = balance + amount;

}

public void withdraw(int amount) {

balance = balance - amount;

}

}

Example

class Logger {

private OutputStream stream;

Logger() {

// Create stream

}

void log(String message) {

// Write message to stream

}

}

Example

class Account {
private int balance = 0;
Logger logger = new Logger();

public void deposit(int amount) {
balance = balance + amount;
logger.log("deposit amount: " + amount);

}

public void withdraw(int amount) {
balance = balance - amount;
logger.log("withdraw amount: " + amount);

}
}

Crosscutting

 Code in objects that does not relate to the functionality
defined for those objects.

 Imagine adding:
 User authentication
 Persistence
 Timing
 …

 Mixing of concerns lead to:
 Code scattering
 Code tangling

Mixing Concerns

 Correctness
 Understandability
 Testability

 Maintenance
 Find code
 Change it consistently
 No help from OO tools

 Reuse

 XML parsing in org.apache.tomcat
 red shows relevant lines of code
 nicely fits in one box

XML parsing

 URL pattern matching in org.apache.tomcat
 red shows relevant lines of code
 nicely fits in two boxes (using inheritance)

URL pattern matching

 logging in org.apache.tomcat
 red shows lines of code that handle logging
 not in just one place
 not even in a small number of places

logging is not modularized

Aspect Oriented Programming

 Aspect = Concern that crosscuts other
components.
Amore precise definition comes later!

 Components written in component language
 Provide a way to describe aspects in aspect
language

 Not to replace OOP
 Does not have to be OO based

Aspect Weaving

Components
in component
language

Executable
program

Aspects in
aspect
language

Weaver

Weaving Time

 Preprocessor
 Compile time
 Link time
 Load time
 Run time

Example

class Account {

private int balance = 0;

public void deposit(int amount) {

balance = balance + amount;

}

public void withdraw(int amount) {

balance = balance - amount;

}

}

Example (ad hoc syntax)

define aspect Logging {

Logger logger = new Logger();

when calling any method(parameter "amount") {

logger.log(methodname + " amount: " + amount);

}

}

Aspect Weaving

Account class
System with
logging

Logging aspect
WeaverLogger class

Concepts added by AOP
Languages

 Join points
 Pointcuts
 Advice
 Aspects
 Weaving

Join Point

 A location in (component) code where a
concern crosscuts (static join point model)

 A well-defined point in the program flow
(dynamic join point model, e.g., in AspectJ)

 Examples:
 Method / class declaration
 A call to a method
 etc.

public void Account.deposit(int)

Pointcut

 A pointcut picks out certain join points and
values at those points

 Specifies when a join point should be matched

 In the followin the balanceAltered pointcut
picks out each join point that is a call to either
the deposit() or the withdraw()method of an
Account class

pointcut balanceAltered() :

call(public void Account.deposit(int)) ||

call(public void Account.withdraw(int));

Pointcut (further examples)

 call(void SomeClass.make*(..))
 picks out each join point that's a call to a void method defined
on SomeClass whose the name begins with "make"
regardless of the method's parameters

 call(public * SomeClass.* (..))
 picks out each call to SomeClasse's public methods

 cflow(somePointcut)
 picks out each pointcut that occurs in the dynamic context of
the join points picked out by somePointcut

 pointcuts in the control flow, e.g., in a chain of method calls

A piece of Advice

 Code that is executed at a pointcut (when a join
point is reached)

before(int i) : balanceAltered(i) {

System.out.println("The balance changed");

}

Aspect

 Groups join points, pointcuts and advice.
 The unit of modularity for a crosscutting concern.

public aspect LoggingAspect {

pointcut balanceAltered() :
call(public void Account.deposit(int)) ||

call(public void Account.withdraw(int));

before(int i) : balanceAltered(i) {
System.out.println("The balance changed");

}
}

Take a breath ... so far we have

 Agreed that tangled, scattered code that appears
as a result of mixing different crosscutting
concerns in (OO) programs is a problem

 Sketched a feasible solution - AOP
 Introduced

 Join points
 Pointcuts
 Advice
 Aspects
 Weaving

 Tools?

AspectJ

 Xerox Palo Alto Research Center
 Gregor Kiczales, 1997
 Goal: Make AOP available to many developers

 Open Source
 Tool integration Eclipse

 Components in Java
 Java with extensions for describing aspects
 Current focus: industry acceptance

AspectJ Demo

Join Points

 Method call execution
 Constructor call execution
 Field get
 Field set
 Exception handler execution
 Class/object initialization

Patterns

 Match any type: *
 Match 0 or more characters: *
 Match 0 or more parameters: (..)
 call(private void Person.set*(*)
 call(* * *.*(*)
 call(* * *.*(..)

 All subclasses: Person+

Logical Operators

 call((Person+ && ! Person).new(..))

Example

pointcut balanceAccess() :

get(private int Account.balance);

before() : balanceAccess() {

System.out.println("balance is
accessed");

}

Exposing Context in Pointcuts

 Improves decision process
 AspectJ gives code access to some of the
context of the join point

 Two ways

Exposing Context in Pointcuts

 thisJoinPoint class and its methods
 Designators

 State-based: this, target, args

 Control Flow-based: cflow, cflowbelow

 Class-initialization: staticinitialization
 Program Text-based: withincode, within

 Dynamic Property-based: If, adviceexecution

Exposing Context in Pointcuts
thisJoinPoint Methods

 getThis()

 getTarget()

 getArgs()

 getSignature()

 getSourceLocation()

 getKind()

 toString()

 toShortString()

 toLongString()

Exposing Context in Pointcuts
thisJoinPoint Methods Example

public class DVD extends Product {

private String title;
...

}

SourceLocation sl = thisJoinPoint.getSourceLocation();

Class theClass = (Class) sl.getWithinType();

System.out.println(theClass.toString());

Output: class DVD

Exposing Context in Pointcuts
Designators (1)

 Execution
 Call
 Initialization
 Handler
 Get
 Set

- Matches execution of a method or constructor

- Matches calls to a method

- Matches execution of the first constructor

- Matches exceptions

- Matches the reference to a class attribute

- Matches the assignment to a class attribute

Exposing Context in Pointcuts
Designators (2)

 This

 Target

 Args

- Returns the target object of a join point or
limits the scope of join point

- Returns the object associated with a
particular join point or limits the scope of a
join point by using a class type

- Exposes the arguments to a join point or

limits the scope of the pointcut

Exposing Context in Pointcuts
Designators (3)

 Cflow

 Cflowbelow

 Staticinitialization

- Returns join points in the execution
flow of another join point

- Returns join points in the execution
flow of another join point but including
the current join point

- Matches the execution of a
class's static initialization

Exposing Context in Pointcuts
Designators (4)

 Withincode

 Within

 If

 Adviceexecution

 Preinitialization

- Matches points in a method or constructor

- Matches points within a specific type

- Allows a dynamic condition to be
part of pointcut

- Matches on advice join points

- Matches pre-initialization join points

Exposing Context Example

pointcut setXY(FigureElement fe, int x, int y):

call(void FigureElement.setXY(int, int))

&& target(fe)

&& args(x, y);

after(FigureElement fe, int x, int y) returning:
setXY(fe, x, y) {

System.out.println(fe +

" moved to (" + x + ", " + y + ").");

}

Exposing Context Comment

 Prefer designators over method calls
 Higher cost of reflection associated with get*

pointcut setXY():

call(void FigureElement.setXY(int, int));

after() returning: setXY() {

FigureElement fe = thisJoingPoint.getThis();

...

System.out.println(fe +

" moved to (" + x + ", " + y + ").");

}

Advice

 Before
 After

 Unqualified
 After returning
 After throwing

 Around

Example

pointcut withdrawal() :

call(public void Account.withdraw(int));

before() : withdrawal() {

// advice code here
}

Example

pointcut withdrawal() :

call(public void Account.withdraw(int));

after() : withdrawal() {

// advice code here
}

Example

pointcut withdrawal() :

call(public void Account.withdraw(int));

after() returning : withdrawal() {

// advice code here
}

Example

pointcut withdrawal() :

call(public void Account.withdraw(int));

after() throwing(Exception e) : withdrawal
() {

// advice code here
}

Example

pointcut withdrawal() :

call(public void Account.withdraw(int));

around() : withdrawal() {

// do something
proceed();

// do something
}

Inter-type Declarations

 So far we assumed dynamic join point model
 Static program structure modification
 Static joint point model, compile-time weaving

Inter-type Declarations

 Add members
 methods
 constructors
 fields

 Add concrete implementations to interfaces
 Declare that types extend new types
 Declare that types implement new interfaces

Inter-type Declarations Demo
Other AOP languages

 AspectWerkz
 JAC
 JBoss-AOP
 Aspect#
 LOOM.NET
 AspectR
 AspectS
 AspectC
 AspectC++
 Pythius

AOP Brainstorming Examples

 Resource pooling connections
 Caching
 Authentication
 Design by contract
 Wait cursor for slow operations
 Inversion of control
 Runtime evolution

Aspect-Oriented Programming
and AspectJ

Questions & Answers

Aspect Instantiation

 Aspects are converted to classes by AspectJ
compiler

 Types of instantiation:
 Singleton
 Per-object
 Per-control-flow

 Aspects can contain fields (and methods)

Inversion of Control

public class Fruit {}

public class Apple extends Fruit {

public String toString() {

return "I am an apple";

}

}

Inversion of Control

public class FruitUser {

public Fruit theFruit;

}

Inversion of Control

public aspect ConnectionAspect {

pointcut objectCreation() :
execution(FruitUser.new(..));

before() : objectCreation() {
FruitUser f = (FruitUser)

(thisJoinPoint.getTarget());
f.theFruit = new Apple();

}
}

