
1

Practical and Lock-Free Doubly Linked 

Lists

Håkan Sundell

Philippas Tsigas

2

Outline

 Synchronization Methods

 Doubly Linked Lists

 Concurrent Doubly Linked Lists

– Previous results

– New Lock-Free Algorithm

 Experiments

 Conclusions

3

Synchronization

 Shared data structures needs synchronization

 Synchronization using Locks

– Mutually exclusive access to whole or parts of the 

data structure

P1
P2

P3

P1
P2

P3

4

Blocking Synchronization

 Drawbacks

– Blocking

– Priority Inversion

– Risk of deadlock

 Locks: Semaphores, spinning, disabling interrupts etc.

– Reduced efficiency because of reduced parallelism

5

Non-blocking Synchronization

 Lock-Free Synchronization

– Optimistic approach (i.e. assumes no 

interference)

1. The operation is prepared to later take effect 

(unless interfered) using hardware atomic 

primitives

2. Possible interference is detected via the atomic 

primitives, and causes a retry

– Can cause starvation

 Wait-Free Synchronization

– Always finishes in a finite number of its 

own steps.

6

Doubly Linked Lists

 Fundamental data structure

– Can be used to implement various abstract data types 

(e.g. deques)

 Unordered List, i.e. the nodes are ordered only 

relatively to each other.

– Supports Traversals

– Supports Inserts/Deletes at arbitrary positions

 Operations: InsertAfter, InsertBefore, Delete, Prev, 

Next, Read, First, Last

H T



2

7

Previous Non-blocking Doubly Linked 

Lists

 M. Greenwald, “Two-handed emulation: how 
to build non-blocking implementations of 
complex data structures using DCAS”, 
PODC 2002

 O. Agesen et al., “DCAS-based concurrent 
deques”, SPAA 2000
– D. Detlefs et al., “Even better DCAS-based 

concurrent deques”, DISC 2000

– P. Martin et al. “DCAS-based concurrent 
deques supporting bulk allocation”, TR, 2002

– Errata: S. Doherty et al. “DCAS is not a silver 
bullet for nonblocking algorithm design”, 
SPAA 2004

8

Previous Non-blocking Doubly Linked 

Lists

 H. Attiya and E. Hillel, “Built-in coloring for 
highly-concurrent doubly linked lists”, DISC 
2006

 J. Valois, Ph.D. Thesis, 1995

 P. Martin (D. Lea) “A practical lock-free 
doubly-linked list”, 2004

 Problems (unified, all prev. pub have subset):
– DCAS not available in contempory sys.

– No disjoint access parallelism

– No traversals from deleted nodes.

– No delete operation

– Not consistent data structure when idle

9

New Lock-Free Concurrent Doubly Linked 

List (Deque at OPODIS 2004)

 Treat the doubly linked list as a singly linked 
list with auxiliary information in each node 
about its predecessor!

 Singly Linked Lists

– T. Harris, “A pragmatic implementation of 
non-blocking linked lists”, DISC 2001
 Marks pointers using spare bit

 Needs only standard CAS

H T

10

Lock-Free Doubly Linked Lists - INSERT

11

Lock-Free Doubly Linked Lists - DELETE
Lock-Free Doubly Linked List – Traversal 

and Positions

 Informal: From a deleted node (i.e. earlier position) there should 

be a path that leads into the active list (i.e. a new position).

 Definition 1 The position of a cursor that references a node that 

is present in the list is the referenced node. The position of a 

cursor that references a deleted node, is represented by the 

node that was directly to the next of the deleted node at the very 

moment of the deletion (i.e. the setting of the deletion mark). If 

that node is deleted as well, the position is equal to the position 

of a cursor referencing that node, and so on recursively. The 

actual position is then interpreted to be at an imaginary node 

directly previous of the representing node.



3

13

Lock-Free Doubly Linked List

- Memory Management

 The information about neighbor nodes should also be 
accessible in partially deleted nodes!

– Enables helping operations to find

– Enables continuous traversals

 A. Gidenstam et. al, “Efficient and reliable lock-free 

memory reclamation based on reference counting”, 

ISPAN 2005

– Combines Hazard Pointers with Reference Count.

 Allows fully dynamic memory management

 Allows (also in deleted) in-node safe pointers

 Breaks cyclic garbage

 High performance

14

New Lock-Free Doubly Linked List 

- Techniques Summary

 General Doubly Linked List Structure

– Treated as singly linked lists with extra info

 Uses CAS atomic primitive

 Lock-Free memory management

– Gidenstam et. al: (HP + Ref. Count).

 Helping scheme

 Back-Off strategy

 All together proved to be linearizable

Experiments

 Implemented in C on two high-performance 

computers

– Sun Fire 15K, Solaris, Ultrasparc III 900 MHz, 48-way

– IBM p690+ Regatta, AIX, 1.7 GHz, 32-way

 50 000 random operations / thread

– 30% traversal, 10% insertbefore, 10% insertafter, 50% delete

 1 upto 32 threads

 Measured average execution time

– Scales lineary with increasing number of threads

16

Conclusions

 Implements a general doubly linked list, the 
first lock-free using CAS.

– Allows disjoint-access parallelism.

– Uses lock-free memory management.

– Uses atomic primitives available in 
contemporary systems.

– Allows fully dynamic list sizes.

– Supports traversals of deleted nodes.

17

Questions?

 Contact Information:

– Address:

 Håkan Sundell, School of Business and 

Informatics, University College of Borås, Sweden 

 Philippas Tsigas, Computing Science, Chalmers 

University of Technology, Sweden

– Email:

 Hakan.Sundell@hb.se

 tsigas@cs.chalmers.se

– Web:

 http://www.cs.chalmers.se/~noble



4



5


