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Parallel Quicksort

@ A processor group selects a shared pivot and partitions S
intoL = {x € S|x <7} andR = {x € S|x > r}.

@ The processor group splits into two groups.

@ The first processor group sorts L and the second
processor group sorts R.

@ Examples of DC-algorithms with data-dependent
(irregular) subproblem sizes: quicksort and quickhull.

@ Examples of DC-algorithms where subproblem sizes are
fixed: mergesort, FFT and Strassen matrix multiplication.

Imbalanced workload in parallel quicksort

With subproblem sizes being data-dependent a good processor
assignment to subproblems is not always possible.

@ Imbalance may accumulate in the parallel phase.
@ Computing resources are wasted.




The task queue strategy

@ One of the processors is dedicated to coordinating the
others.
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+ A processor with high workload can get help from an idle
processor.
- The manager does no sorting at all.

@ After partitioning is done in the one-processor phase, one
of the subtasks is put in a shared task queue.

@ When a processor has no more work to do, it fetches a
new task from the queue.

To task queue

+ The load imbalance will be very small.
- Managing the task queue will cause overhead.

The serialisation strategy

@ If processor groups will become imbalanced a new pivot is.
selected.

+ Bad load balance between processor groups is avoided.

- When a new pivot is selected the partitioning will have to
be redone.

- Does not work where pivot is uniquely determined (eg.
quickhull).

- Exactly how do we define bad load balance?

@ If processor groups will become imbalanced the whole
processor group will first sort the first subproblem and then
the other subproblem.
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+ No load imbalance at all when serialising the execution in
the parallel phase.

- The processors will execute more work in the parallel
phase.

- Exactly how do we define bad load balance?




Optimal local load balancing sirategy

Optimal local strategy: example
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Optimal local strategy: numerical approach

Question: When is it worthwhile to serialise/repivot?
Example: 2 processors sort 1000 elements. n; is size of the
first subproblem.
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@ Optimal strategy is sometimes repivoting/serialisation and
sometimes group splitting.
@ We want to find the threshold values!

Question: When is it worthwhile to serialise/repivot?

Find out numerically with dynamic programming

@ Dynamic programming is a method for solving problems of
arecursive nature.

@ Calculate E[Tp(n)], for increasingly large p and n, using
previously calculated values.

@ Also calculate which strategy of group splitting, repivoting
and serialising is best for a given situation.
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Having a look at the results
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Results of dynamic programming

P = 7and N = 1000000
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@ n; =n/2is not the optimal split point!

We found from dynamic programming that:
@ On average serialisation is always better than repivoting.

@ Serialisation is better than group splitting when one of the
subproblems is very small compared to the other.
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Example: Consider the case p = 3 and n = 107. If

ny/n < .265 serialisation is better than group splitting.
We implement a hybrid local heuristic, parameterized by
this table (or a corresponding table for Fork).
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Execution times in Fork Execution times in MPI

Speedups of quicksort running on the SB-PRAM simulator. Speedups of quicksort on a cluster with Intel Xeon processors.
In this example 40000 integers are sorted. In this example 100 million integers are sorted.
12 T T T T T T T T T T T T T
10 - with serialisatic - 1 Manager -
o Dbarbalieeg — ] 10 o oad ey =
3 sf - El
g 7t 1 Z
< 3 ]
2 e P
e e T huukhnaanaNR
02 4 6 5101214 16 18 20 22 24 26 28 0 32 Namberf processors
Number ofprocessors
@ The dynamic load balancing strategy with a task queue @ Here our local load balancing strategy with serialisation
performs better than our strategy with serialisation. outperforms the dynamic manager solution!
@ SP-PRAM: Nonblocking task queue operations, low @ One processor dedicated; communication overhead.
overhead.
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Execution times in MPI with a better pivot Conclusions

@ Early investing more time in better pivoting can reduce
need for load balancing.

@ Example: @ We have proposed and studied new strategies for local
Speedups of quicksort in MPI. load balancing in SPMD: repivoting and serialisation.
In this example 100 million integers are sorted. @ We developed an optimal hybrid local load balancing
Pivot is selected as average of 7 elements. method, calibrated with threshold tables derived from

" T offline dynamic programming.
[}o load baianchg 1 @ Our hybrid local strategy outperforms the global dynamic
Egtn il load balancing (manager solution) on the MPI cluster.
g H 1 @ Global dynamic load balancing (task queue solution)
2 ir 1 outperforms our local hybrid strategy on the SB-PRAM
2 50 ] where synchronization is very cheap.
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