Load Balancing of Irregular Parallel
Divide-and-Conquer Algorithms in
up-SPMD Programming Environments

Mattias Eriksson ~ Christoph Kessler ~ Mikhail Chalabine
Linksping university, Sweden

Originally presented at the PASA workshop — 16 mars 2006

Outline

e Introduction
@ Parallel quicksort
@ Imbalance in workload

9 Load balancing
@ Strategies for load balancing

9 Optimal local load balancing strategy
@ Problem: When to serialise/repivot
@ Dynamic programming method

Parallel Quicksort

@ A processor group selects a shared pivot and partitions S
intoL = {x € S|x <7} andR = {x € S|x > r}.

@ The processor group splits into two groups.

@ The first processor group sorts L and the second
processor group sorts R.

@ Examples of DC-algorithms with data-dependent
(irregular) subproblem sizes: quicksort and quickhull.

@ Examples of DC-algorithms where subproblem sizes are
fixed: mergesort, FFT and Strassen matrix multiplication.

Imbalanced workload in parallel quicksort

With subproblem sizes being data-dependent a good processor
assignment to subproblems is not always possible.

@ Imbalance may accumulate in the parallel phase.
@ Computing resources are wasted.

The task queue strategy

@ One of the processors is dedicated to coordinating the
others.

e
e : !
i i]
! R !
! b Lo
! D e !
e |

+ A processor with high workload can get help from an idle
processor.
- The manager does no sorting at all.

@ After partitioning is done in the one-processor phase, one
of the subtasks is put in a shared task queue.

@ When a processor has no more work to do, it fetches a
new task from the queue.

To task queue

+ The load imbalance will be very small.
- Managing the task queue will cause overhead.

The serialisation strategy

@ If processor groups will become imbalanced a new pivot is.
selected.

+ Bad load balance between processor groups is avoided.

- When a new pivot is selected the partitioning will have to
be redone.

- Does not work where pivot is uniquely determined (eg.
quickhull).

- Exactly how do we define bad load balance?

@ If processor groups will become imbalanced the whole
processor group will first sort the first subproblem and then
the other subproblem.

aB0keys
o0z o0

+ No load imbalance at all when serialising the execution in
the parallel phase.

- The processors will execute more work in the parallel
phase.

- Exactly how do we define bad load balance?

Optimal local load balancing sirategy

Optimal local strategy: example

vad balancing srategy

Optimal local strategy: numerical approach

Question: When is it worthwhile to serialise/repivot?
Example: 2 processors sort 1000 elements. n; is size of the
first subproblem.

P 2andn - 1000

1500
1000,
L PR AARL AR AL TR AR ARE AR
o
5 om0
w00
o
o Splting ——
Pt Ao
o
W w0 wm a0 o

@ Optimal strategy is sometimes repivoting/serialisation and
sometimes group splitting.
@ We want to find the threshold values!

Question: When is it worthwhile to serialise/repivot?

Find out numerically with dynamic programming

@ Dynamic programming is a method for solving problems of
arecursive nature.

@ Calculate E[Tp(n)], for increasingly large p and n, using
previously calculated values.

@ Also calculate which strategy of group splitting, repivoting
and serialising is best for a given situation.

bz
o o N

7 i s s
§ E s

4 4 B

2fu 2 2 = s
fotoubuoe fssssssss
T2345678 n 123456786 n

alload balancing stateg,

Having a look at the results

oad balancing strateg)

Results of dynamic programming

P = 7and N = 1000000

900000, T T T T
850000 19000000000000000000000000000, J|
800000 4
750000 4

& 700000 |- 4
650000 [4
600000 Spiiting ——

Sequentilising ~x~]
550000 [Repivoting - e —|
500000 L L L L
o 200000 400000 600000 800000 le+06

@ n; =n/2is not the optimal split point!

We found from dynamic programming that:
@ On average serialisation is always better than repivoting.

@ Serialisation is better than group splitting when one of the
subproblems is very small compared to the other.

MPI-thresholds
T 7 8 9|1

[2] 5] ¥ 5 %

T [1%| 0] 0 0 0 0 0 0] 0] ©
10°(328|216 136 o076 022 0 o 0| of o
107 [382 | 265 | 191 143 109 083 062 042|026 | 011 o o
10° | 01| 281 | 206 159 126 102 .083 067 | 054 | 043|033 | 025 |.015 008
10° | 07| 284 | 210 163 131 107 088 073 | 061 | 051|042 | 034|027 021 .0

S 0] 0 0
ol of o o

©

Example: Consider the case p = 3 and n = 107. If

ny/n < .265 serialisation is better than group splitting.
We implement a hybrid local heuristic, parameterized by
this table (or a corresponding table for Fork).

©

vad balancing srategy

Execution times in Fork Execution times in MPI

Speedups of quicksort running on the SB-PRAM simulator. Speedups of quicksort on a cluster with Intel Xeon processors.
In this example 40000 integers are sorted. In this example 100 million integers are sorted.
12 T T T T T T T T T T T T T
10 - with serialisatic - 1 Manager -
o Dbarbalieeg —] 10 o oad ey =
3 sf - El
g 7t 1 Z
< 3]
2 e P
e e T huukhnaanaNR
02 4 6 5101214 16 18 20 22 24 26 28 0 32 Namberf processors
Number ofprocessors
@ The dynamic load balancing strategy with a task queue @ Here our local load balancing strategy with serialisation
performs better than our strategy with serialisation. outperforms the dynamic manager solution!
@ SP-PRAM: Nonblocking task queue operations, low @ One processor dedicated; communication overhead.
overhead.

alload balancing stateg, Conclusions.

Execution times in MPI with a better pivot Conclusions

@ Early investing more time in better pivoting can reduce
need for load balancing.

@ Example: @ We have proposed and studied new strategies for local
Speedups of quicksort in MPI. load balancing in SPMD: repivoting and serialisation.
In this example 100 million integers are sorted. @ We developed an optimal hybrid local load balancing
Pivot is selected as average of 7 elements. method, calibrated with threshold tables derived from

" T offline dynamic programming.
[}o load baianchg 1 @ Our hybrid local strategy outperforms the global dynamic
Egtn il load balancing (manager solution) on the MPI cluster.
g H 1 @ Global dynamic load balancing (task queue solution)
2 ir 1 outperforms our local hybrid strategy on the SB-PRAM
2 50] where synchronization is very cheap.
H g |
a0 3
0 2 4 6 51012 14 16 16 20 22 24 26 28 30 82

Number of processors

