
Introduction Load balancing Optimal local load balancing strategy Conclusions

Load Balancing of Irregular Parallel
Divide-and-Conquer Algorithms in

Group-SPMD Programming Environments

Mattias Eriksson Christoph Kessler Mikhail Chalabine

Linköping university, Sweden

Originally presented at the PASA workshop — 16 mars 2006

Introduction Load balancing Optimal local load balancing strategy Conclusions

Outline

1 Introduction
Parallel quicksort
Imbalance in workload

2 Load balancing
Strategies for load balancing

3 Optimal local load balancing strategy
Problem: When to serialise/repivot
Dynamic programming method

Introduction Load balancing Optimal local load balancing strategy Conclusions

Parallel Quicksort

A processor group selects a shared pivot and partitions S
into L = {x ∈ S|x ≤ π} and R = {x ∈ S|x ≥ π}.
The processor group splits into two groups.
The first processor group sorts L and the second
processor group sorts R.

S

L R

p0,p1,p2,p3

p1 p0,p2,p3

Examples of DC-algorithms with data-dependent
(irregular) subproblem sizes: quicksort and quickhull.
Examples of DC-algorithms where subproblem sizes are
fixed: mergesort, FFT and Strassen matrix multiplication.

Introduction Load balancing Optimal local load balancing strategy Conclusions

Imbalanced workload in parallel quicksort

With subproblem sizes being data-dependent a good processor
assignment to subproblems is not always possible.

p0 p1,p2

p0,p1,p2

1000 keys

10 keys 990 keys

Imbalance may accumulate in the parallel phase.

Computing resources are wasted.

Introduction Load balancing Optimal local load balancing strategy Conclusions

The manager strategy

One of the processors is dedicated to coordinating the
others.

+ A processor with high workload can get help from an idle
processor.

- The manager does no sorting at all.

Introduction Load balancing Optimal local load balancing strategy Conclusions

The task queue strategy

After partitioning is done in the one-processor phase, one
of the subtasks is put in a shared task queue.

When a processor has no more work to do, it fetches a
new task from the queue.

S

RL
To task queue

+ The load imbalance will be very small.

- Managing the task queue will cause overhead.

Introduction Load balancing Optimal local load balancing strategy Conclusions

The repivoting strategy

If processor groups will become imbalanced a new pivot is
selected.

p0 p1,p2

p0,p1,p2

1000 keys

10 keys 990 keys

+ Bad load balance between processor groups is avoided.
- When a new pivot is selected the partitioning will have to

be redone.
- Does not work where pivot is uniquely determined (eg.

quickhull).
- Exactly how do we define bad load balance?

Introduction Load balancing Optimal local load balancing strategy Conclusions

The serialisation strategy

If processor groups will become imbalanced the whole
processor group will first sort the first subproblem and then
the other subproblem.

p0,p1,p2

1000 keys

10 keys 990 keys

p0,p1,p2 p0,p1,p2

+ No load imbalance at all when serialising the execution in
the parallel phase.

- The processors will execute more work in the parallel
phase.

- Exactly how do we define bad load balance?

Introduction Load balancing Optimal local load balancing strategy Conclusions

Optimal local strategy: example

Question: When is it worthwhile to serialise/repivot?
Example: 2 processors sort 1000 elements. n1 is size of the

first subproblem.

Repivoting
Serialising

Splitting

P = 2 and N = 1000

n1

co
st

1000800600400200

2000
1800
1600
1400
1200
1000
800
600
400
200

0

Optimal strategy is sometimes repivoting/serialisation and
sometimes group splitting.

We want to find the threshold values!

Introduction Load balancing Optimal local load balancing strategy Conclusions

Optimal local strategy: numerical approach

Question: When is it worthwhile to serialise/repivot?
Find out numerically with dynamic programming

Dynamic programming is a method for solving problems of
a recursive nature.
Calculate E[Tp(n)], for increasingly large p and n, using
previously calculated values.
Also calculate which strategy of group splitting, repivoting
and serialising is best for a given situation.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

t1 t2 t3 t4 t5 t6 t7 t8

t9 ?

p

n 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

s s s s ss ss

s

s

s

s

s

s

s

s

s

s

s

s

s

ss

n

n1

p = 2

Introduction Load balancing Optimal local load balancing strategy Conclusions

Having a look at the results

Repivoting
Sequentialising

Splitting

P = 7 and N = 1000000

n1

co
st

1e+068000006000004000002000000

900000

850000

800000

750000

700000

650000

600000

550000

500000

n1 = n/2 is not the optimal split point!

Introduction Load balancing Optimal local load balancing strategy Conclusions

Results of dynamic programming

We found from dynamic programming that:

On average serialisation is always better than repivoting.

Serialisation is better than group splitting when one of the
subproblems is very small compared to the other.

MPI-thresholds
p 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n
105 .156 0 0 0 0 0 0 0 0 0 0 0 0 0 0
106 .328 .216 .136 .076 .022 0 0 0 0 0 0 0 0 0 0
107 .382 .265 .191 .143 .109 .083 .062 .042 .026 .011 0 0 0 0 0
108 .401 .281 .206 .159 .126 .102 .083 .067 .054 .043 .033 .025 .015 .008 0
109 .407 .284 .210 .163 .131 .107 .088 .073 .061 .051 .042 .034 .027 .021 .016

Example: Consider the case p = 3 and n = 107. If
n1/n < .265 serialisation is better than group splitting.

We implement a hybrid local heuristic, parameterized by
this table (or a corresponding table for Fork).

Introduction Load balancing Optimal local load balancing strategy Conclusions

Execution times in Fork

Speedups of quicksort running on the SB-PRAM simulator.
In this example 40000 integers are sorted.

No load balancing
With serialisation

With repivoting
With task queue

Number of processors

A
bs

ol
ut

e
sp

ee
du

p

32302826242220181614121086420

12
11
10
9
8
7
6
5
4
3
2
1
0

The dynamic load balancing strategy with a task queue
performs better than our strategy with serialisation.
SP-PRAM: Nonblocking task queue operations, low
overhead.

Introduction Load balancing Optimal local load balancing strategy Conclusions

Execution times in MPI

Speedups of quicksort on a cluster with Intel Xeon processors.
In this example 100 million integers are sorted.

No load balancing
Manager

Serialisation

Number of processors

A
bs

ol
ut

e
sp

ee
du

p

32302826242220181614121086420

12
11
10

9
8
7
6
5
4
3
2
1
0

Here our local load balancing strategy with serialisation
outperforms the dynamic manager solution!

One processor dedicated; communication overhead.

Introduction Load balancing Optimal local load balancing strategy Conclusions

Execution times in MPI with a better pivot

Early investing more time in better pivoting can reduce
need for load balancing.
Example:

Speedups of quicksort in MPI.
In this example 100 million integers are sorted.
Pivot is selected as average of 7 elements.

No load balancing
Manager

Serialisation

Number of processors

A
bs

ol
ut

e
sp

ee
du

p

32302826242220181614121086420

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Introduction Load balancing Optimal local load balancing strategy Conclusions

Conclusions

We have proposed and studied new strategies for local
load balancing in SPMD: repivoting and serialisation.

We developed an optimal hybrid local load balancing
method, calibrated with threshold tables derived from
offline dynamic programming.

Our hybrid local strategy outperforms the global dynamic
load balancing (manager solution) on the MPI cluster.

Global dynamic load balancing (task queue solution)
outperforms our local hybrid strategy on the SB-PRAM
where synchronization is very cheap.

