Advanced Parallel Programming, Topic VII Parallel Programming Language Concepts — Cilk. 1

Cilk

C. Kessler, IDA, Linkopings Universitet, 2007.

supertech.lcs.mit.edu/cilk

algorithmic multithreaded language
programmer specifies parallelism and exploits data locality

runtime system schedules computation to a parallel platform
— load balancing, paging, communication

extension of C
fork-join execution style
older version Cilk-3: dag consistency [Blumofe et al.’96]

latest version: Cilk-5.3 [Frigo/Leiserson/Randall’98]
typ. overhead for spawning on SMP ca. 4 x time for subroutine call

Advanced Parallel Programming, Topic VII Parallel Programming Language Concepts — Cilk. 3

DAG model for multithreaded computations in Cilk

C. Kessler, IDA, Linkopings Universitet, 2007.

(00002

/
@?@%ﬂﬁﬂ?& o)

(6—0—0—00)

Each thread is a sequence of unit-time tasks (— continue edges)
activation frame for local values, parameters etc.

Threads may spawn other threads (— spawn edges)
similar to subroutine call, but control continues
activation tree hierarchy

A thread dies if its last task is executed.

Results produced are consumed by parent (— data dependence edges)
in-degree, out-degree per task bounded by a constant

Advanced Parallel Programming, Topic VII Parallel Programming Language Concepts — Cilk. 2 C. Kessler, IDA, Linkopings Universitet, 2007.

Example

cilk int fib (int n)

{
if (n < 2) return n;
else
{

int x, v;

X
Yy

spawn fib (n-1);
spawn fib (n-2);

sync;
return (x+vy) ;

}

Omitting the Cilk keywords yields a legal C program with same behavior.

Advanced Parallel Programming, Topic VII Parallel Programming Language Concepts — Cilk. 4

Scheduling Cilk DAGs

C. Kessler, IDA, Linkopings Universitet, 2007.

Execution schedule:
maps tasks to processors x time steps (Gantt chart)
follows the DAG precedence constraints
each processor executes at most one task per time step

A thread remains alive until all its children die.

Activation frame remains allocated during a thread’s lifetime.

A task is ready for scheduling if all data dependencies are saturated.
DAG depth(z) = length of longest path to task 7

DAG depth T.. of entire computation = DAG depth of last task
= critical path length = # time steps with « processors



Advanced Parallel Programming, Topic VIl Parallel Programming Language Concepts — Cilk. 5

Greedy scheduling of DAGs

C. Kessler, IDA, Linkopings Universitet, 2007.

Parallel time 7, > T.. for any fixed p.
Parallel work = T; = # tasks. T,>T\/p

Brent’s theorem: p-processor schedule with time 7, < T, /p + T.. exists

Greedy scheduling: At each time step issue all (max. p) ready tasks.

Greedy-scheduling theorem:
For any multithreaded computation with work 7; and DAG depth T..
and for any number p of processors,
any greedy execution schedule achieves T, < T\ /p + T,

Speedup linear if T, = O(T;/p)
for greedy schedule: if average available parallelism 71 /T.. = Q(p)

Advanced Parallel Programming, Topic VII Parallel Programming Language Concepts — Cilk. 7

Randomized work stealing algorithm

C. Kessler, IDA, Linkopings Universitet, 2007.

Modification of busy-leaves algorithm:

Each processor i keeps a ready deque (doubly ended queue) R;
new threads inserted on bottom end
threads can be removed from either bottom or top end.

Whenever processor i runs out of work,
it removes thread A from R;.bottom and begins to execute A.
(a) If A enables a stalled thread B (parent), place B in R;.bottom.
(b) If A spawns a child B, place A in R;.bottom and start B.
(c) If A dies or stalls:
If R; nonempty: remove R;.bottom and begin executing it.
If R; empty, steal topmost thread from R;.top
of a randomly chosen processor j # i, and begin executing it.
If R; was empty, repeat stealing with another randomly chosen ;.

Advanced Parallel Programming, Topic VII Parallel Programming Language Concepts — Cilk. 6 C. Kessler, IDA, Linkopings Universitet, 2007.

Busy-leaves algorithm

Keep a central thread pool Q.

Whenever a processor i has no thread to work on,
it removes any ready thread A from Q and begins to execute A.
(a) If A spawns a child B, return A to Q and execute B.
(b) If A waits for data, return A to Q and fetch new work from Q.
(c) If A dies:

If A’s parent thread C has no live children and no other processor
works on C

then remove C from Q and begin executing it.
Otherwise, take any ready thread from Q and execute it.

Theorem [Blumofe/Leiserson’94]
The busy-leaves scheduling algorithm computes a p-processor schedule
with execution time 7, < T; /p + T.. and maximum activation depth S, < S, - p.

Advanced Parallel Programming, Topic VII Parallel Programming Language Concepts — Cilk. 8 C. Kessler, IDA, Linkdpings Universitet, 2007.

Randomized work-stealing algorithm (cont.)

Theorem [Blumofe/Leiserson’94]

The expected running time of the schedule computed by the
randomized work stealing algorithm, including scheduling overhead,
isO(Ty/p+T.).

For any € > 0, with probability at least 1 —¢,
the execution time is 7, = O(T\/p + T.. +1og p+log(1/e))

Proof (7 pages) see [Blumofe/Leiserson’94]



