
by David Landén
7812292436

AIICS, IDA, Linköpings Universitet.
davla@ida.liu.se

Summary of ”A Spatial Path Scheduling Algo-
rithm for EDGE Architectures”

This report is a summary of the paper ”A Spatial Path Scheduling Algorithm
for EDGE Architectures” [1] presented at the paper presentation session in the
Advanced Parallel Programming course.

Introduction - the Problem

According to the paper, the on-chip wire delays are and will be of greater im-
portance in future architectures when moving onward to more and more com-
plicated processor architectures. One solution to this problem is to let the
compiler handle the communication issue among functional units as well. One
example of such an ”communication-exposed microarchitecture”[1] suitable for
this approach is the EDGE architecture. The EDGE consists of a grid of ALUs,
connected to register banks and data cache banks. An instruction executed on
one ALU pushes the result to any nearby ALU and this reduces the number or
stores to registers that are needed. The focus of the EDGE architecture is on
concurrency within a single thread, i.e. concurrency on the instruction level.
The problem then becomes how to map a block of instructions to the grid in
such a way that execution time is minimized and instruction level concurrency
is increased.

A new compiler scheduling algorithm, called Spatial Path Scheduling, that
provides a solution to this problem, is described and evaluated. The algorithm
does not provide an optimal solution for the scheduling problem, that is not
practical possible, due to all possibilities for the scheduling. Instead experiments
using simulated annealing to minimize the critical path were carried on programs
from various test benches. The results from the experiments was then used to
enhance their own scheduling algorithm with heuristics that mimic the outcome
from the experiments.

EDGE Architectures

The EDGE architecture used in the experiments and described in the paper [1]
is called TRIPS [2]. It has a 4*4 array of ALUs (see Figure trips). Each ALU
has eight issue slots, meaning that a block of maximum 128 instructions can
be mapped to the grid at a time. The loading of instruction to the grid has
a fixed cost, therefore it is important to try to use as full blocks as possible.
The TRIPS architecture is a SPDI architecture, meaning that instructions are
statically placed (by the scheduler), dynamically issued (i.e. the instructions
are executed when their operands arrive). The TRIPS model can be compared
to VLIW, that are statically placed, statically issued (SPSI) and out-of-order
super scalar architectures that are dynamically placed, dynamically issued.

1

The Spatial Path Scheduling Algorithm

The Spatial Path Scheduling (SPS) algorithm maps dataflow graphs to the
ALU topology. The algorithm concentrates on the critical path, that is the
longest chain of instructions in the grid. By minimizing this path, i.e. placing
the instructions in a clever way, the total execution time of the block will be
minimized. The instructions can not be placed in any order on the grid. A chain
typically starts in a register, meaning that there are some fixed point to take
into account for the scheduler, called anchor points in the SPS algorithm. When
an instruction is placed, then it also become an anchor point. The instructions
that are possible candidates to be scheduled next are listed in the open list, only
instructions which parents already has been scheduled or those that do not have
any input belong to this list.

SPS works as follows:

1. For each instruction in the open list, compute all legal locations for it.

2. For each location slot, computes a placement cost that is the cost to place
a given instruction in that slot.

3. SPS schedules the instruction, whose lowest placement cost is the highest
of the lowest placement cost across all instructions in the open list. Any
missing children of the scheduled instruction are added to the open list.

4. Repeat from 1, until finished.

There are three problem with the base SPS algorithm. It does not care about
contention on the local or global level or on the network. Since it only schedules
one block at a time, it has a local view of the most critical path. The third
problem is that it ignores delays that occurs when the number of instruction
are greater than the instruction capacity of the ALUs along a path.

By studying the result from the simulated annealing experiments, the SPS
algorithm’s placement cost function (from step 2 in the algorithm description)
could be changed to take the three problems into account. An utilization penalty
is added to the placement cost function. This penalty consists of various parts
and the first part is a penalty cost that is added when placing a new instruction
on an ALU where instructions already are scheduled (possible resource conflict).
A link contention penalty is added for placing an instruction, where the penalty
is related to the number of network links that are consumed by that instruction.
The global ALU contention is given by adding the sum of all issue slots consumed
by all instructions scheduled on the same ALU to the placement cost for an
instruction on that slot.

The cost parameters are weighted by the fullness relation and critical path
ratio. The fullness relation says how much of the grid that is filled (i.e. how
many of the 128 instructions slots that are taken), the criticality is the ratio
between the path containing the instruction we are about to schedule path and
the critical path. Since it was shown from the simulated annealing results, that
blocks with very high concurrency seldom had any clear critical path, this fact
was added to the criticality relation.

criticality = (pathLength/criticalPathLength)/concurrency.

2

It was also noted that full blocks depends more on good link utilization than on
ALU utilization, and this was weighted by the fullness relation in the utilization
penalty.

The penalty then becomes:

utilPenalty = localALUCntn + globalALUCntn * (1- fullness)*(1-criticality)
+ globalLinkCntn*fullness*(1-criticality)

And the new placement cost function is:

pCost(i,slot) = inputLatency + utilPenelty + execLatency + outputLatency
+ additionalRoutingCost.

The additionalRoutingCost depends on the amount of instructions left to
schedule and the possible issue slots to next anchor point. The input latency
is the time when the last input operand arrives and the instruction i is ready
to fire. The execLatency is the number of cycles necessary to execute i with
no contention. The outputLatency is the maximum expected number of cycles
from i to any output-producing leaf instruction.

Results and Conclusion

It was shown that the full SPS algorithm achieved a 21% improvement (on the
average) over the previous best scheduler for this architecture. The result was
within 5% of the annealed results. It was also shown that the three heuristics
worked better together than one by one. Alone they provided less than 4%
improvement but all together increased the improvement to 7%.

References

[1] Katherine E. Coons, Xia Chen, Sundeep K. Kushwaha, Doug Burger,
Kathryn S. McKinley ”A Spatial Path Scheduling Algorithm for EDGE
Architectures”,
http://www.cs.utexas.edu/users/cart/trips/publications/asplos06.pdf

[2] Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Mike Dahlin,
Lizy K. John, Calvin Lin. Charles R. Moore, James Burrill, Robert G.
McDonald, William Yoder, and the TRIPS Team ”Scaling to the end of
silicon with EDGE architectures”,
http://www.cs.utexas.edu/users/asmith/pubs/IEEECOMPUTER04 trips.pdf

3

