
A New Viewpoint on Code Generation for
Directed Acyclic Graphs

Summary for FDA001

John Wilander
johwi@ida.liu.se

March 22, 2004

1 Contributions of the Paper

In this paper the authors . . .

• Generate optimal code for one-register machines (accumulator-based)

• Optimize loads and spills by accounting for commutativity of operators

• Define better machine models regarding current hardware

2 Problems to be Solved

To be able to enhance the (optimal) code generation we need to change the
machine model and thus allow for fewer loads and spills. The key idea is to
account for commutativity of operators.

2.1 Commutative Operations

Some binary operators are commutative, for example 3 + 2 = 2 + 3. One of the
previous models for accumulator-based machines only had one such operation:

acc ← acc op mem

This meant that an instruction sequence such as a := a + 1; c := c + a;
had to be scheduled with a spill of a and a load of c in-between, because the
left operand had to be in the accumulator. Since addition is commutative this
is not necessary, and the code could be optimized.

2.2 Non-Commutative Opertations

Other binary operators are not commutative, for example 3 − 2 6= 2 − 3. The
other of the previous models for one register machines had two binary operators:

acc ← acc op mem
acc ← mem op acc

While covering for the commutative operators this model does not suffice for
most real accumulator-based machines since they often require the left operad
to be in the accumulator in noncommutative operations.

1



3 Worms, Partitions, and Binate Covering

Definition Let a subject DAG D〈V,E〉 be given. A worm w in D is a subset
V ∪ E forming a directed path, possibly of zero length, such that the vertices
in the path will appear consecutively in the schedule.

Definition A worm-partition of D is a set of disjoint worms.

We cover the DAG of the whole program with a worm-partitioning and then
optimize the code within each worm. The result will be globally optimal code.

Definition A binate covering problem is a triple 〈X, Y, cost〉, where X is a set
of Boolean variables, Y is a set of clauses and cost is a function that maps X
to the nonnegative integers.

These kind of Boolean clauses can be added to formulate constraints for code
generation. An example of a binate covering problem and its optimal solution
is given below (+ is binary OR, xi is unary NOT):

y1 = x0 + x1 + x2 + x3

y2 = x0 + x2 + x3 + x4

y3 = x1 + x2 + x4 + x5

y4 = x1 + x2 + x3 + x5

cost(x0) = 4, cost(x1) = 2, cost(x2) = 1,
cost(x3) = 1, cost(x4) = 3, cost(x5) = 1.

Optimal solution: x0 = 1, x5 = 1, and the other variables set to 0.

4 Binate Covering Formulation

We can now start to formulate Boolean clauses to build up a binate covering
problem. The solution to this problem gives us optimal code.

4.1 Patterns for Different Operator Forms

To allow for a binary operation such as a+b to be calculated as b+a we construct
two patterns for the +-operator, one with the accumulator as the left operand,
and one with the accumulator as the right operand. If we denote these patterns
m0 and m1 respectively we can formulate the option as a Boolean clause:

y1 = m0 + m1

To formulate the consequence of choosing the wrong pattern we also add clauses
such as:

y2 = m0 + e1 + spill(t)

Here the edge variable e1 means src(e1) should directly precede dest(e1), and
spill(t) implies a spill in-between src(e1) and dest(e1).

2



4.2 Clauses to Avoid Cyclic Dependencies

Directed cycles in the worm-partition graph makes code generation impossible
since there is a deadlock in code dependencies. We have to avoid such illegal
graphs.

For parts of the DAG not containing any undirected cycles (u-cycles) we
can guarantee that we produce a worm-partitioning without directed cycles by
ensuring that each vertex has at most one immediate predecessor and at most
one immediate successor. For each pair of fan-out or fan-in edges ei and ej we
add the following clause:

y3 = ei + ej

When we do have u-cycles in the DAG we have to ensure that not all forward
edges, nor all backward edges are chosen from a u-cycle into a worm. This
requirement can also be formulated in Boolean clauses:

y4 = f1 + f2 + . . . + fk

y5 = b1 + b2 + . . . + bl

5 Empirical Results

The only costs optimizable by enhancing the modeling of commutative opera-
tions are loads and spill. Consideing only those Liao et al achieved a 59% code
reduction, which corresponds to 27% reduction in overall size.

3


