
Summary of Compiler techniques for code

compaction

Andreas Ehliar

March 24, 2004

1 Introduction

The paper deals with techniques for code compaction on the Alpha processor.
Some of the techniques are usable on other architectures and some of the tech-
niques are rather platform specific.

The main motivation for code compaction as specified in the paper is embedded
devices where memory can be one of the most limiting factors.

The authors what they term a whole-system approach to code compaction where
they use aggressive interprocedural optimization aimed at reducing the code
size. They also abstract similar or identical blocks into one procedure with calls
inserted at the appropriate locations.

The authors do not modify a compiler to test their proposed technique. Instead
they rely on existing compilers (gcc and the vendor supplied cc) to compile the
code. They have implemented an optimizer called squeeze that they run on a
linked program.

2 Optimizing for code compaction

The authors specify several optimizations that are useful for code compaction.

2.1 Redundant code eliminiation

Repeated computations of the same value can be removed. Repeated computa-
tions of the same value often occurs on the Alpha as an artifact of how global
variables or function calls are resolved. The compiler cannot know if the same
global pointer can be used at compile time. But after linking it is possible to
statically resolve this.

1



add r5,r6,r8
sub r5,r6,r9
stq r9,16(r23)
xor r19,r19,r19

add r5,r6,r8
sub r5,r6,r19
stq r9,16(r23)

cmp r2,r1,r0

ldq r19,22(r22)
stq r9,16(23) sub r5,r6,r9

xor r19,r19,r19

sub r5,r6,r19
ldq r19,22(r22)

stq r9,16(23)

cmp r2,r1,r0
add r5,r6,r8

Figure 1: An example of local code factoring.

2.2 Unreachable code elimination

It is quite common that an interprocedural analysis of the entire program will
reveal code that is not reachable by any path. This is commonly caused by for
example static function call parameters.

2.3 Dead code elimination

An optimization related to the previous optimization is dead code elimination. A
computation is dead if the result of the computation is never used. It is common
that dead computations occur after running the unreachable code elimination.

2.4 Strength reduction

Strength reduction is commonly to reduce for example an expensive multipli-
cation with several shifts and adds. This is not suitable for code compaction.
However, other operations can be reduced in strength. A global function call
can be changed from the following generic code;

• load r0 with 64 bit address

• jsr r0

to the following code assuming the destination of the jump is close enough;

• bsr address (pc relative call)

3 Code factoring

The most interesting part of the paper is the part that deals with code factoring.
The idea is to find identical code sequences and remove all but one occurence
of the code sequence. There are two versions of this optimization, local code
factoring and procedural abstraction.

2



3.1 Local code factoring

Figure 3 shows an example of how certain identical computations can be moved
upwards or downwards in the control flow graph. A difference from the usual
optimization aimed at high performance is that it is best to move a computation
downwards as it will then be reached by a larger number of basic blocks. If a
compiler is optimizing for high performance it is better to move the computation
upwards so that it will be computed as soon as possible.

3.2 Procedural abstraction

The procedural abstraction is aimed at finding duplicates of a block with a
single entry and a single exit point. This is not necessarily a single basic block
but it might be several basic block that fulfill the constraint, or even an entire
function. After such a block is found, the block is moved to a separate procedure
and all occurences of the block is replaced with a procedure call.

This sounds easy, but it is not as trivial as one might think. Different blocks
might perform exactly the same function but with different registers. The pro-
gram implemented by the authors of the paper performed register renaming
as long as the register renaming parts of the new procedure call was not long
enough to mitigate the gains of the procedural abstraction.

Another problem is that a procedure call on the Alpha requires the return
address to be in a register. This requires register liveness analysis of the block
to find a free register.

The authors also mentioned that they investigated a method to find partially
matched blocks and abstract them. The method was computationally expensive
and the gains were quite small.

4 Architecture specific idioms

Certain architectures have certain conventions, either enforced by the hardware
or enforced by the ABI. The Alpha ABI have a convention that a function is
responsible for saving registers r9-r15 if necessary. Squeeze will abstract the
instructions used to save these registers into a separate procedure. Similarly,
squeeze will abstract the instructions used to restore the registers.

High performance code for the Alpha will usually contain nop instructions for
scheduling reasons. These nop instructions are removed by squeeze to save
space.

5 Results

The authors have run squeeze on several programs and compared the results.
The average program size savings were 28% – 30% depending on the compiler.

3



Transformation Savings
Redundant computation elimination 34.14%
Basic block and region abstraction 27.42%
Useless code elimination 22.43%
Register save/restore abstraction 9.95%
Other IPO 6.06%

Table 1: Code size improvements

Although the savings varied from 15% to 40% depending on the program. Ta-
ble 5 shows an outline of how the different code compaction techniques per-
formed.

Contrary to the authors expectations, the execution speed was generally im-
proved. This was partly due to the interprocedural optimization and partly due
to the reduced load on the instruction cache. The average speedup was 10% for
programs compiled with gcc and 16% for programs compiled with cc. Not all
programs fared as well, one program was 23% slower while the best program
performed 35% faster.

6 Conclusions and critique

The paper was interesting to read and the authors have shown some fairly
significant improvements. However, most of the gain came from interprocedural
optimizations that should really be done by a good compiler regardless of code
size issues.

Another issue is the choice of the processor. While the Alpha have fairly mature
tools to do the manipulations required by squeeze, it is not representative of
a typical embedded processor. Some of the gains were very Alpha specific.
For example, the Arm processor can store (and restore) several registers by
using only one instruction. Also, an embedded processor would typically not be
affected by the problems the Alpha faces with regards to the access of global
variables.

It would therefore be very interesting to see similar experiments with a processor
more commonly used in embedded devices like the Arm or perhaps even an 8
bit microcontroller like the AVR or PIC.

4


