We can classify the edges in 4 classes, \(\mathcal{C}, \mathcal{B}, \mathcal{F}, \mathcal{T} \):

- **Cross edges**
 - All other edges, i.e., in the subtree and neither \(m \) nor \(m \) is not visited.
 - \(\mathcal{C} \)

- **Backward edges**
 - \(m \) visits \(m \) where \(m \) already visited and \(m \) not visited.
 - \(\mathcal{B} \)

- **Forward edges**
 - \(m \) visits \(m \) where \(m \) already visited and \(m \) not visited.
 - \(\mathcal{F} \)

- **Tree edges**
 - \(\mathcal{T} \)

We can classify these edges in 4 classes, \(\mathcal{C}, \mathcal{B}, \mathcal{F}, \mathcal{T} \):

DFS for Directed Graphs

Procedure DFS (Vertex \(v \)) (cont.)

- **Call DFS** (a) inspects all edges and vertices reachable from \(v \).

Procedure DFS (Graph \(G \)) (a)

- If not visited \(|E| \) then DFS

Procedure Depth First Search (Graph \(G \)) (a)

- For each \(v \) do

Procedure DFSandStronglyConnectedComponentsforDirectedGraphs

- Consider DFS, recursive formulation, for a directed graph \(G = (\mathcal{E}, \mathcal{V}) \), and

Procedure DFS (Graph \(G \)) (a)

- If not visited \(|E| \) then DFS

Procedure DFSandStronglyConnectedComponentsforDirectedGraphs

- Consider DFS, recursive formulation, for a directed graph \(G = (\mathcal{E}, \mathcal{V}) \), and
Proof: see [Common/Leiserson/Freyd/Real, chapter 23.5]

1. Compute strongly connected components for each A ∈ Λ.
 - Let \(A \) be a strongly connected component.
 - For each \((a' \in A, a) \), add \(a' \) to \(A \).
 - Repeat until no new vertices are added.

2. Compute the transposed graph \(G^t \).
3. Compute strongly connected components for each \(A \) in \(G^t \).
4. Output the vertices of each tree in the DFS forest of step 3.

Note: \(G \) and \(G^t \) have the same SCCs.

\(G \) (adjacency list) can be computed from \(G \) in time \(O(n + \mid A \mid) \).
\(G^t \) (transpose) can be computed from \(G \) in time \(O(\mid A \mid) \).

The SCCs can be computed in time \(\mid A \mid + O(\mid A \mid) \) by an extension of DFS.

The maximal (wrt. set inclusion) strongly connected subgraphs of \(G \) are the strongly connected components (SCC) of \(G \).

A directed graph \(G = (\Lambda, E) \) is strongly connected iff for all \(A \in \Lambda \), \(\Lambda \rightarrow A \).

An application of DFS.

Strongly Connected Components of a Directed Graph

Lemma 1: DFS needs time \(O(n + \mid A \mid) \).

Lemma 2: Allows algorithmic classification from \(\text{dfsnum} \) and \(\text{compnum} \).

- For all \((z', a) \) holds: \(\text{dfsnum} > \text{compnum} \).
- For all \((z', z) \) holds: \(\text{dfsnum} > \text{compnum} \).
- For all \((z', z) \) holds: \(\text{dfsnum} > \text{compnum} \).
- For all \((z', z) \) holds: \(\text{dfsnum} > \text{compnum} \).

Properties of the extended algorithm

- \(T \) is the original DFS tree.
- \(\text{comp} \) is a partition of \(\text{dfsnum} \).

Application of SCCs

- \(\{y\} = \{a\} \)
- \(\{p\} = \{a\} \)
- \(\{^\prime\} = \{a\} \)
- \(\{q\} = \{a\} \)
- \(\{v\} = \{a\} \)

Low-level code

Implementing loops in DFS.