Outline

- Introduction to SSA, Construction, Destruction
- Analyses and Optimizations
 - Classic analyses and optimizations on SSA representations
 - Context-sensitive and Inter-procedural analyses and optimizations
 - Heap analyses and optimizations

Analyses and Optimizations

- Analyses to safely perform optimizations
- Cost model: runtime of a program
 - statically only conservative approximations
 - Loop iterations
 - Conditional code
 - Even for linear code not known in advance:
 - Instruction scheduling
 - Cache access is data dependent
 - Instruction pipelining: execution time is not the sum of individual operations costs
- Alternative cost model: memory size, power consumptions
- Caution: cost of a program ≠ sum of costs of its elements

Optimization: Implementation

- Legal transformations in SSA-Graphs:
 - Simplifying transformations reduce the costs of a program
 - Preparative transformations allow the application of simplifying transformations
- Using
 - Algebraic Identities (e.g. Associative / Distributive law for certain operations)
 - Moving of operations
 - Reduction of dependencies
- Optimization is a sequence of goal directed, legal simplifying and legal preparative transformations
- Legibility proven
 - Locally by checking preconditions
 - Due to static data-flow analyses

Algebraic Identity: Elimination of Operations and its Inverse

- x ⊙ y
- No side effects in τ, τ^{-1}
Graph Rewrite Schema

SSA-subgraph before Transformation

SSA-subgraph after Transformation

No side effects in τ, τ^{-1}

Pr condition established by local check preparative analyses

Elimination of Memory Operation and its Inverse

Elimination of Duplicated Memory Operations

Elimination of non-essential dependencies

Op1, Op2 memory operations (store, call)
u2, d1, d2 designate may Use/Define
Algebraic Identity: Invariant Compares

Associative Law

Distributive Law

Operator Simplification
Constant Folding

\[\text{Const} \ x \quad \text{Const} \ y \quad \Rightarrow \quad \text{Const} \ \tau \ x \ y \]

Evaluation using source algebra or target algebra (if allowed by source language)

Constant folding over \(\phi \)-functions

\[\begin{align*} \text{Const} & \quad \text{Const} \\ \ x & \quad \ y \\ \phi & \quad \tau \ x \ z \\ \tau \ y \ z & \quad \phi \end{align*} \]

General: Moving arithmetic operations over \(\phi \)-functions

\[\begin{align*} x & \quad y \quad z \\ \phi & \quad \tau \\ \tau & \quad \tau \end{align*} \]

No side effects in \(\tau \) (no call, store)

Optimizations

- Strength reduction:
 - Bauer & Samelson 1959
 - Replace expensive by cheap operations
 - Loops contain multiplications with iteration variable,
 - These operations could be replaced by add operations (Induction analysis)
 - One of the oldest optimizations: already in Fortran I-compiler (1954/55) and Algol 58/60- compiler

- Partial redundancy elimination (PRE):
 - Morel & Renvoise 1978
 - Eliminate partially redundant computations
 - SSA eliminates all static but not dynamic redundancies
 - Problem on SSA: which is the best block to perform the computation
 - Move loop invariant computations out of loops, into conditionals
 - subsumes a number of simpler optimization
Example: Strength reduction

```c
for (i=0; i<n; i++){
    for (j=0; j<n; j++){
        b[i,j] = a[i,j];
    }
}
```

```
// Original Address Computation:
> a[i,j] = > a[0,0] + i*n*d + j*d
```

Induction Analysis: Idea

- Find induction variable i for a loop:
 - i is induction variable if in loop only assignments of form $i := i + c$ with loop constants c
 or, recursively, $i := c*i + c'$ with i' induction variable
 - c loop constant: c does not change value in loop, i.e.
 - c is static constant,
 - c computed in enclosing loop
- Transformation goal: values should grow linearly with iteration.
- Transformation:
 - Let i_0 initialization of i and induction variables, $i := i + c$ and $i' := c*i + c''$
 - New variable ia initialized $ia = c' * i_0 + c''$
 - At loop end insert $ia = ia + c' * c$
 - Replace consistently operands i' by ia
 - Remove all assignments to i, i' and i, i' themselves if i is not used elsewhere

Induction Analysis: Implementation

- Assume initially: all variables are induction variables
- Finding induction variable i for a loop follows definition
- Iteratively until fix point: i is not induction variable if not:
 - $i := i + c$ with loop constants c (direct induction variable)
 - $i := c*i + c'$ with i' induction variable and loop constants c, c' (indirect induction variable)
 - $i := \phi(i_1 \ldots i_n)$ with i_1 being direct induction variable
- On SSA simplification possible
 - any loop variable corresponds to a cyclic subgraph
 - Find Strongly Connected Component (SCC) and check those for induction variable condition

```
sum(array[int] a)
{
    s = 0;
    for(i=0; i<100; i++){
        s = a[i] + s;
    }
    return s;
}
```
Induction Variables

Induction Variables (Schematic)

Direct Induction Variable Cycle

Move * over φ-function

Conditional jump

Integrate s
Move Addition

Associative Law

Change Compare
Partial Redundancy Elimination: Idea

- SSA is representation
 - without (provable) static redundancies
 - with all dependencies explicit
- Question which block should contain the computation guaranteeing
 - that the result is used on all path to the end
 - that the computation is not repeatedly performed in loops
- First idea: compute each operation earliest (as soon as all arguments are available)
- Observation:
 - Fast introduction of many live values: high register pressure
 - Many execution path compute but do not use a certain value
- Solution is Partial Redundancy Elimination (PRE):
 - Delay computation until it is used on all paths
 - In practice: move them out of loops into conditional code

Observations on SSA

Operations that must be executed in original block:
1. \(\phi\)-nodes,
2. Computations with exceptions
3. Jumps
4. “pinned” operations (postponed)

1. Observation:
 All other nodes could be computed in other blocks as well iff data dependencies are obeyed.

2. Observation:
 No statically redundant computation at all, i.e., one important goal of optimization immediately follows from the representation. Dynamic redundancy remains a problem.
Example: Initial Situation

Immature ϕ'

Mature $\phi' \rightarrow \phi$

Placement of computations
Placing t_1 earliest

t_1 not needed on many paths.

Placing t_1 latest

t_1 (re-)computed in each iteration.

Placing t_1 “optimally”
According of Knoop, Steffen

Still t_1 (re-)computed in each iteration.

Insert Blocks

Virtually, insert empty blocks, to capture operations executed only on a specific path.
Placing for t_1 out of loops into conditional code

However: Exist path t_1 not used on.

PRE: Discussion

- Placing earliest
 - Advantage: short code, could be fast code because of instruction cache; no unnecessary computations in loops
 - Disadvantage: many paths do not need result, high register pressure
- Placing lazily
 - Advantage: computation needed on all paths
 - Disadvantage: unnecessary computations in loops
- Placing out of loops into conditional code
 - Advantage: no unnecessary computations in loops
 - Disadvantage: some unnecessary computations in general as some paths do not need result

PRE: Implementation

- Find partially (dynamically) redundant computations
 - B contains operation τ computing t, B' contains τ' consuming t
 - If B' post-dominates B ($B' \leq B$) no dynamic redundancy
 - Assume all operations as dynamically redundant
 - For each operation τ computing t and the set of operations τ_1, \ldots, τ_n consuming t: if $B(\tau'_k) \leq B(\tau)$ for some k in $1 \ldots n$ then τ is not placed partially redundant – all others are (!)
- Eliminate partially redundant computations
 - Compute earliest position (all arguments available, all uses dominated) for each partially redundant operation τ
 - Move copies of τ towards the consuming operations τ_1, \ldots, τ_n along the dominator tree until no dynamic redundancies but stop at loop heads
 - Not deterministic but that does not matter (!)

PRE: “Pinned” Operations

- Placement sometimes only possible if it is the last transformation on SSA
 - Same computation computed several times
 - Further optimizations recognize this wanted static redundancy
- Solution:
 - Let $t_1 : a_1 + b_1$ and $t_2 : a_1 + b_1$ semantic equivalent computations at different positions (blocks)
 - Replace $+$ by a „pinned“ \oplus_{Block}
 - Thereby \oplus operation additionally depends on the current block as new arguments
 - computations $a_1 \oplus b_1$ and $a_1 \oplus b_1$ not congruent any more
Further Optimizations

- Constant evaluation (simple transformation rule)
- Constant propagation (iterative application of that rule)
- Copy propagation (on SSA construction)
- Dead code elimination (on SSA construction)
- Common subexpression elimination (on SSA construction)
- Specialization of basic blocks, procedures, i.e. cloning
- Procedure inlining
- Control flow simplifications
- Loop transformations (Splitting/merging/unrolling)
- Bound check eliminations
- Cache optimizations (array access, object layout)
- Parallelization
- …

Observations

- Order of optimizations matters in theory:
 - Application of one optimization might destroy precondition of another
 - Optimization can ruin the effects of the previous one
- Optimal order unclear (in scientific papers usual statements like: “Assume my optimization is the last …”)
- Simultaneous optimization too complex
- Usually first optimization gives 15% sum of remaining 5%, independent of the chosen optimizations
- Might differ in certain application domains, e.g. in numerical applications operator simplification gives factor >2, cache optimization factor 2-5

Outline

- Introduction to SSA, Construction, Destruction
- Analyses and Optimizations
 - Classic analyses and optimizations on SSA representations
 - Context-sensitive and Inter-procedural analyses and optimizations
 - Heap analyses and optimizations

Static Analyses

- Flow-insensitive vs. flow-sensitive
 - Abstraction from the direction of flow or not
 - We will stick to flow-sensitive analyses, flow-insensitive are proposed in analyses for comprehension, reengineering large systems etc.
- Contexts-insensitive vs. context-sensitive
 - Abstraction from the execution history (call context) or not
 - We will derive context-sensitive from contexts-insensitive
- Intra-procedural vs. inter-procedural
 - Consider each procedure separately or analyze the whole program
 - We will introduce both
Context-insensitive Data flow analysis

\[x + y = \{2,3,4\} \]
\[a + b = \{4,5,6\} \]
\[2(x+y) \geq a+b? \]

Context-sensitive Data flow analysis

\[
\begin{array}{cccccccc}
 & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\
 x & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 \\
y & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 \\
a & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 \\
b & 3 & 3 & 4 & 4 & 3 & 3 & 4 & 4 \\
\end{array}
\]

Representation of context in decision tables
Too large! Too much redundancy!

Concept of \(\chi \) terms
Advantages of χ-Terms

- Compact representation of context sensitive information
- Delayed widening (abstract interpretation) of terms until no more memory: no unnecessary loss of information
- Each SSA node type n has a concrete semantics $\nu(n)$.
- Delayed widening (abstract interpretation) of terms until no more memory.
- On execution of $\nu(n)$, map inputs i to outputs o and $o = \nu(n)(i)$.
- No unnecessary loss of information.
- Inputs i and outputs o are records of typed values (P1).
- χ-Terms are implementation of decision diagrams.
- Abstract semantics T_n is called transfer function of node type n.
- On analysis of $\nu(n)$, map abstract analysis inputs $\nu(i)$ to abstract analysis outputs $\nu(o)$ and $\nu(o) = T_n(\nu(i))$.
- Abstract semantics T_n is a lattice (actually only a complete partial order).

DFA on SSA (cont.)

- Provided that
 - Transfer functions are monotone: $x \leq y \Rightarrow T_n(x) \leq T_n(y)$ with $x,y \in \bigodot_A$ and \leq defined element-wise with \subseteq of the respective abstract type lattices.
 - Abstract type lattices are finite (sufficient).
- Following iteration terminates in a unique fixed point
 - Initialize the input of each node the SSA graph with the smallest (bottom) element of the lattice corresponding its abstract type.
 - Initialize the start nodes of the SSA graph with proper abstract values of the corresponding its abstract types.
 - Attach each node with its corresponding transfer function.
 - Uniform randomly compute abstract output values.
 - (Fewer updates use SCC and interval analysis to determine an traversal strategy, backward problems analyzed analogously.)

Data-Flow Analyses (DFA) on SSA

- Each SSA node type n has a concrete semantics $\nu(n)$.
 - On execution of $\nu(n)$, map inputs i to outputs o and $o = \nu(n)(i)$.
 - Inputs i and outputs o are records of typed values (P1).
 - $\nu(n) : \text{type}(\nu(i)) \rightarrow \text{type}(\nu(o))$.
- Each static data-flow analysis abstracts from concrete semantics and values.
 - Abstract semantics T_n is called transfer function of node type n.
 - On analysis of $\nu(n)$, map abstract analysis inputs $\nu(i)$ to abstract analysis outputs $\nu(o)$ and $\nu(o) = T_n(\nu(i))$.
 - $T_n : \text{type}(\nu(i)) \rightarrow \text{type}(\nu(o))$.
- For each abstract type $A = \text{type}(\nu(\bullet))$ there is a partial order relation \subseteq and a meet operation \cup.
 - $\subseteq : A \times A$
 - $\cup : A \times A \rightarrow A$ with $\cup = T_n$
 - (A, \subseteq) is a lattice (actually only a complete partial order).

Generalization to χ-terms

- Given such a context-insensitive analysis (lattices for abstract values, set of transfer functions, initialization of start node) we can systematically construct a context-sensitive analysis.
- χ-term algebras Ξ over abstract value $a \in A$ introduced.
 - $a \in A \Rightarrow a \in \Xi$.
 - $t_1, t_2 \in \Xi \Rightarrow \chi(t_1, t_2) \in \Xi$.
 - Induces sensitive lattices for abstract values (Ξ, \subseteq) and for $a_1, a_2 \in A$ and $t_1, t_2, t_3, t_4 \in \Xi$:
 - $a_1 \subseteq a_2 \Rightarrow a_1 \subseteq a_2$,
 - $\chi(a_1, a_2) \subseteq a_1 \cup a_2$,
 - $t_1 \subseteq t_3, t_2 \subseteq t_4 \Rightarrow \chi(t_1, t_2) \subseteq \chi(t_3, t_4)$.
- New transfer functions induced.
New transfer functions

- **ϕ-node’s transfer functions:**
 - Insensitive: $T_\phi = \bigcup a(\phi_1) \cup \ldots \cup a(\phi_k)$
 - Sensitive: $S_\phi = \bigcup a'(\phi_1 \cup \phi_2 \cup \ldots \cup \phi_k)$ with b block number of φ-node and for $a_1, a_2 \in A$ and $t_1, t_2, t_3, t_4 \in X$:
 $a_1 \cup a_2 = \chi_b(a_1, a_2)$
 $\chi(x, y) = \chi_b(t_1 \cup t_2, t_3 \cup t_4)$ iff $x = b$ (cases $y = b$ analog)
 $\chi(x, y) \cup \chi(x, y) = \chi_b(t_1 \cup t_2, t_3 \cup t_4)$ otherwise

- **Ordinary operation’s (τ node’s) transfer functions:**
 - Insensitive (w.l.o.g. binary operation): $T_\tau :: A_a \times A_b \rightarrow A_c$
 - Sensitive: $S_\tau :: X_a \times X_b \rightarrow X_c$, and for $a_1, a_2 \in A_a, A_b$ and $t_1, t_2 \in X_a, X_b$:
 $S_\tau(a_1, a_2) = T_\tau(a_1, a_2)$
 $S_\tau(\chi_a(t_1, t_2), \chi_b(t_3, t_4)) = \chi_b(S_\tau(\chi_a(t_1, t_2), \chi_a, 1), S_\tau(\chi_b(t_3, t_4), \chi_a, 2))$
 with k larger of x, y and cof is the co-factorization

Sensitive Transfer Schema (case a)

Sensitive Transfer Schema (case b)

Co-factorization

- $\text{cof}(\chi_a(t_1, t_2), \chi_a, i)$ selects the i-th branch of a χ-term if $\chi_a = \chi_k$
 and returns the whole χ-term, otherwise

- $\text{cof}(\chi_a(t_1, t_2), \chi_a, i)$ = $\chi_a(t_1, t_2)$ iff $k > x$
- $\text{cof}(\chi_a(t_1, t_2), \chi_a, 1)$ = t_1 iff $k = x$
- $\text{cof}(\chi_a(t_1, t_2), \chi_a, 2)$ = t_2 iff $k = x$
Example revisited: insensitive

- SSA node ⊕
- Semantic
 - \([\text{⊕}]: \text{Int} \times \text{Int} \to \text{Int}\)
 - \([\text{⊕}](a,b) = a+b\)
- Abstract Int values \{⊥, 1, 2, ..., maxint, ⊤\}
- Context-insensitive transfer function:
 - \(T_\#(\text{⊕}, x) = T_\#(x, \text{⊥}) = \text{⊥}\)
 - \(T_\#(\text{⊕}, \text{⊥}) = T_\#(\text{⊥}, x) = \text{τ}\)
 - \(T_\#(a,b) = [\text{⊕}](a,b) = a+b\) for \(a,b \in \text{Int}\)
- Context-insensitive meet function
 - \(T_\#(\text{⊥}, x) = T_\#(x, \text{⊥}) = x\)
 - \(T_\#(\text{⊥}, \text{⊥}) = T_\#(\text{⊥}, x) = \text{τ}\)
 - \(T_\#(x, x) = x\)
 - \(T_\#(x, y) = \text{τ}\)

Context-sensitive \(a \oplus b\)

\[
S_\otimes(x_3(x_1(1,2), x_2(x_1(1,2), 2), x_3(3,4))) = \ldots
\]

\[
= x_3(S_\otimes(\text{cof}(x_1(1,2), x_2(x_1(1,2), 2), x_3(3,4)) , x_3(1)) , x_3(x_2(x_1(1,2)(3), x_3(4))) , x_3(x_2(1(1,2)(3), x_3(4)) , x_3(2))))
\]

\[
= x_3(S_\otimes(x_3(1), x_3(2), x_3(3)) , x_3(x_3(1), x_3(2), x_3(4))) , x_3(S_\otimes(x_2(x_1(1,2)(2), x_3(1)) , x_3(x_2(x_1(1,2)(2), x_3(4)) , x_3(2)) , x_3(x_2(x_3(1), x_3(4))) , x_3(x_2(1(1,2)(3), x_3(4))))
\]

\[
= x_3(x_3(x_3(1), x_3(2), 3) , x_3(S_\otimes(x_3(1), x_3(2), 4)) , x_3(x_3(1), x_3(2), 3))
\]

\[
S_\otimes(x_3(1), x_3(2), x_3(3), x_3(4))
\]

Context-sensitive \(a \oplus b\) (cont.)

\[
S_\otimes(x_3(x_1(1,2), x_2(x_1(1,2), 2)) , x_3(3,4)) = \ldots
\]

\[
= x_3(x_3(x_3(1), x_2(x_1(1,2), 2), x_3(3,4)) , x_3(1) , x_3(x_3(1), x_3(2)))
\]

\[
= x_3(x_3(x_3(1), x_2(x_1(1,2), 2), x_3(3,4)) , x_3(1) , x_3(x_3(1), x_3(2)))
\]

\[
= x_3(x_3(x_3(1), x_2(x_1(1,2), 2), x_3(3,4)) , x_3(1) , x_3(x_3(1), x_3(2)))
\]

\[
= x_3(x_3(x_3(1), x_2(x_1(1,2), 2), x_3(3,4)) , x_3(1) , x_3(x_3(1), x_3(2)))
\]

\[
= x_3(x_3(x_3(1), x_2(x_1(1,2), 2), x_3(3,4)) , x_3(1) , x_3(x_3(1), x_3(2)))
\]

\[
= x_3(x_3(x_3(1), x_2(x_1(1,2), 2), x_3(3,4)) , x_3(1) , x_3(x_3(1), x_3(2)))
\]

\[
= x_3(x_3(x_3(1), x_2(x_1(1,2), 2), x_3(3,4)) , x_3(1) , x_3(x_3(1), x_3(2)))
\]

\[
= x_3(x_3(x_3(1), x_2(x_1(1,2), 2), x_3(3,4)) , x_3(1) , x_3(x_3(1), x_3(2)))
\]
Assignment III

Given the SSA fragment on the left

- Perform context-insensitive data-flow analysis (using the definitions on the previous slides). What is the the value at the entry of node x?
- Perform context-sensitive data-flow analysis (using the definitions on the previous slides). What is the the value at the entry of node x?
- Why is the former less precise than the latter?
- Construct a scenario where you could take advantage of that precision in an optimization!

Inter-Procedural Analysis

- Tasks:
 - Find the impact of calls to caller and callee:
 - Find recursive procedures
 - Find values that might change (side effects) and those that definitely don’t
 - Anti-dependencies: are there calls that needn’t be executed in strict order
 - Determine the called procedures (in the presence of polymorphism and procedure variables)
 - Which procedure bodies could be inlined
- Reason:
 - Extend the value numbering over procedure boundaries
 - Simplify calls of non-recursive and tail-recursive procedures
 - Replace indirect calls by direct calls
 - Inlining
- Precondition:
 - Call graph
 - Complete program+runtime system (no separated compilation)

Simple call graph

- Nodes are methods edges calls

```c
void p() {
    r(); q(); r()
};
void q() {
    if B then s()
    else t()
};
void r() {
    if B then q()
};
void s() {
    if ¬B then r()
};
void t() {
    ...
}
```

- Main is a procedure
- Cycles show potential recursion
- Multiple calls represented only once
- No tracing call → procedure → return possible
- In oo programs: long chains of calls
- # of ”dead ends” in call graph > 50%

Complex Call Graph

- New nodes in SSA graph
 - callBegin – call of a procedure
 - callEnd – take the results into the context of the caller
- New edges in SSA graph
 - Edge from „callBegin“ to „start“ node of the callee procedure
 - Edge from „return“ to „callEnd“ all possible caller nodes
 - Edge from „callBegin“ to „callEnd“ node (control dependency)
 - Edge from actual parameters of the caller to formal parameter uses in the procedure (φ-function if more than one call possible)
 - Edge from results to „callEnd“ in callers
- Polymorphism is resolved by explicit dispatcher
- Interprocedural dataflow analysis now possible
Procedures

- Extension to Memory SSA:
 - New node: begin and end of calls distinguished
 - Edges: connection between caller and callees

Construction of Inter-Procedural SSA

- Inter-procedural Value Analysis
- Almost everything as usual, but:
 - No initialization of value numbers with "undefined" for „start“ node – take callers’ values instead
 - No new value numbers after „callEnd“ – take values from procedure instead
 - \(\phi\)-Functions on different values possible at „start“ node,
 - „callEnd“ is a kind of \(\phi\)-function too since actual call target is not decidable and there will be more than one returns reaching the same „callEnd“
 - Immature \(\phi\)’-functions, if values are unknown (because procedure not visited yet)
 - Fix point iteration until no algebraic identities detected (as before)

Example

- Example Construction
Example Construction

Observation

- Information merges
 - at start of a procedure
 - at return from a procedure (non realizable path, non decidable call targets)
- No distinction of the call contexts so far
- Comparison
 - Intra procedural analysis:
 - (Data flow-)values are undefined at procedure start
 - Call sets all values to undefined in caller (new value numbers)
 - Inter procedural analysis:
 - (Data flow-)values are supremum of values of the caller at procedure start
 - Call of procedure sets value(-number)s in caller to value(-number)s at the end of the callees, non-realizable paths
- Problem: too strong abstraction
- Idea: Distinguish the contexts (χ terms)

Inter-procedural context-sensitive Value Analysis

- Like context-insensitive inter-procedural value analysis but:
 - use χ-terms to analyze values at certain program points (SSA-nodes)
 - After SSA construction
 - Initially construct the χ-terms from the ϕ-functions
 - analyze values at start and end of calls with differentiation of the contexts
 - fixpoint iteration until no simplifications of χ-terms possible
 - if necessary (analysis runs out of memory) melt χ-terms

Example (cont.)
Before/after SSA construction

\[p: \begin{align*} x &= 0; \\ x &= r(x); \\ x &= q(x); \\ x &= r(x) \end{align*} \]

\[r: \begin{align*} \text{if } (x = 1) \text{ then } x &= s(x); \\ \text{return } x \end{align*} \]

\[q: \begin{align*} \text{if } (x = 1) \text{ then } x &= s(x) \text{ else } x &= t(x); \\ \text{return } x \end{align*} \]

\[s: \begin{align*} \text{if } (x = 0) \text{ then } x &= r(x); \\ \text{return } x \end{align*} \]

\[t: \begin{align*} \text{return } x + 1 \end{align*} \]

Virtually inline \(r \) in first call in \(p \)

\[p: \begin{align*} x_1 &= 0, \\ B_r(x_1), \\ x_6 &= E_r, \\ B_q(x_6), \\ x_9 &= E_q, \\ B_r(x_9), \\ x_6 &= E_r \\ r: \begin{align*} x_4 &= \chi_{\{p_1,p_2,s\}}(x_1, x_9, x_{10}), \\ B_s(x_4), \\ x_{11} &= E_s, \\ x_6 &= \chi_{\{k_4=1\}}(x_{11}, x_4) \\ q: \begin{align*} B_s(x_6), \\ x_{11} &= E_s, \\ B_t(x_6), \\ x_{12} &= E_t, \\ x_9 &= \chi_{\{x_6=1\}}(x_{11}, x_{12}) \\ s: \begin{align*} x_{10} &= \chi_{\{r,q\}}(x_4, x_6), \\ B_r(x_{10}), \\ x_6 &= E_r, \\ x_{11} &= \chi_{\{x_{10}=0\}}(x_6, x_{10}) \\ t: \begin{align*} x_{12} &= x_6 + 1 \end{align*} \end{align*} \]

Specialize \(r \) in context of first call in \(p \)

\[p: \begin{align*} x_1 &= 0, \\ B_r(x_1), \\ x_6 &= E_r, \\ B_q(x_6), \\ x_9 &= E_q, \\ B_r(x_9), \\ x_6 &= E_r \\ r: \begin{align*} x_4 &= \chi_{\{p_1,p_2,s\}}(x_1, x_9, x_{10}), \\ B_s(x_4), \\ x_{11} &= E_s, \\ x_6 &= \chi_{\{k_4=1\}}(x_{11}, x_4) \\ q: \begin{align*} B_s(x_6), \\ x_{11} &= E_s, \\ B_t(x_6), \\ x_{12} &= E_t, \\ x_9 &= \chi_{\{x_6=1\}}(x_{11}, x_{12}) \\ s: \begin{align*} x_{10} &= \chi_{\{r,q\}}(x_4, x_6), \\ B_r(x_{10}), \\ x_6 &= E_r, \\ x_{11} &= \chi_{\{x_{10}=0\}}(x_6, x_{10}) \\ t: \begin{align*} x_{12} &= x_6 + 1 \end{align*} \end{align*} \]

SSA form and initial \(\chi \)-Terms

\[p: \begin{align*} x_1 &= 0, \\ B_r(x_1), \\ x_6 &= E_r, \\ B_q(x_6), \\ x_9 &= E_q, \\ B_r(x_9), \\ x_6 &= E_r \\ r: \begin{align*} x_4 &= \chi_{\{p_1,p_2,s\}}(x_1, x_9, x_{10}), \\ B_s(x_4), \\ x_{11} &= E_s, \\ x_6 &= \chi_{\{k_4=1\}}(x_{11}, x_4) \\ q: \begin{align*} B_s(x_6), \\ x_{11} &= E_s, \\ B_t(x_6), \\ x_{12} &= E_t, \\ x_9 &= \chi_{\{x_6=1\}}(x_{11}, x_{12}) \\ s: \begin{align*} x_{10} &= \chi_{\{r,q\}}(x_4, x_6), \\ B_r(x_{10}), \\ x_6 &= E_r, \\ x_{11} &= \chi_{\{x_{10}=0\}}(x_6, x_{10}) \\ t: \begin{align*} x_{12} &= x_6 + 1 \end{align*} \end{align*} \]

Specialize \(r \) in context of first call in \(p \)

\[p: \begin{align*} x_1 &= 0, \\ B_r(x_1), \\ x_6 &= E_r, \\ B_q(x_6), \\ x_9 &= E_q, \\ B_r(x_9), \\ x_6 &= E_r \\ r: \begin{align*} x_4 &= \chi_{\{p_1,p_2,s\}}(x_1, x_9, x_{10}), \\ B_s(x_4), \\ x_{11} &= E_s, \\ x_6 &= \chi_{\{k_4=1\}}(x_{11}, x_4) \\ q: \begin{align*} B_s(x_6), \\ x_{11} &= E_s, \\ B_t(x_6), \\ x_{12} &= E_t, \\ x_9 &= \chi_{\{x_6=1\}}(x_{11}, x_{12}) \\ s: \begin{align*} x_{10} &= \chi_{\{r,q\}}(x_4, x_6), \\ B_r(x_{10}), \\ x_6 &= E_r, \\ x_{11} &= \chi_{\{x_{10}=0\}}(x_6, x_{10}) \\ t: \begin{align*} x_{12} &= x_6 + 1 \end{align*} \end{align*} \]

Specialize \(r \) in context of first call in \(p \)

\[p: \begin{align*} x_1 &= 0, \\ B_r(x_1), \\ x_6 &= E_r, \\ B_q(x_6), \\ x_9 &= E_q, \\ B_r(x_9), \\ x_6 &= E_r \\ r: \begin{align*} x_4 &= \chi_{\{p_1,p_2,s\}}(x_1, x_9, x_{10}), \\ B_s(x_4), \\ x_{11} &= E_s, \\ x_6 &= \chi_{\{k_4=1\}}(x_{11}, x_4) \\ q: \begin{align*} B_s(x_6), \\ x_{11} &= E_s, \\ B_t(x_6), \\ x_{12} &= E_t, \\ x_9 &= \chi_{\{x_6=1\}}(x_{11}, x_{12}) \\ s: \begin{align*} x_{10} &= \chi_{\{r,q\}}(x_4, x_6), \\ B_r(x_{10}), \\ x_6 &= E_r, \\ x_{11} &= \chi_{\{x_{10}=0\}}(x_6, x_{10}) \\ t: \begin{align*} x_{12} &= E_r + 1 \end{align*} \end{align*} \]

Specialize \(r \) in context of first call in \(p \)

\[p: \begin{align*} x_1 &= 0, \\ B_r(x_1), \\ x_6 &= E_r, \\ B_q(x_6), \\ x_9 &= E_q, \\ B_r(x_9), \\ x_6 &= E_r \\ r: \begin{align*} x_4 &= \chi_{\{p_1,p_2,s\}}(x_1, x_9, x_{10}), \\ B_s(x_4), \\ x_{11} &= E_s, \\ x_6 &= \chi_{\{k_4=1\}}(x_{11}, x_4) \\ q: \begin{align*} B_s(x_6), \\ x_{11} &= E_s, \\ B_t(x_6), \\ x_{12} &= E_t, \\ x_9 &= \chi_{\{x_6=1\}}(x_{11}, x_{12}) \\ s: \begin{align*} x_{10} &= \chi_{\{r,q\}}(x_4, x_6), \\ B_r(x_{10}), \\ x_6 &= E_r, \\ x_{11} &= \chi_{\{x_{10}=0\}}(x_6, x_{10}) \\ t: \begin{align*} x_{12} &= E_r + 1 \end{align*} \end{align*} \]
Optimize r in context of first call in p

\[\begin{align*}
p: \quad x_1 &= 0, \quad B_{r_1}(x_1), \quad E_{r_1} = \chi_{\{x_1\}}(x_1, x_1), \quad B_{q}(E_{r_1}), \quad x_9 = E_{q}, \quad B_{r_2}(x_9), \quad x_6 = E_{r_2} \\
r: \quad x_4 &= \chi_{\{p_1,p_2,s\}}(x_1, x_9, x_{10}), \quad B_{s}(x_4), \quad x_{11} = E_{s}, \quad x_6 = \chi_{\{x_{11}\}}(x_11, x_4) \\
q: \quad B_{s}(E_{r_1}), \quad x_{11} = E_{s}, \quad B_{r}(E_{r_1}), \quad x_{12} = E_{r}, \quad x_9 = \chi_{\{x_9\}}(x_11, x_12) \\
s: \quad x_{10} = \chi_{\{r,q\}}(x_4, E_{r_1}), \quad B_{r}(x_{10}), \quad x_6 = E_{r}, \quad x_{11} = \chi_{\{x_{10}\}}(x_6, x_{10}) \\
t: \quad x_{12} = E_{r_1} + 1
\end{align*} \]

Propagate Result

\[\begin{align*}
p: \quad x_1 &= 0, \quad B_{r_1}(x_1), \quad E_{r_1} = 0, \quad B_{q}(0), \quad x_9 = E_{q}, \quad B_{r_2}(x_9), \quad x_6 = E_{r_2} \\
r: \quad x_4 &= \chi_{\{p_1,p_2,s\}}(x_1, x_9, x_{10}), \quad B_{s}(x_4), \quad x_{11} = E_{s}, \quad x_6 = \chi_{\{x_{11}\}}(x_11, x_4) \\
q: \quad B_{s}(0), \quad x_{11} = E_{s}, \quad B_{r}(0), \quad x_{12} = E_{r}, \quad x_9 = \chi_{\{x_9\}}(x_11, x_12) \\
s: \quad x_{10} = \chi_{\{r,q\}}(x_4, 0), \quad B_{r}(x_{10}), \quad x_6 = E_{r}, \quad x_{11} = \chi_{\{x_{10}\}}(x_6, x_{10}) \\
t: \quad x_{12} = 0 + 1
\end{align*} \]

Virtually inline r in second call in p

\[\begin{align*}
p: \quad x_1 &= 0, \quad B_{r_1}(x_1), \quad E_{r_1} = 0, \quad B_{q}(0), \quad x_9 = E_{q}, \quad B_{r_2}(x_9), \quad x_6 = E_{r_2} \\
r: \quad x_4 &= \chi_{\{p_1,p_2,s\}}(x_1, x_9, x_{10}), \quad B_{s}(x_4), \quad x_{11} = E_{s}, \quad x_6 = \chi_{\{x_{11}\}}(x_11, x_4) \\
q: \quad B_{s}(0), \quad x_{11} = E_{s}, \quad B_{r}(0), \quad x_{12} = E_{r}, \quad x_9 = \chi_{\{x_9\}}(x_11, x_12) \\
s: \quad x_{10} = \chi_{\{r,q\}}(x_4, 0), \quad B_{r}(x_{10}), \quad x_6 = E_{r}, \quad x_{11} = \chi_{\{x_{10}\}}(x_6, x_{10}) \\
t: \quad x_{12} = 1
\end{align*} \]

Specialize r in second call in p

\[\begin{align*}
p: \quad x_1 &= 0, \quad B_{r_1}(x_1), \quad E_{r_1} = 0, \quad B_{q}(0), \quad x_9 = E_{q}, \quad B_{r_2}(x_9), \quad x_6 = E_{r_2} \\
r: \quad x_4 &= \chi_{\{p_1,p_2,s\}}(x_1, x_9, x_{10}), \quad B_{s}(x_4), \quad x_{11} = E_{s}, \quad x_6 = \chi_{\{x_{11}\}}(x_11, x_4) \\
q: \quad B_{s}(0), \quad x_{11} = E_{s}, \quad B_{r}(0), \quad x_{12} = E_{r}, \quad x_9 = \chi_{\{x_9\}}(x_11, x_12) \\
s: \quad x_{10} = \chi_{\{r,q\}}(x_4, 0), \quad B_{r}(x_{10}), \quad x_6 = E_{r}, \quad x_{11} = \chi_{\{x_{10}\}}(x_6, x_{10}) \\
t: \quad x_{12} = 1
\end{align*} \]
Virtually inline s in call in r

\[p: x_1=0, B_r(x_1), E_{r_1}=0, B_q(x_0), E_{q_2}=\chi_{(x_0=0)}(x_1, x_0) \]
\[r: x_4=\chi_{(p_1,p_2,s)}(x_1, x_9, x_{10}), B_s(x_9), E_{r_2} = \chi_{(x_9=1)}(x_11, x_9) \]
\[q: B_s(0), x_{11}=E_s, B_0(0), x_{12}=E_r, x_0=x_{12} \]
\[s: x_{10}=\chi_{(x_0=0)}(x_4, 0), B,(x_{10}), x_0=E_r, x_{11}=\chi_{(x_{10}=0)}(x_6, x_{10}) \]
\[t: x_{12}=1 \]

Specialize s in call in r

\[p: x_1=0, B_r(x_1), E_{r_1}=0, B_q(x_0), E_{q_2}=\chi_{(x_0=0)}(x_1, x_0) \]
\[r: x_4=\chi_{(p_1,p_2,s)}(x_1, x_9, x_{10}), B_s(x_9), E_{r_2} = \chi_{(x_9=0)}(x_6, x_{9}) \]
\[q: B_s(0), x_{11}=E_s, B_0(0), x_{12}=E_r, x_0=x_{12} \]
\[s: x_{10}=\chi_{(x_0=0)}(x_4, 0), B,(x_{10}), x_0=E_r, x_{11}=\chi_{(x_{10}=0)}(x_6, x_{10}) \]
\[t: x_{12}=1 \]

Optimize s in call in r

\[p: x_1=0, B_r(x_1), E_{r_1}=0, B_q(x_0), E_{q_2}=\chi_{(x_0=0)}(x_1, x_0) \]
\[r: x_4=\chi_{(p_1,p_2,s)}(x_1, x_9, x_{10}), B_s(x_9), E_{r_2} = \chi_{(x_9=0)}(x_6, x_{9}) \]
\[q: B_s(0), x_{11}=E_s, B_0(0), x_{12}=E_r, x_0=x_{12} \]
\[s: x_{10}=\chi_{(x_0=0)}(x_4, 0), B,(x_{10}), x_0=E_r, x_{11}=\chi_{(x_{10}=0)}(x_6, x_{10}) \]
\[t: x_{12}=1 \]

Propagate Result

\[p: x_1=0, B_r(x_1), E_{r_1}=0, B_q(x_0), E_{q_2}=\chi_{(x_0=0)}(x_1, x_0) \]
\[r: x_4=\chi_{(p_1,p_2,s)}(x_1, x_9, x_{10}), B_s(x_9), E_{r_2} = \chi_{(x_9=0)}(x_6, x_{9}) \]
\[q: B_s(0), x_{11}=E_s, B_0(0), x_{12}=E_r, x_0=x_{12} \]
\[s: x_{10}=\chi_{(x_0=0)}(x_4, 0), B,(x_{10}), x_0=E_r, x_{11}=\chi_{(x_{10}=0)}(x_6, x_{10}) \]
\[t: x_{12}=1 \]
Optimize s

\[p: x_1=0, B_{r1}(x_1), E_{r1} =0, B_q(0), x_9= E_q, B_{r2}(x_9), E_{r2} =\chi_{(x_9=1)}(x_{11}, x_9) \]

\[r: x_4=\chi_{(p_1,p_2,s)}(x_1, x_9, x_{10}), x_6=x_4 \]

\[q: B_s(0), x_{11}=E_s, B_t(0), x_{12}=E_t, x_9=x_{12} \]

\[s: x_{10}=0, B_s(x_{10}), x_6=E_r, x_{11}=\chi_{(x_{10}=0)}(x_6, x_{10}) \]

\[t: x_{12}=1 \]

Clean and final simplifications

\[p: B_{r1}(0), E_{r1} =0, B_q(0), E_q=1, B_{r2}(1), E_{r2} =\chi_{(1=1)}(x_4, 1) \]

\[r: x_4=\chi_{(p_1,p_2,s)}(0, 1, 0), \text{ret } x_4 \]

\[q: B_s(0), x_4=E_s, B_t(0), E_t=1, \text{ret } 1 \]

\[s: B_s(0), x_4=E_r, \text{ret } x_4 \]

\[t: \text{ret } 1 \]

Result is 1 😊

Open Problems

- Efficient implementation – large problems
- Memory driven control of fixed point iteration
- Open compilation
 - unknown procedures (components)
 - binary components
- Readability of analysis results (necessary when applied for program comprehension etc.)

Outline

- Introduction to SSA, Construction, Destruction
- Analyses and Optimizations
 - Classic analyses and optimizations on SSA representations
 - Context-sensitive and Inter-procedural analyses and optimizations
 - Heap analyses and optimizations
Optimizations on Memory

- Elimination of memory accesses.
- Elimination of object creations.
- Elimination non essential dependencies.
- Those are normalizing transformations for further analyses

Nothing new under the sun:
- Define abstract values for variables, addresses, memory
- Define context-insensitive transfer functions for memory relevant SSA nodes (Load, Store, Call)
- Generalization to context-sensitive analyses (discussed already)
- Optimizations as graph transformations (discussed already)

Memory Values

- Initially: memory is a single value object
- Desired: refinement of that memory object
- Distinguish:
 - heap and stack
 - local arrays with different name
 - disjoint index sets in an array (odd/even etc.)
 - different types of heap objects
 - objects with same type but statically different creation program point
 - objects with same creation program point but with statically different path to that creation program point (execution context, context-sensitive)
- Differentiation schema is called Name Schema (NS)

Example for Context Sensitive NS

class List{
 Object value;
 List tail;
 List(int length){
 tail = new List(length-1);
 }
 ...
 ... // Heap object
 ... // with same object type but
 ... // different creation point and
 ... // hence distinguished
 List l = new List(10);
 ...
}

Abstract Variables/Addresses/Memory Values

- Abstract addresses A are sets of object creation points: objects with same static creation program point are stored at the same abstract address
- Abstract variables Var are triples (a, n, i) defined by
 - Abstract object address a
 - Offset a attribute name n
 - Index expression i if entry is an array
- Abstract memory M is a mapping abstract variables to abstract values (might also be abstract addresses)
Updates of Memory

- Given an abstract address of a store operation uniquely
- In general, this abstract address points to more than one real memory cell
- A store operation overwrites only one of these cells, all others contain the same value
- Hence a store to an abstract memory address adds a new possible (abstract) value - weak update
- Only if guaranteed that abstract address matches a concrete address, a new possible (abstract) value overwrites the old value - strong update

Auxiliary function:
\[u(M, (a, n, T), v) = \begin{cases} v & \text{if strong update possible} \\ M(a, n, T) \cup v & \text{otherwise, weak update} \end{cases} \]

Transfer functions (insensitive)

- \(T_{\text{store}}(M, \mathit{Var}, v) = M[(\mathit{var}_1 \mapsto u(M, \mathit{var}_1, v)) \ldots (\mathit{var}_k \mapsto u(M, \mathit{var}_k, v))] \)
 \[V = \{ \mathit{var}_1 \ldots \mathit{var}_k \} \quad \mathit{var}_i = (a_i, n_i, T) \]

- \(T_{\text{load}}(M, \mathit{Var}) = (M, M(\mathit{var}_1) \cup \ldots \cup M(\mathit{var}_k)) \)
 \[V = \{ \mathit{var}_1 \ldots \mathit{var}_k \} \quad \mathit{var}_i = (a_i, n_i, T) \]

- \(T_{\text{alloc}}(\mathit{type})(M) = (M[a_{\text{new}}, n_1, T] \mapsto \bot) \ldots [(a_{\text{new}}, n_k, T) \mapsto \bot], a_{\text{new}}) \)
 \{n_1 \ldots n_k\} attributes of \textit{type}

Example: Main Loop Inner Product Algorithm

```
init(int size)
VecIter iter()
Vector<T>
T times(Vector)

VectorArray<T>
VecIter iter()
VectorIter<T>
boolean hasNext() T next()
```

```
T times(vector v){
i1 = iter();
i2 = v.iter();
for (s = 0; i1.hasNext(); )
    s = s+i1.next()*i2.next();
}
```

Example: SSA

```
init(int size)
VecIter iter()
Vector<T>
T times(Vector)

VectorArray<T>
VecIter iter()
VectorIter<T>
boolean hasNext() T next()
```

```
T times(vector v){
i1 = iter();
i2 = v.iter();
for (s = 0; i1.hasNext(); )
    s = s+i1.next()*i2.next();
}````
No provably different memory addresses

[Diagram showing a flowchart with nodes labeled "Load", "Inc", and "Store".]

Not applicable!

Actually two Iterators?

[Diagram showing a flowchart with nodes labeled "Load", "Inc", and "Store".]

Elimination of non essential dependencies

Initialization: disjoint memory guaranteed

[Diagram showing a flowchart with nodes labeled "Allocate", "Load", "Inc", and "Store".]

Memory objects replaced by values

[Diagram showing a flowchart with nodes labeled "Allocate", "Load", "Inc", and "Store".]

Elimination of reading memory accesses
Value numbering proofs equivalence

Example revisited

Optimization only possible due to joint application of single techniques:
- Global analysis
- Elimination of polymorphism
- Elimination of non essential dependencies
- Elimination of memory operations
- Traditional optimizations