
Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Multi-Level Intermediate

Representations

Local CSE, DAGs, Lowering

Call Sequences

Survey of some Compiler Frameworks

2 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Compiler Flow

Lexical Analyzer

source code

Parser

Semantic Analyzer

Translator

Optimizer

Assembler Emitter

asm code

(a) Optimizations on low-level IR only

Text stream

Low-level IR

Low-level IR

Parse tree

Parse tree

Token stream

Text stream Lexical Analyzer

source code

Parser

Semantic Analyzer

IR Generator

Code Generator

Postpass Optimizer

asm code

(b) Mixed model

Text stream

Low-level IR

Medium-level IR

Parse tree

Parse tree

Token stream

Text stream

Optimizer

Medium-level IR

3 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Compiler Flow

Lexical Analyzer

source code

Parser

Semantic Analyzer

Translator

Optimizer

Assembler Emitter

asm code

(a) Optimizations on low-level IR only

Text stream

Low-level IR

Low-level IR

Parse tree

Parse tree

Token stream

Text stream Lexical Analyzer

source code

Parser

Semantic Analyzer

IR Generator

Code Generator

Postpass Optimizer

asm code

(b) Mixed model

Text stream

Low-level IR

Medium-level IR

Parse tree

Parse tree

Token stream

Text stream

Optimizer

Medium-level IR

4 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Multi-Level IR

▪ Multi-level IR, e.g.

▪ AST abstract syntax tree – implicit control and data flow

▪ HIR high-level IR

▪ MIR medium-level IR

▪ LIR low-level IR, symbolic registers

▪ VLIR very low-level IR, target specific, target registers

▪ Standard form and possibly also SSA (static single assignment) form

▪ Open form (tree, graph) and/or closed (linearized, flattened) form

▪ For expressions: Trees vs DAGs (directed acyclic graphs)

▪ Translation by lowering

☺ Analysis / Optimization engines can work on
the most appropriate level of abstraction

☺ Clean separation of compiler phases,
somewhat easier to extend and debug

 Framework gets larger and slower

5 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Example: WHIRL
(Open64 Compiler)

C, C++ F95

Very High WHIRL
(AST)

front-ends
(GCC)

High WHIRL

Mid WHIRL

CGIR

Very Low WHIRL

Low WHIRL

VHO
standalone inliner

IPA (interprocedural analysis)
PREOPT
LNO (Loop nest optimizer)

WOPT (global optimizer,
uses internally an SSA IR)

RVI1 (register variable
identification)

RVI2

CG

CG

Lower aggregates
Un-nest calls …

Lower arrays
Lower complex numbers
Lower HL control flow
Lower bit-fields …

Lower intrinsic ops to calls
All data mapped to segments
Lower loads/stores to final form
Expose code sequences for

constants, addresses
Expose #(gp) addr. for globals
…

code generation, including
scheduling, profiling support,
predication, SW speculation

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Multi-Level IR Overview

HIR SSA-HIR

AST

MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

7 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

AST, Symbol table

Hierarchical symbol table

follows nesting of scopes

1

2

3

1

globals (Level 0)

locals, level 1

8 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

AST Example: Open64 VH-WHIRL

9 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Symbol table

▪ Some typical fields in a symbol table entry

Field Name Field Type Meaning

name char * the symbol’s identifier

sclass enum { STATIC, ...} storage class

size int size in bytes

type struct type * source language data type

basetype struct type * source-lang. type of elements of a

constructed type

machtype enum { ... } machine type corresponding to

source type (or element type if

constructed type)

basereg char * base register to compute address

disp int displacement to address on stack

reg char * name of register containing the

symbol’s value

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Multi-Level IR Overview

HIR SSA-HIR

AST

MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

11 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

HIR - high-level intermediate representation

▪ A (linearized) control flow graph,

but level of abstraction close to AST

▪ loop structures and bounds explicit

▪ array subscripts explicit

→ suitable for data dependence analysis

and loop transformation / parallelization

▪ artificial entry node for the procedure

▪ assignments var = expr

▪ unassigned expressions, e.g. conditionals

▪ function calls

for v = v1 by v2 to v3 do

a[i] = 2

endfor

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Flattening 0:

From AST to HIR (or other CFG repr.)

HIR SSA-HIR

AST

MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

13 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Generating a CFG from AST

▪ Straightforward for structured programming languages

▪ Traverse AST and compose control flow graph recursively

▪ As in syntax-directed translation, but separate pass

▪ Stitching points: single entry, single exit point of control;

symbolic labels for linearization

CFG (stmt1; stmt2) =

CFG (while (expr) stmt) =

CFG(expr)

CFG(stmt)CFG(stmt1)

CFG(stmt2)

entry

exit

14 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

{

b = a + 1;

while (b>0)

b = b / 3;

print(b);

}

Creating a CFG from AST (2)

▪ Traverse AST

recursively,

compose CFG

▪ Example:

15 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

MIR – medium-level intermediate representation

▪ “language independent”

▪ control flow reduced to simple branches, call, return

▪ variable accesses still in terms of symbol table names

▪ explicit code for procedure / block entry / exit

▪ suitable for most optimizations

▪ basis for code generation

HIR SSA-HIR

AST

MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Flattening 1:

From HIR to MIR

HIR SSA-HIR

AST

MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

17 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

HIR→MIR (1): Flattening the expressions

By a postorder traversal of each expression tree in the CFG:

▪ Decompose the nodes of the expression trees (operators, ...)

into simple operations (ADD, SUB, MUL, ...)

▪ Infer the types of operands and results (language semantics)

▪ annotate each operation by its (result) type

▪ insert explicit conversion operations where necessary

▪ Flatten each expression tree (= partial order of evaluation)

to a sequence of operations (= total order of evaluation)

using temporary variables t1, t2, ... to keep track of data flow

▪ This is static scheduling!

May have an impact on space / time requirements

18 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

HIR→MIR (2): Lowering Array References (1)

▪ HIR:

t1 = a [i, j+2]

▪ the Lvalue of a [i, j+2] is

(on a 32-bit architecture)

(addr a) + 4 * (i * 20 + j + 2)

▪ MIR:

t1 = j + 2

t2 = i * 20

t3 = t1 + t2

t4 = 4 * t3

t5 = addr a

t6 = t5 + t4

t7 = *t6

19 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

HIR→MIR (2): Flattening the control flow graph

▪ Depth-first search of the control flow graph

▪ Topological ordering of the operations, starting with entry

node

▪ at conditional branches:

one exit fall-through, other exit branch to a label

▪ Basic blocks = maximum-length subsequences of

statements containing no branch nor join of control flow

▪ Basic block graph obtained from CFG by merging

statements in a basic block to a single node

20 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Control flow graph

▪ Nodes: primitive operations

(e.g., quadruples)

▪ Edges: control flow transitions

▪ Example:

1: (JEQZ, 5, 0, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

1: (JEQZ, 5, 0, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

21 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Basic block

A basic block is a sequence of textually consecutive operations

(e.g. MIR operations, LIR operations, quadruples)

that contains no branches (except perhaps its last operation)

and no branch targets (except perhaps its first operation).

▪ Always executed in same order from entry to exit

▪ A.k.a. straight-line code 1: (JEQZ, 5, 0, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B1

B2

B3

B4

22 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Basic block graph

▪ Nodes: basic blocks

▪ Edges: control flow transitions

1: (JEQZ, 5, 0, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

1: (JEQZ, 5, 0, 0)

2: (ASGN, 2, 0, A)

3: (ADD A, 3, B)

4: (JUMP, 7, 0, 0)

5: (ASGN, 23, 0, A)

6: (SUB A, 1, B)

7: (MUL, A, B, C)

8: (ADD, C, 1, A)

9: (JNEZ, B, 2, 0)

B1

B2

B3

B4

23 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

LIR – low-level intermediate representation

▪ in GCC: Register-transfer language (RTL)

▪ usually architecture dependent

▪ e.g. equivalents of target instructions + addressing modes

for IR operations

▪ variable accesses in terms of target memory addresses

HIR SSA-HIR

AST

MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

24 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

MIR→LIR: Lowering Variable Accesses

Seen earlier:

▪ HIR:
t1 = a [i, j+2]

▪ the Lvalue of a [i, j+2] is
(on a 32-bit architecture)

(addr a) + 4 * (i * 20 + j + 2)

▪ MIR:
t1 = j + 2
t2 = i * 20
t3 = t1 + t2
t4 = 4 * t3
t5 = addr a
t6 = t5 + t4
t7 = *t6

▪ Memory layout:

▪ Local variables relative to
procedure frame pointer fp

▪ j at fp – 4

▪ i at fp – 8

▪ a at fp – 216

▪ LIR:
r1 = [fp – 4]
r2 = r1 + 2
r3 = [fp – 8]
r4 = r3 * 20
r5 = r4 + r2
r6 = 4 * r5
r7 = fp – 216
f1 = [r7 + r6]

25 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Example: The LCC-IR

▪ LIR – DAGs (Fraser, Hanson ’95)

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Flattening 2:

From MIR to LIR

HIR SSA-HIR

AST

MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

27 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

MIR→LIR: Storage Binding

▪ mapping variables (symbol table items) to addresses

▪ (virtual) register allocation

▪ procedure frame layout implies addressing of formal

parameters and local variables relative to frame pointer fp,

and parameter passing (call sequences)

▪ for accesses, generate Load and Store operations

▪ further lowering of the program representation

28 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

MIR→LIR translation example

MIR:

a = a * 2

b = a + c [1]

LIR, bound to

storage locations:

r1 = [gp+8] // Load

r2 = r1 * 2

[gp+8] = r2 // Store

r3 = [gp+8]

r4 = [fp – 56]

r5 = r3 + r4

[fp – 20] = r5

LIR, bound to

symbolic registers:

s1 = s1 * 2

s2 = [fp – 56]

s3 = s1 + s2

Storage layout:

Global variable a addressed relative

to global pointer gp

local variables b, c relative to fp

29 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

MIR→LIR: Procedure call sequence (0)
[Muchnick 5.6]

Call preparation (LIR code)

Call instruction (LIR)

CALLER

Return instruction (LIR)

Procedure prologue (LIR)

Procedure epilogue (LIR)

CALLEE

Cleanup after return

MIR

Call

operation

30 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

MIR→LIR: Procedure call sequence (1)
[Muchnick 5.6]

MIR call instruction assembles arguments
and transfers control to callee:

▪ evaluate each argument (reference vs. value param.) and

▪ push it on the stack, or
write it to a parameter register

▪ determine code address of the callee
(mostly, compile-time or link-time constant)

▪ store caller-save registers (usually, push on the stack)

▪ save return address (usually in a register)
and branch to code entry of callee.

Caller frame
fp

sp

STACK

old PCsp

31 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Caller frame

MIR→LIR: Procedure call sequence (2)

Procedure prologue

executed on entry to the procedure

▪ save old frame pointer fp

▪ old stack pointer sp becomes new frame pointer fp

▪ determine new sp (creating space for local variables)

▪ save callee-save registers

old fp

fp

sp

sp

STACK

fp

old PC

32 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

old PC

MIR→LIR: Procedure call sequence (3)

Procedure epilogue

executed at return from procedure

▪ restore callee-save registers

▪ put return value (if existing) in appropriate place (reg/stack)

▪ restore old values for sp and fp

▪ branch to return address (pop old PC)

Caller cleans up upon return:

▪ restore caller-save registers

▪ use the return value (if applicable)

Caller frame

old fp

fp

sp

sp

STACK

fp

old PCsp

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

From Trees to DAGs:

Common Subexpression

Elimination (CSE)

E.g., at MIR→LIR Lowering

34 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

From Trees to DAGs:

Local CSE (Common Subexpression Elimination)

35 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Local CSE on MIR produces a MIR DAG

1. c = a

2. b = a + 1

3. c = 2 * a

4. d = – c

5. c = a + 1

6. c = b + a

7. d = 2 * a

8. b = c ac :2 1

addb :mul

negd : add

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Flattening 3:

From LIR to VLIR

HIR SSA-HIR

AST

MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

37 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

LIR→VLIR: Instruction selection

▪ LIR has often a lower level of abstraction than most target

machine instructions (esp., CISC, or DSP-MAC).

▪ One-to-one translation LIR-operation to equivalent target

instruction(s) (“macro expansion”) cannot make use of more

sophisticated instructions

▪ Pattern matching necessary!

38 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

▪ Example for a SPARC-specific VLIR

LIR / VLIR: Register Allocation

int a, b, c, d;

c = a + b;

d = c + 1;

ldw a, r1

ldw b, r2

add r1, r2, r3

stw r3, addr c

ldw addr c, r3

add r3, 1, r4

stw r4, addr d

ldw a, r1

ldw b, r2

add r1, r2, r3

add r3, 1, r4

stw r4, addr d

add r1, r2, r3

add r3, 1, r4

If c not live

afterwards

If a, b already in regs

and d remains in reg

• Loads and stores can be very expensive in both time and energy on modern CPUs,

especially if not hitting in L1 cache → a lot can be gained by good register allocation.

• Register allocation needs to know about life spans of variables → program analysis

☺ Faster code

☺ Less energy use

☺ Shorter code

 Temporary loss of

memory consistency

39 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

On LIR/VLIR: Global register allocation

▪ Register allocation

▪ determine what values to keep in a register

▪ “symbolic registers”, “virtual registers”

▪ Register assignment

▪ assign virtual to physical registers

▪ Two values cannot be mapped to the same register if they

are alive simultaneously, i.e. their live ranges overlap

(depends on schedule).

40 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

On LIR/VLIR: Instruction scheduling

▪ Instruction scheduling reorders the instructions (LIR/VLIR)

(subject to precedence constraints given by dependences)

to minimize

▪ space requirements (# registers)

▪ time requirements (# CPU cycles)

▪ power consumption

▪ ...

41 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Remarks on IR design (1) [Cooper’02]

AST? DAGs? Call graph? Control flow graph? Program dep. graph? SSA? ...

▪ Level of abstraction is critical for implementation cost and opportunities:

▪ representation chosen affects the entire compiler

Example 1: Addressing for arrays and aggregates (structs)

▪ source level AST: hides entire address computation A[i+1][j]

▪ pointer formulation: may hide critical knowledge (bounds)

▪ low-level code: may make it hard to see the reference

→ “best” representation depends on how it is used

▪ for dependence-based transformations: source-level IR (AST, HIR)

▪ for fast execution: pointer formulation (MIR, LIR)

▪ for optimizing address computation: low-level repr. (LIR, VLIR, target)

42 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Remarks on IR Design (2)

Example 2: Representation for comparison&branch

▪ fundamentally, 3 different operations:

▪ compare → convert result to boolean → branch

combined in different ways by processor architects

▪ “best” representation may depend on target machine

▪ r7 = (x < y) cmp x y (sets CC) r7 = (x < y)

br r7, L12 brLT L12 [r7] br L12

→ design problem for a retargetable compiler

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Multi-Level IR,

Standard vs. SSA Form

HIR SSA-HIR

AST

MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

What is Static Single

Assignment (SSA) Form?

A Short Introduction
(Details will follow later)

45 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Example with SSA-LIR

▪ LIR:

s2 = s1

s4 = s3

s6 = s5

L1: if s2 > s6 goto L2

s7 = addr a

s8 = 4 * s9

s10 = s7 + s8

[s10] = 2

s2 = s2 + s4

goto L1

L2:

(adapted from Muchnick’97)

s21 = s1

s4 = s3

s6 = s5

s22 = f (s21, s23)

s22 > s6 ?

s7 = addr a

s8 = 4 * s9

s10 = s7 + s8

[s10] = 2

s23 = s22 + s4

Y N

B1

B2

B3

s2 is assigned (written, defined)

multiple times in the program text

(i.e., multiple static assignments)

After introducing one version

of s2 for each static definition

and explicit data-flow merger-

ops for different reaching

versions (phi nodes, f):

Static single assignment

(SSA) form

46 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Static Single Assignment (SSA) Form

Goal:

▪ increase efficiency of inter/intra-procedural analyses and optimizations

▪ speed up dataflow analysis

▪ represent def-use relations explicitly

Idea:

▪ Represent program as a directed graph of operations op

▪ Represent statements / quadruples / instructions as assignments

v = v' op v'' with v, v', v'' a variable / label / symbolic register /

temporary (edge) connecting operations

▪ SSA-Property:

There is only one position (statement, quadruple, instruction) in a

program/procedure defining a variable version v → static value

▪ Does not mean that v is computed only once at runtime:

Due to iteration / recursion, the program point may be executed more

than once with different dynamic values.

47 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

SSA Construction (1):

Value Numbering in a Single Basic Block

▪ Assign a distinct name (e.g. variable name + index)

to each static value computed in the block

▪ Can be done on-the-fly when constructing DAGs

(CSE, see Lecture 1)

▪ Makes local Def-Use chains explicit

▪ (See lecture on data-flow analysis)

▪ For several basic blocks: use (procedure-wide) unique indices

a = b + c;

b = a + c;

a = b * a;

…

a1 = b1 + c1 ;

b2 = a1 + c1 ;

a2 = b2 * a1 ;

…

Local value

numbering

48 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

SSA Construction (2) – Insert Phi nodes to

stitch DU-chains between blocks together

For different basic blocks X and Y both defining a variable v,

say vi in X and vj in Y, if non-empty paths X→+ Z and Y→+ Z exist in

the control flow graph to a common successor block Z containing a

use vk of v that is reached by both definitions,

with Z’ being the first common node on the two paths,

then a Phi node vk = f (vi , vj) must be inserted in Z’.

▪ In general, a Phi node in a block B has | Pred(B) | operands

→ Global value numbering

…

vi = … ;

…

…

vj = …;

…

vk = f (vi , vj);

…

X Y

Z’

…

… = … vk …

Z

49 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Algorithms for SSA Construction

▪ Standard algorithm by Cytron et al. 1989
(iterated dominance frontiers)

▪ See Muchnick, Section 8.11

▪ Other algorithms for SSA construction exist

▪ Optimize number of Phi nodes

▪ Standard transformations like constant folding, arithmetic
simplification, common subexpression elimination can also
reduce the number of Phi nodes.

▪ See the guest lectures by W. Löwe

R. Cytron et al.: Efficiently computing static single assignment form.

Proc. POPL’89, pp. 25-35, ACM, 1989.

Muchnick: Advanced Compiler Design and Implementation. Morgan Kaufmann,

1997, Section 8.11

50 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

SSA: Some ramifications…

▪ Array variables??

▪ Phi-node to copy entire array if only one element is written

▪ Use special array Phi operators

▪ Dynamically allocated objects??

▪ Example:

while (…) {

ptr = new Listitem();

ptr->next = list;

list = ptr;

}

▪ Different created Listitem fields can no longer be identified and named

statically

▪ Memory-SSA

▪ For target-level SSA form: Dependences between Load and Store

instructions through memory should be made explicit with special

memory-Phi nodes

51 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Converting from SSA back to standard IR

▪ Simply throwing away the indices and Phi nodes????

▪ No!

Optimizations on SSA representation may have created

overlaps of different static values of the same variable…

▪ Example:

a = …op1…;

b = a;

a = …op2… ;

c = a + b ;

a1 = …op1…;

b1 = a 1 ;

a2 = …op2… ;

c1 = a2 + b1 ;

construct

SSA

a1 = …op1…;

a2 = …op2… ;

c1 = a2 + a1 ;

optimize

on SSA

deconstruct

SSA ?

deconstruct

SSA

a = …op1…;

tmp27 = …op2… ;

c = tmp27 + a ;

52 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Summary (so far)

▪ Modern advanced compiler frameworks provide a
Multi-level IR

▪ Compilation flow = progressive lowering

☺ Program analyses and transformations can work on
the most appropriate level of abstraction

☺ Clean separation of compiler phases

 Compiler framework gets larger and slower

HIR SSA-HIR

AST

MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

Lowering:

Gradual loss of

source-level

information

Increasingly

target dependent

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Survey of Some

Compiler Frameworks

A (non-exhaustive) survey

with a focus on open-source

C/C++ compiler frameworks

(as far as time permits...)

54 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

LCC (Little C Compiler)

▪ Dragon-book style C compiler implementation in C

▪ Very small (20K Loc), well documented, well tested, widely used

▪ Open source: https://drh.github.io/lcc/

▪ Textbook A retargetable C compiler [Fraser, Hanson 1995]
contains complete source code

▪ One-pass compiler, fast

▪ C frontend (hand-crafted scanner and recursive descent parser)
with own C preprocessor

▪ Low-level IR

▪ Basic-block graph containing DAGs of quadruples

▪ No AST

▪ Interface to IBURG code generator generator

▪ Example code generators for MIPS, SPARC, Alpha, x86 processors

▪ Tree pattern matching + dynamic programming

▪ Few optimizations only

▪ local common subexpression elimination, constant folding

▪ Good choice for source-to-target compiling if a prototype is needed soon

55 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

GCC

▪ Gnu Compiler Collection (earlier: Gnu C Compiler)

▪ Compilers for C, C++, Fortran, Java, Objective-C, Ada …

▪ sometimes with own extensions, e.g. Gnu-C

▪ Open-source, developed since 1985

▪ Very large

▪ 3 IR formats (all language independent)

▪ GENERIC: tree representation for whole function (also statements)

▪ GIMPLE (simple version of GENERIC for optimizations)
based on trees but expressions in quadruple form.
High-level, low-level and SSA-low-level form.

▪ RTL (Register Transfer Language, low-level, Lisp-like – the traditional GCC-IR)
only word-sized data types; stack explicit; statement scope

▪ Many optimizations

▪ Many target architectures

▪ Since version 4.x (~2004) GCC has strong support for retargetable code generation

▪ Machine description in .md file

▪ Reservation tables for instruction scheduler generation

▪ Good choice if one has the time to get into the framework

▪ The compiler research community increasingly switches to LLVM instead

56 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Open64 / ORC Open Research Compiler

▪ Based on SGI Pro-64 Compiler for MIPS processor, written in C++,
went open-source in 2000

▪ Several tracks of development (Open64, ORC (ipf-orc.sourceforge.net), …)

▪ For Intel Itanium (IA-64) and x86 (IA-32) processors.
Also retargeted to x86-64, Ceva DSP, Tensilica, XScale, ARM …
”simple to retarget” (?)

▪ Languages: C, C++, Fortran95 (uses GCC as frontend),
OpenMP and UPC (for parallel programming)

▪ Industrial strength, with contributions from Intel, Pathscale, …

▪ 6-layer IR:

▪ WHIRL (VH, H, M, L, VL) – 5 levels of abstraction

▪ All levels semantically equivalent

▪ Each level is a lower level subset of the higher form

▪ and target-specific very low-level CGIR

▪ Many optimizations, many third-party contributed components

▪ Has been used in a number of research projects and also by industry,
e.g. in the Nvidia CUDA toolchain for part of the optimizations.

▪ Nowadays mostly replaced by LLVM
as the main research framework for 64-bit target compilation

57 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Open64 WHIRL C, C++ F95

Very High WHIRL
(AST)

front-ends
(GCC)

High WHIRL

Mid WHIRL

CGIR

Very Low WHIRL

Low WHIRL

VHO
standalone inliner

IPA (interprocedural analysis)
PREOPT
LNO (Loop nest optimizer)

WOPT (global optimizer,
uses internally an SSA IR)

RVI1 (register variable
identification)

RVI2

CG

CG

Lower aggregates
Un-nest calls …

Lower arrays
Lower complex numbers
Lower HL control flow
Lower bit-fields …

Lower intrinsic ops to calls
All data mapped to segments
Lower loads/stores to final form
Expose code sequences for

constants, addresses
Expose #(gp) addr. for globals
…

code generation, including
scheduling, profiling support,
predication, SW speculation

58 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

LLVM https://llvm.org

▪ ”Low-level virtual machine”

▪ Started ~2002 by C. Lattner and V. Adve from Univ. of Illinois at Urbana-Champaign

▪ Front-ends (Clang, GCC) for C, C++, Objective-C, Fortran, …

▪ Can be used for source-to-source compilation, but not designed for it

▪ One IR level: a LIR + SSA-LIR,

▪ linearized form, printable, shippable, but target-dependent

▪ ”LLVM instruction set”

▪ compiles to many target platforms

▪ x86, Itanium, ARM, Alpha, SPARC, PowerPC, Cell SPE, RISC-V, …

▪ And to low-level C

▪ Link-time interprocedural analysis and optimization framework
for whole-program analysis

▪ JIT support available for x86, PowerPC

▪ Open source

▪ Many subprojects

▪ e.g. clang, polly, MLIR, runtime libraries (C, C++, OpenMP, OpenCL), ...

▪ Today the most common research compiler platform

▪ 2012 ACM Software System Award

More in the lab intro ...

C, C++, ObjC,

CUDA, SYCL,

OpenCL, ...

Clang

AST

LLVM

IR

Machine

IR
Asm

59 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Domain-Specific Compiler Frameworks

For example, the compilers for

▪ Halide (DSL for image processing)

▪ Tensor Comprehensions (DSL for linear algebra)

▪ TensorFlow (DSL for Machine learning)

▪ OpenModelica (DSL for Cyberphysical system modeling)

▪ SkePU (DSL for data-parallel computing using skeletons)

▪ Polyhedral compilation (for DSLs for loop nests accessing
multidimensional dense arrays with affine subscript expressions)

▪ ...

DSLs may exist stand-alone (e.g. Modelica) or be embedded in
general-purpose languages (e.g. SkePU).

DSL compilers often implement domain-specific optimizations
leveraging domain-specific restrictions of program semantics that
may not be applicable in general-purpose programming languages.

60 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

MLIR https://mlir.llvm.org

▪ Open-source compiler infrastructure project under LLVM

▪ Meta-IR (IR construction kit) to support DSL compilation atop LLVM

▪ Customizable IR with only few concepts built-in:

▪ Namespace

▪ Operations (no fixed set) and basic blocks

▪ Values

▪ Types known at compile-time

▪ Attributes

▪ IR customization → MLIR dialects

▪ Different abstraction levels (dialects) can co-exist

▪ Reuse of MLIR tool infrastructure, e.g. parser (likewise customized)

▪ Dialect = grouped abstractions (rules and semantics)
for some domain (DSL), IR level, or target architecture (e.g. GPU, FPGA)

▪ declarative specification of custom operations with types, parsing, semantics...
specified in MLIR’s Operation Description Specification Language (ODS)

▪ Predefined dialects (~20): Standard, SCF (structured control flow), LinAlg
(linear algebra), Affine (polyhedral representation), Stencil (iterative application of
a stencil kernel), F18 (FORTRAN), ...; the LLVM dialect models LLVM-IR (i.e., LIR)

▪ Higher-level dialects are lowered to lower-level ones, eventually to LLVM

▪ Lowering strategies and code generation included for predefined dialects

62 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

MLIR Example:
Lowering

%0 = linalg.matmul(%A, %B, %C) // linalg dialect

affine.for %i = 0 to %N // affine dialect

affine.for %j = 0 to %N

affine.for %k = 0 to %N {

%0 = affine.load %C[%i,%j] : memref<?x?xf32>

%1 = affine.load %C[%i,%k] : memref<?x?xf32>

%2 = affine.load %C[%k,%j] : memref<?x?xf32>

%3 = std.mulf %1,%2

%4 = std.addf %3,%0

affine.store %4,%C[%i,%j] : memref<?x?xf32>

}

lowered to

%s = constant 1 : index // scf dialect

for %i = 0 to %N step %S

for %j = 0 to %N step %S

for %k = 0 to %N step %S {

%0 = load %C[%i,%j] : memref<?x?xf32>

%1 = load %C[%i,%k] : memref<?x?xf32>

%2 = load %C[%k,%j] : memref<?x?xf32>

%3 = std.mulf %1,%2

%4 = std.addf %3,%0

store %4,%C[%i,%j] : memref<?x?xf32>

}

lowered to

MLIR tutorial, mlir.llvm.org

Example source:

L. Chelini: Abstraction Raising in

General-Purpose Compilers.

PhD thesis, TU Eindhoven, 2021

MLIR allows mixing

levels of abstraction

• Easy dialect-to-dialect

lowering

• Operations from

different dialects

can mix in same IR

• Lowering from “A” to “D”

may skip “B” and “C”

• Avoid lowering too early

and losing information

• Do compiler analyses at

most suitable level of

abstraction

63 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Source-to-Source compiler frameworks

▪ Cetus (by Purdue University) https://engineering.purdue.edu/Cetus/

▪ C / OpenMP source-to-source compiler written in Java.

▪ Open source

▪ ROSE (by Lawrence Livermore National Labs) http://rosecompiler.org

▪ C++, C, Fortran, UPC, OpenMP source-to-source compiler

▪ AST representation

▪ Open source (but commercial frontend in binary form)

▪ Very complex, nontrivial to install

▪ Mercurium (by Barcelona Supercomputing Centre) https://pm.bsc.es/mcxx

▪ C++, C, Fortran, OmpSs source-to-source compiler

▪ AST representation

▪ Extension by writing compiler phases

▪ Open source

▪ Clang

▪ C++ LLVM frontend, can be (mis-)used for source-to-source translation

▪ Not designed for advanced source-to-source translation

▪ Polyhedral compilation: Polly (for LLVM), PLUTO, CLoog, MIT Tiramisu, ...

▪ Tools and generators

▪ TXL source-to-source transformation system

▪ ANTLR frontend generator ...

64 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

More frameworks (mostly historical) …

▪ Some influential compiler frameworks of the 1990s/2000s

▪ SUIF Stanford university intermediate format,
https://suif.stanford.edu

▪ Trimaran (for instruction-level parallel processors)
https://trimaran.org

▪ VEX compiler (VLIW code generation)

▪ Polaris (Fortran) UIUC

▪ Jikes RVM (Java) IBM

▪ Soot (Java)

▪ GMD Toolbox / Cocolab Cocktail™ compiler generation tool
suite

▪ CoSy

▪ and many others …

▪ And many more e.g. for the embedded domain …

65 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Homework

▪ In preparation for tomorrow’s lecture on control-flow analysis,

recapitulate Depth-First Search from the DFS slide set

available on the course web page.

▪ If necessary, read up in

▪ textbook ”Introduction to Algorithms” by Cormen et al.,

or any other good algorithms textbook covering graph algorithms;

▪ or in Section 7.2 of Muchnick’s book ”Advanced Compiler Design

and Implementation”, Morgan Kaufmann 1997

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

APPENDIX

More on compiler frameworks

67 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

VEX Compiler

▪ VEX: ”VLIW EXample”

▪ Generic clustered VLIW Architecture and Instruction Set

▪ From the book by Fisher, Faraboschi, Young:

Embedded Computing, Morgan Kaufmann 2005

▪ www.vliw.org/book

▪ Developed at HP Research

▪ Based on the compiler for HP/ST Lx (ST200 DSP)

▪ Compiler, Libraries, Simulator and Tools

available in binary form from HP for non-commercial use

▪ IR not accessible, but CFGs and DAGs can be dumped or visualized

▪ Transformations controllable by options and/or #pragmas

▪ Scalar optimizations, loop unrolling, prefetching, function inlining, …

▪ Global scheduling (esp., trace scheduling),

but no software pipelining

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

CoSy

A commercial compiler framework

(formerly, www.ace.nl)

69 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Traditional Compiler Structure

▪ Traditional compiler model: sequential process

▪ Improvement: Pipelining

(by files/modules, classes, functions)

▪ More modern compiler model with shared symbol table and IR:

Lexer Parser
Semant.
Analysis

Optimizer
Code
generator

text code

Lexer Parser
Semant.
Analysis

Optimizer
Code
generator

text code

Symbol table

Intermediate representation (IR)

tokens tree IR IR

Data fetch/store

Coordination
data flow

70 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

A CoSy Compiler with
Repository-Architecture

Lexer

Parser

Semantic
analysis

Optimizer

Transformation

Codegen

“Blackboard architecture”

“Engines”
(compiler tasks,
phases)

Common
intermediate representation
repository

71 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Engine

▪ Modular compiler building block

▪ Performs a well-defined task

▪ Focus on algorithms, not compiler configuration

▪ Parameters are handles on the underlying common IR repository

▪ Execution may be in a separate process or as subroutine call -

the engine writer does not know!

▪ View of an engine class:

the part of the common IR repository that it can access

(scope set by access rights: read, write, create)

▪ Examples: Analyzers, Lowerers, Optimizers, Translators, Support

72 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Composite Engines in CoSy

▪ Built from simple engines or from other composite engines

by combining engines in interaction schemes

(Loop, Pipeline, Fork, Parallel, Speculative, ...)

▪ Described in EDL (Engine Description Language)

▪ View defined by the joint effect of constituent engines

▪ A compiler is nothing more than a large composite engine

ENGINE CLASS compiler (IN u: mirUNIT) {

PIPELINE

frontend (u)

optimizer (u)

backend (u)

}

73 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

73

Optimizer
II

Parser

Optimizer
I

Generated
access layer

Logical view

Generated Factory

A CoSy Compiler

Logical view

74 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Example for CoSy EDL
(Engine Description Language)

▪ Component classes (engine class)

▪ Component instances (engines)

▪ Basic components
are implemented in C

▪ Interaction schemes (cf. skeletons)
form complex connectors
▪ SEQUENTIAL

▪ PIPELINE

▪ DATAPARALLEL

▪ SPECULATIVE

▪ EDL can embed automatically
▪ Single-call-components into

pipes

▪ p<> means a stream of p-items

▪ EDL can map their protocols to
each other (p vs p<>)

ENGINE CLASS optimizer (procedure p)

{

ControlFlowAnalyser cfa;

CommonSubExprEliminator cse;

LoopVariableSimplifier lvs;

PIPELINE cfa(p); cse(p); lvs(p);

}

ENGINE CLASS compiler (file f)

{ ….

Token token;

Module m;

PIPELINE // lexer takes file, delivers token stream:

lexer(IN f, OUT token<>);

// Parser delivers a module

parser(IN token<>, OUT m);

sema(m);

decompose(m, p<>);

// here comes a stream of procedures

// from the module

optimizer(p<>);

backend(p<>);

}

75 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Evaluation of CoSy

▪ The outer call layers of the compiler are generated from view description

specifications

▪ Adapter, coordination, communication, encapsulation

▪ Sequential and parallel implementation can be exchanged

▪ There is also a non-commercial prototype
[Martin Alt: On Parallel Compilation. PhD thesis, 1997, Univ. Saarbrücken]

▪ Access layer to the repository must be efficient

(solved by generation of source code for access macros)

▪ Because of views, a CoSy-compiler is very simply extensible

▪ That's why it is expensive

▪ Reconfiguration of a compiler within an hour

	Slide 1: Multi-Level Intermediate Representations Local CSE, DAGs, Lowering Call Sequences Survey of some Compiler Frameworks
	Slide 2: Compiler Flow
	Slide 3: Compiler Flow
	Slide 4: Multi-Level IR
	Slide 5: Example: WHIRL (Open64 Compiler)
	Slide 6: Multi-Level IR Overview
	Slide 7: AST, Symbol table
	Slide 8: AST Example: Open64 VH-WHIRL
	Slide 9: Symbol table
	Slide 10: Multi-Level IR Overview
	Slide 11: HIR - high-level intermediate representation
	Slide 12: Flattening 0: From AST to HIR (or other CFG repr.)
	Slide 13: Generating a CFG from AST
	Slide 14: Creating a CFG from AST (2)
	Slide 15: MIR – medium-level intermediate representation
	Slide 16: Flattening 1: From HIR to MIR
	Slide 17: HIRMIR (1): Flattening the expressions
	Slide 18: HIRMIR (2): Lowering Array References (1)
	Slide 19: HIRMIR (2): Flattening the control flow graph
	Slide 20: Control flow graph
	Slide 21: Basic block
	Slide 22: Basic block graph
	Slide 23: LIR – low-level intermediate representation
	Slide 24: MIRLIR: Lowering Variable Accesses
	Slide 25: Example: The LCC-IR
	Slide 26: Flattening 2: From MIR to LIR
	Slide 27: MIRLIR: Storage Binding
	Slide 28: MIRLIR translation example
	Slide 29: MIRLIR: Procedure call sequence (0) [Muchnick 5.6]
	Slide 30: MIRLIR: Procedure call sequence (1) [Muchnick 5.6]
	Slide 31: MIRLIR: Procedure call sequence (2)
	Slide 32: MIRLIR: Procedure call sequence (3)
	Slide 33: From Trees to DAGs: Common Subexpression Elimination (CSE)
	Slide 34: From Trees to DAGs: Local CSE (Common Subexpression Elimination)
	Slide 35: Local CSE on MIR produces a MIR DAG
	Slide 36: Flattening 3: From LIR to VLIR
	Slide 37: LIRVLIR: Instruction selection
	Slide 38: LIR / VLIR: Register Allocation
	Slide 39: On LIR/VLIR: Global register allocation
	Slide 40: On LIR/VLIR: Instruction scheduling
	Slide 41: Remarks on IR design (1) [Cooper’02]
	Slide 42: Remarks on IR Design (2)
	Slide 43: Multi-Level IR, Standard vs. SSA Form
	Slide 44: What is Static Single Assignment (SSA) Form? A Short Introduction (Details will follow later)
	Slide 45: Example with SSA-LIR
	Slide 46: Static Single Assignment (SSA) Form
	Slide 47: SSA Construction (1): Value Numbering in a Single Basic Block
	Slide 48: SSA Construction (2) – Insert Phi nodes to stitch DU-chains between blocks together
	Slide 49: Algorithms for SSA Construction
	Slide 50: SSA: Some ramifications…
	Slide 51: Converting from SSA back to standard IR
	Slide 52: Summary (so far)
	Slide 53: Survey of Some Compiler Frameworks
	Slide 54: LCC (Little C Compiler)
	Slide 55: GCC
	Slide 56: Open64 / ORC Open Research Compiler
	Slide 57: Open64 WHIRL
	Slide 58: LLVM https://llvm.org
	Slide 59: Domain-Specific Compiler Frameworks
	Slide 60: MLIR https://mlir.llvm.org
	Slide 62: MLIR Example: Lowering
	Slide 63: Source-to-Source compiler frameworks
	Slide 64: More frameworks (mostly historical) …
	Slide 65: Homework
	Slide 66: APPENDIX
	Slide 67: VEX Compiler
	Slide 68: CoSy
	Slide 69: Traditional Compiler Structure
	Slide 70: A CoSy Compiler with Repository-Architecture
	Slide 71: Engine
	Slide 72: Composite Engines in CoSy
	Slide 73: A CoSy Compiler
	Slide 74: Example for CoSy EDL (Engine Description Language)
	Slide 75: Evaluation of CoSy

