R
DF00100 Advanced Compiler Construction :5" A

TDDC86 Compiler optimizations and code generation .’% j
%,
"Nos s

Optimization and Parallelization
of Sequential Programs

Lecture 7

Christoph Kessler

Outline

e

JQ"“’\ =3

Towards (semi-)automatic parallelization of sequential programs
m Data dependence analysis for loops
m Some loop transformations

e Loop invariant code hoisting, loop unrolling,
loop fusion, loop interchange, loop blocking and tiling

m Static loop parallelization
B Run-time loop parallelization
e Doacross parallelization, Inspector-executor method

IDA / PELAB
Li"kf’P;"g gnivefSity m Speculative parallelization (as time permits)
weden
m Auto-tuning (later, if time)
Christoph Kessler, IDA,
Linképings universitet, 2014.
C.Kessler, IDA. Linképil i i 2
. SR . SR
Foundations: Control and Data Dependence ab; Foundations: Control and Data Dependence ab;
% %
a,'ch uﬂ\““ a,'ch uﬂ\““
m Consider statements S, T in a sequential program (S=T possible) u pata dependence S > T,) Example:
o Scope of analysis is typically a function, i.e. intra-procedural analysis if statement S may execute (dynamically) before T SIZ=:
!) and both may access the same memory location ’
e Assume that a control flow path S ... T'is possible and at least one of these accesses is a write B

e Can be done at arbitrary granularity (instructions, operations,
statements, compound statements, program regions)

Relevant are only the read and write effects on memory
(i.e. on program variables) by each operation,
and the effect on control flow

Example:
m Control dependence S > T, Stif (.. {
if the fact whether T is executed may depend on S
(e.g. condition) iTE
o Implies that relative execution order S > T
must be preserved when restructuring the program }

o Mostly obvious from nesting structure in well-structured programs,
but more tricky in arbitrary branching code (e.g. assembler code)

o Means that execution order ”S before T” must
be preserved when restructuring the program

In general, only a conservative over-estimation
can be determined statically

flow dependence: (RAW, read-after-write)
» S may write a location z that T may read
anti dependence: (WAR, write-after-read)
» S may read a location x that T may overwrites
output dependence: (WAW, write-after-write)
» both S and T may write the same location

(flow dependence)

C_Kessler, IDA, Linkspil jversi 3 . Kessler, IDA. Linkéol _ .
Dependence Graph 4% Why Loop Optimization and Parallelizatioigey;

m (Data, Control, Program) Dependence Graph:
Directed graph, consisting of all statements as vertices
and all (data, control, any) dependences as edges.

control dependence by control flow: ,5°S,

Sy if (e) goto S3 data dependence:

8 ae flow / true dependence: S; &/ S,

S0 b+axc S5 <1 Sy and 3b: S; writes b, Sy reads b
Sy cbx [

Ss: bex+ f

anti-dependence: S5 & S,
S; <18y and dc: S; reads ¢, S, writes ¢

output dependence: S; §° Ss

S;3 <S5 and 3b : S; writes b, S5 writes b
S

Loops are a promising object for program optimizations,
including automatic parallelization:

m High execution frequency
e Most computation done in (inner) loops

e Even small optimizations can have large impact
(cf. Amdahl's Law)

m Regular, repetitive behavior

e compact description

e relatively simple to analyze statically
m Well researched

C.Kessler, IDA, Linkopil i i [}

",

Re

Loop Optimizations — General Issues

;“"m I

® Move loop invariant computations out of loops
® Modify the order of iterations or parts thereof

Goals:

B Improve data access locality

m Faster execution

m Reduce loop control overhead

® Enhance possibilities for loop parallelization or vectorization

Only transformations that preserve the program semantics (its
input/output behavior) are admissible

m Conservative (static) criterium: preserve data dependences
m Need data dependence analysis for loops

C. Kessler, IDA,_ Linkopil i i vé

g9t
DF00100 Advanced Compiler Construction 5’

TDDC86 Compiler optimizations and code generation

P
o 55

05

Data Dependence Analysis
for Loops

A more formal introduction

Christoph Kessler, IDA,
Link3pings universitet, 2014.

.) TR TR
Data Dependence Analysis — Overview 1&&; Precedence relation between statements aa Y
® Important for loop optimizations, vectorization and parallelization,
instruction scheduling, data cache optimizations S statically (textually) precedes S, S| pred S,
m Conservative approximations to disjointness of pairs of memory accesses
o weaker than data-flow analysis) dynamically precedes S, S <8,
e but generalizes nicely to the level of individual array element
® Loops, loop nests Within loops, loop nests: pred # <«
o |teration space
o Array subscripts in loops S1is+0
¢ Index space for i from 1 to n do
® Dependence testing methods Sy s < s+ali]
m Data dependence graph Ss: "["} —s
m Data + control dependence graph od
e Program dependence graph
C.Kessler, IDA, Link&pil i i 9 C. Kessler. IDA. Linképi N . 10
TR TR
Data Dependence Graph fjt:g Loop Iteration Space fjtjf

m Data dependence graph for straight-line code ("basic
block”, no branching) is always acyclic, because relative
execution order of statements is forward only.

m Data dependence graph for a loop:

e Dependence edge S=>T if a dependence may exist for
some pair of instances (iterations) of S, T

e Cycles possible
e Loop-independent versus loop-carried dependences

Example: '
o gx o a s g N loop-carried
for (i=1; i<n; 1i++) { W
a1 . P - KhrIs1 ' o s 11 .
S1: alfil = blil + ali-11;
S2: bli]l = alil

ssuming we know statically

=)

at arrays a and b do not intersect)

Beyond basic blocks: pred # <

Canonical loop nest: (HIR code)

for i, from 1 to n; do
for i, from 1 to n, do

carried
at level

for i; from 1 to n; do =555
Su(ityoosit) : Alin,2%15] 4 Blinyis] +1 @

.S‘:(l’l,...,l']\-) : B[ig,i3+f4] —2 % A[il,Z*i3]

Iteration space: ItS = [l..n] % [L.m] X ... x [L..ng]

(the simplest case: rectangular, static loop bounds)

Ilteration vector 7 = (iy,...,it) € ItS

C.Kessler, IDA, Linkopil i i 12

f‘wu%a f‘wu%a
Example b\ l‘é Loop Normalization pA l‘é
s o s o
for i from 2 to 9 do ﬁf:;:}\ng(tf;ftzvvgosaitticiﬁg';e"gy Lot Given a loop of the form SN AN IS AE RN SR AR IS A
St X[l « Y] + Z[i] otherwise there might be further for 7 from L to U step S do \\ | g -
Sy Ali] + X[-1] + 1 dependences) I N\ l / /
od od P S S S S (S S A
i=2 i=3 i=4 i :
S C T o normalize the loop:

B] + Z[3] X[4] « Y[4] + Z[4]

X Y
S, ARl + X[1] + 1 AB] « X[2] + 1 A4 « X3l + 1

o lower bound 0 (C) resp. 1 (Fortran)
o step size +1

There is a loop-caried, forward, fiow dependence from S 1o 5. — update all occurrences of the loop counter 7 by i#S— S+ 1
Iteration space dependencegraph: = o 1 3 "3 1 5 5 7 '8 3§ for i from 1 to (U —L+S5)/S step 1 do
(Iterations unrolled) v ((xS=S+L) ...
Data dependence graph: @ od
I < ixS—S+L
C.Kessler, IDA. Linképil i i @ 13 C.Kessler IDA_L 14
- m,,%"\ - w,%"\
Dependence Distance and Direction be o Dependence Equation System be o
Lexicographic order on iteration vectors — dynamic execution order: One-dimensional array 4 accessed in & nested loops: Sio Al
S1({1y ey it)) <82 ({J1yeny i) I Syt Alg()].
either 5, pred S» and (i, ..., i) <iex (1, .., /i) Is there a dependence between S, (i) and S, (j) for some 7, € I1S?
or S1=8 and (i,...,ix)) <tex (J1s--sJk)
. . . X k . N L
distance vector d = [—7= (ji — i1, .., jx — it) typically f, g linear: /(7) = a°+,§1 air, - g(0) = b°+,§1 biiy,
direction vector dirv = sgn(j—1) = (sgn(j1 —i1), ..., sen(jr — ix)) o . .
in terms of symbols = < > < > ¥ Exist 7,/ € ZF with 1(7) = g(j), i.e., ao+lzl aiy = bm—]z1 byji, dep. equation|

ns or sy

Example: Sy ({i1,i2,13,1s)) & S2({i1,12,13,14))
distance vector d = (0,0,0,0), direction vector dirv = (=,=,=,=),
loop-independent dependence

Example: S>((i1,i2,i3,1a)) & S1({i1,i2,13 + i, is))
distance vector d = (0,0,2,0), direction vector dirv = (=,=,>,=),
loop-carried dependence (carried by i5-loop / at level 3)

subjectto 7,/ € 1S, ie.,

1<i<m, 1Zj<m,
: : iter. space constraints: iinear inequaiities|
I<ig<mp, 1< jp<m

= constrained linear Diophantine equation system — ILP (NP-complete)

C._Kessler, IDA. Linkopil 15 C.Kessler, IDA, Link&pil 16
f,,,., %e,% fa»s vm»%%\
Linear Diophantine Equations k¥ t:g Dependence Testing, 1: GCD-Test k¥ t}é
Often, a simple test is sufficient to prove independence: e.g

n
Z“./XJ=C
J=1

wheren>1, ¢, a;€Z, 3j:a;#0, x,€ZL

Example 1: x+4y=1
has infinitely many solutions, e.g.x=5and y = —1.

Example 2: 5x—10y =2
has no solution in Z: absolute term must be multiple of 5

Theorem:
3 a;x; =c has a solution iff ged(ay, ...,as)|c.
j=1

Proof: see e.g. [Zima/Chapman p. 143]

C.Kessler, IDA, Link&pil ki

[Banerjee’76], [Towle’76]:

gcd (O{a/,bl}\ / i(m*bz)
et A=

Example: for i from 1 to 4 do

S - Alil ¢ al3wi 5112
O - o a3xi—o5)+2

S0 al2xi+ 1]« 1.0/i
solutionto 2i+1 =3, — 5 exists in Z as gcd(3,2)[(—5—-1+3-2)

not checked whether such i, j existin {1,...,4}
C._Kessler, IDA. L 18

S5 B S5 B
. g . g K g L
For multidimensional arrays? De o Survey of Dependence Tests De o
"os e’ "os e’
subscript-wise test vs. linearized indexing ged test
fori fori . separability test (gcd test for special case, exact)
Spo A, 2] S A Alix(s1+1) Banerjee-Wolfe test [Banerjee’88] rational solution in /1S
Syt LA 2+ 1. Sy Al Alix(sp+1) 41
Delta-test [Goff/Kennedy/Tseng’91]
Moreover: Power test [Wolfe/Tseng’91]
Hierarchicai structuring of dependence tests [Burke/Cytron'se] Simple Loop Residue test [Maydan/Hennessy/Lam'91]
Fourier-Motzkin Elimination [Maydan/Hennessy/Lam’91]
Omega test [Pugh/Wonnacott’92]
C. Kessler, IDA,_ Linkopil i i 19 C. Kessler, IDA,_ Linkopil i i 20
c c f‘“ s, 1 ”"‘%%\
DF00100 Advanced Compiler Construction kY - = N s b,
TDDC86 Compiler optimizations and code generation %#bj Loop Optlmlzatlons - General Issues r’@%xm«‘..g

Loop Transformations
and Parallelization

Christoph Kessler, IDA,
Linkopings universitet, 2014.

m Move loop invariant computations out of loops
m Modify the order of iterations or parts thereof

Goals:

B Improve data access locality

m Faster execution

m Reduce loop control overhead

® Enhance possibilities for loop parallelization or vectorization

Only transformations that preserve the program semantics (its
input/output behavior) are admissible

m Conservative (static) criterium: preserve data dependences
® Need data dependence analysis for loops

C.Kessler, IDA, Link&pil i i 22

e
Some important loop transformations a:jt:g

B Loop normalization

Loop parallelization

Loop invariant code hoisting

Loop interchange

Loop fusion vs. Loop distribution / fission
Strip-mining / loop tiling / blocking vs. Loop linearization
Loop unrolling, unroll-and-jam

Loop peeling

Index set splitting, Loop unswitching
Scalar replacement, Scalar expansion
Later: Software pipelining

More: Cycle shrinking, Loop skewing, ...

C.Kessler, IDA, Link&pil 23

4
e

5
9;»"
ey o 315

Loop Invariant Code Hoisting

,

® Move loop invariant code out of the loop

o Compilers can do this automatically if they can statically
find out what code is loop invariant

tmp=c/d;
|:> for (i=0; i<10; i++)

afi] = b[i] + tmp;

e Example:
for (i=0; i<10; i++)
ali] = b[i] +c/d;

C.Kessler, IDA, Linkopil i i 24

e e
Loop Unrolling %g:; Loop Interchange (1) ‘*%.,,;l;;
u Loop unrolling m For properly nested loops
o Can be enforced with compiler options e.g. —funroll=2 (statements in innermost loop body only)
o Example: e Example 1:
for (i=0; i<50; i++) { for (i =0; i<50; i+=2) { for (j=0; j<M; j++) for (i=0; i<N; i++)
ali] = b; ali] = b[il; for (i=0; i<N; i++) :> for (j=0; j<M: j++)
} afi+1] = b[i+1]; a[i][J']_=0-0; alil[j1=0.0;
} a[0][0] 4 . row-wise a[0][0] J t a[0][M-1]
© Reduces loop overhead (total # comparisons, branches, increments) i .l 'l .l '1] ztg_fsgzg i =
© Longer loop body may enable further local optimizations il in C, Java « = T 7 few iteration[order
(e.g. common subexpression elimination, 11 H
register allocation, instruction scheduling, avvror old iteration order AN0)

using SIMD instructions)

® longer code
- Exercise: Formulate the unrolling rule for statically unknown upper loop limit

e Can improve data access locality in memory hierarchy
(fewer cache misses / page faults)

Foundations :jb :jb
Loop-Carried Data Dependences i Loop Interchange (2) ol

m Recall: Data dependence S > T,
if operation S may execute (dynamically) before operation T
and both may access the same memory location B 55 g
and at least one of these accesses is a write == =2

S z=...;

e |n general, only a conservative over-estimation can be determined
statically.

m Data dependence S> T is called loop carried by a loop L
if the data dependence S-> T may exist for instances of Sand T
in different iterations of L.

e Example: Iteration space: -

Ti
m
yn
ﬂ‘
£

190

L: for (i=1; i<N; i++) {
T: o= xi1;
S;: x[i]=..;

f@@'ﬁfﬁf‘

A
or

-> partial order between the operat|on mstances resp lteratlons

m Be careful with loop carried data dependences!
e Example 2:
for (j=1; j<M; j++)
for (i=0; i<N; i++)

for (i=0; i<N; i++)
for (j=1; j<M; j++)
afillil =...ali+110-11...; afillj] =...afi+1]-1]..-;

i)
i

Iteration

space: il Iteration (j,i) reads

A
I N st Iteration (i,j) reads
1| location a[i+1][j-1] that
1
1
4

location a[i+1][j-1],
that will be over-
written in a later
iteration (i+1,-1)

was written in an earlier | |
iteration, (i-1,j+1)

P

1 1

old iteration order new iteration orde

o Interchanging the loop headers would violate the partial iteration order
given by the data dependences

C.Kessler, IDA, Link&pil 27 C.Kessler, IDA, Link&pil 28
—e —e
Loop Interchange (3) ‘jbg Loop Fusion ‘jbg

m Be careful with loop-carried data dependences!

for (i=1; i<N; i++)
" for (j=1; j<M; j++)

~alili] =...al-10-11--.; afilf] =...a[i-110-11.. 5

e Example 3:
for (i=1; j<M; j++)

for (i=1; i<N; i++)

Iteration K »
space: Iteration (j,i) reads

location a[i-1][j-1] that

Iteration (i,j) reads
location a[i-7][j-1]
that was written in
= earlier iteration

e Horat (i-14-1)

new iteration order

was written in earlier
iteration (j-1,i-1)

old iteration order

e Generally: Interchanging loop headers is only admissible if loop-carried
dependences have the same direction for all loops in the loop nest

(all directed along or all agalnst the iteration order)
C. Kessler. IDA_Li

m Merge subsequent loops with same header
e Safe if neither loop carries a (backward) dependence
e Example:

for (i=0; i<N; i++) for (i= 0; i<N; i++){
afi]=...; ':> alil=...;

for (i=0; i<N; i++) Lo=alil;

For N sufficiently large, OK -

Read of a[f] still after
write of a[i], for all i

a[i] will no longer be in
the cache at this time

© Can improve data access locality

and reduces number of branches
C.Kessler, IDA_Linképil 30

S

e
¢

i‘s.,,h‘ , =

Loop Iteration Reordering

A transformation that raegr:
Aransicrmaten tnat reo!

without making any other changes,
is vaiid if the ioop carries no dependence.

Example: a a q
for (i=1; i<n; i++) !—Ioop carries a dependence, its
. X . iteration order must be preserved
for (j=1; j<m; j++)

for (k=1; k<r; k++)

S

e
¢

i‘s.,,h‘ , =

Loop Parallelization

A transformation that reorders the iteration
nsicrmation that recréers tne iteration

[
Q
Y

without making any other changes,
is vaiid if the ioop carries no dependence.

Example: a a q
for (i=1l; i<n;: i++) j-loop carries a dependence, its
for (j;1 .3 s $44) iteration order must be preserved

for (k=1; k<r; k++)

S: alil [31 (k] = ... alil[§-11[k] ... (=,<,=) S: alil (31 (k] = ... alil [3-1) (k] ... (=,<,=)
It is valid to convert a sequential loop to a parallel loop
if it does not carry a dependence.
Example:
for (i=1; i<n; i++) forall (i, 1, n, p)
S: b[i] = 2 * c[i]; b[i] = 2 * cl[i];
C. Kessler, IDA,_ Linkopil i i 31 C. Kessler, IDA,_ Linkopil i i 32
g\,,,m,% g\,,,,,w%%
Remark on Loop Parallelization Pe v Strip Mining / Loop Blocking / -Tiling a:jtj;

m Introducing temporary copies of arrays can remove some
antidependences to enable automatic loop parallelization

m Example:
for (i=0; i<n; i++)
afi] = a[i] + a[i+1];

m The loop-carried dependence can be eliminated:

for (=0; e i+
aold[i+1] = a[i+1];

for (i=0; i<n; i++)
afi] = a[i] + aold[i+1];

C.Kessler, IDA, Link&pil i i 33

for (1=0; i<n; i++)
alil = b[i] + cl[i];

| loop blocking with block size s

for (i1=0; il<n; il+=s) // loop over blocks
for (i2=0; i2<min(n-il,s); i2++) // loop within blocks
alil+i2] = b[il+i2] + c[il+i2];

Tiling = blocking in multiple dimensions + loop interchange

Reverse transformation: Loop linearization

C.Kessler, IDA, Link&pil i i 34

Tiled Matrix-Matrix Multiplication (1)

m Matrix-Matrix multiplication C=AxB
here for square (n x n) matrices C, A, B, with n large (~103):

©C = Xyyn Ay By forallij=1..n

m Standard algorithm for Matrix-Matrix multiplication
(here without the initialization of C-entries to 0):

for (i=0; i<n; i++) —
for (j=0; j<n; j++)
for (k=0; k<n; k++)
CI[ilfi] += Alil[k] * BIKI[i];

i
Good spatial locality on A, ¢}

Bad spatial locality on B
(many capacity misses)

C.Kessler, IDA, Link&pil i i 35

Tiled Matrix-Matrix Multiplication (2)

m Block each loop by block size S
(choose S so that a block of A, B, C fit in cache together
then interchange loops _ l_s_.

e

E

m Code after tiling:
for (ii=0; ii<n; ii+=S) P

for (jj=0; ji<n; jj+=S)

for (kk=0; kk<n; kk+=S)

for (i=ii; i <ii+S; i++) Good spatial locality

forA,Band C

for (j=ii; j <ii+S; j++)
for (k=kk; k < kk+S; k++)
CIil[i] += A[lIK] * BIKI[il;

C.Kessler, IDA, Linkopil i i 36

TR
; ; A
Remark on Locality Transformations B\ t:;

®m An alternative can be to change the data layout rather than
the control structure of the program

o Example: Store matrix B in transposed form,
or, if necessary, consider transposing it, which may pay off
over several subsequent computations

» Finding the best layout for all multidimensional arrays is
a NP-complete optimization problem
[Mace, 1988]

o Example: Recursive array layouts that preserve locality
» Morton-order layout
» Hierarchically tiled arrays
m In the best case, can make computations cache-oblivious

« e Bl erformance largely independent of cache size

BT
Loop Distribution (a.k.a. Loop Fission) i t:;

for (i=1; i<n; i++) {

S1: ali+1l] = bli-1] + cl[i];
S2: b[i] = alil * k;
S3: c[i] = bli] - 1;

}

1 Loop distribution

for (i=1; i<n; i++) {

S1: ali+l] = b[i-1] + cl[il;
S2: b[i] = alil * k;

}

for (i=1; i<mn; i++)

S3: cli] = bl[i] - 1;

Safe if all statements forming a SCC in the dependence graph
end up in the same loop.
Forward (loop-carried) dep’s are ok, but keep topological order.

+ often enables vectorlzatlon better cache utilization of each loop.

for i from 1 to N do

cli] + ali] + B[] for i from 1 to N do
od cli] « ali] + bli]
for j from 1to N do dli] + ali] * e[]]
d[j] « alj] *] fuse: od

od
find second ali] in the cachg

For array a large enough, oreven in a register

ali] will no longer be cached.

Safe if neither loop carries a (backward) dependence.

+ locality: can convert inter-loop reuse to intra-loop reuse
+ larger basic blocks
+ reduce loop overhead

C.Kessler, IDA, Link&pil i i 39

C.Kessler, IDA. Linképil 38
i ey
Loop Fusion fj Yi Loop Nest Flattening / Linearization fj Yi

Flattens a multidimensional iteration space to a linear space:

for i from O to n—1 do for k from O to m-n—1 do

for j from O to m — 1 do i kjm
iteration(i, /) linearize: e k%m
od iteration (7, /)
od od

+ larger iteration space, better for scheduling / load balancing

- overhead to reconstruct original iteration variables
may be reduced by using induction variables i, j
that are updated by accumulating additions instead of div and mod

C.Kessler, IDA, Link&pil i i 40

™
‘\f»s N

Loop Unrolling ‘jbg

",
Povos

for i from 1 to 100 step 4 do
ali] « ali] + b[i]
ali+1] « afi+1] + bi+1]
ali+2] « afi+2] + b[i+2]
ali+3] « afi+3] + b[i+3]
od

for i from 1 to 100 do
ali] «+ ali] + bli]
od

unroll by 4:

+ less overhead per useful operation
+ longer basic blocks for local optimizations
(local CSE, local reg.-allocation, local scheduling, SW pipelining)

—longer code

C.Kessler, IDA, Link&pil i i 41

™
‘\f»s N

Loop Unrolling with Unknown Upper Bound abf

Povos

i< 1
while i+3 < N do
alil < ali] + b[i]
for firom 1 ali+1] « afi+1] + bli+1]
ali] < ali] + bli] RS DR A T A
o unroll by 4: {’[i+3] — ali+3] + bli+3]
i i+ 4

od
while 7 < N de
ali] + ali] + bli]
i i+ 1
od
used e.g. in BLAS

C.Kessler, IDA, Linkopil i i 42

S

e
¢

%‘g"h 4 w“‘;

Loop Unroll-And-Jam

unroll the outer loop
and fuse the resulting inner loops:

for i from 1 to N step 2 do
for j from 1 to N do
alil < ali] + b[j]
ali+1] « afi+1] + b[J]
od
od

for i from 1 to N do
for j from 1 to N do
afi] + a[i] + b[j] unroll&am:
od
od

The same conditions as for loop interchange (for the two
innermost loops after the unrolling step) must hold
(for a formal treatment see [Allen/Kennedy’02, Ch. 8.4.1]).

+ increases reuse in inner loop

S

e
¢

%‘g"h 4 w“‘;

Loop Peeling

remove the first (or last) iteration of the loop

and clone the loop body for that iteration.
if N > | then
all] + (x+y)=b[1]
for i from 2 to N do
ali] < (x+y)*b[i]
od

for i from 1 to N do
ali] < (x+y)=b[i]
od

peel first iteration:

fi
(Test on trip count can be removed if N > 1 is statically known.)

+ can enable loop fusion

+ may extract conditionals handling boundary cases from the loop

— longer code
+ less overhead
C.Kessler, IDA, Linkdpil iversi 43 C_Kessler, IDA, Linkopil iversi 44
i e
Index Set Splittin éb Loop Unswitchin A
P g (ol P 9 if expression then

Divide the iteration space into two portions.

for i from 1 to 10 do

for i from 1 to 100 do ail « bli] + [

ali] « Bli] + c[i
if i > 10 then
d[i] + ali] + ali—10]
fi
od

od
for i from 11 to 100 do
ali] + bli] + 1]
dli] + dli] + ali—10
od

split after 10:

+ removes condition evaluation in every iteration
+ factors out the paraiieiizabie set of iterations

for i from 1 to 100 do

for i from 1 to 100 do ali] « ali] + b[i]

ali] « ali] + b]i] dfi] + 0
if expression then o od
: unswitch:
dli] + 0 else

fi for i from 1 to 100 do

od ali] « ali] + b[i]
od
fi

+ hoist loop-invariant control flow out of loop nest

]

+ no tacte no hrancheas in laon hodvy
+ NG 1515, NC Brantnes in 10op 0OAY

— larger basic blocks (see above), simpler software pipelining

- longer code
— longer code
C. Kessler, IDA, Linképii iversi 45 C. Kessler. IDA. Linkspi o 45
o ey
Scalar Replacement ‘jbg Scalar Expansion / Array Privatization ‘jbg

For (inner) loops accumulating a value in an array element
use a temporary scalar for the accumulator variable:

for i from 1 to N step 2 do
for i from 1 to N do 4 dli]
for j from 1 to N do for j from 1to N do

all] + ali] + b[j] scalar repl.: [1+ bj]
od od
od ali] « 1
od
+ keepl in a register all the time
+ 3aves many costly memory accesses o ali]

C.Kessler, IDA, Link&pil i i A7

promote a scalar temporary to an array to break a dependence cycle
ifN>1
allocate 7'[1..N]
for i from 1 to N do
1li] « ali] + b[j]
cli] « tli]+1

for i from 1 to N do
1« ali] + b[j]
cli] «+ t+1

od od

t < t'[N]//ift live on exi
fi

+ removes the loop-carried antidependence due to ¢

— can now parallelize the loop!

expand scalar 7:

- needs more array space
Loop must be countable, scalar must not have upward exposed uses.

May also be done conceptually only, to enable parallelization:

just create one private copy of / for every processor = array privatization
C. Kessler IDA_Li i

S5 B
. e . g 4
Idiom recognition and algorithm replacem;&;f

Mo s

Traditional loop parallelization fails for loop-carried dep. with distance 1:

50: s = 0; C. Kessler: Pattern-driven
for (i=1; i<n; 1i++) automatic parallelization.
Sl s =s + alil; Scientific Programming,
1996.
52: alo] : € [0]' i X A. Shafiee-Sarvestani, E.
for (i=1; i<n; i++) Hansson, C. Kessler:
S3: ali] = ali-1] * b[i] + cIl[i]; Extensible recognition of

algorithmic patterns in DSP
programs for automatic
parallelization. Int. J. on
Parallel Programming, 2013

J Idiom recognition (pattern matching)

S1’: s = VSUM(all:n-1]1, 0);

S3’: al0:n-1] = FOLR(b[l:n-1], c[0:n-1], mul, add);

J Algorithm replacement

S1’': s = par_sum(a, 0, n, 0);
C. Kessler, IDA,_ Linkopil i i 49

R

DF00100 Advanced Compiler Construction :5" A

TDDC86 Compiler optimizations and code generation .’% £
A

05

Concluding Remarks

Limits of Static Analyzability

Outlook: Runtime Analysis and
Parallelization

Christoph Kessler, IDA,
Link3pings universitet, 2014.

o O

&
i&"»%x N«\‘g

Remark on static analyzability (1)

m Static dependence information is always a (safe)
overapproximation of the real (run-time) dependences

e Finding out the real ones exactly is statically undecidable!

e If in doubt, a dependence must be assumed
- may prevent some optimizations or parallelization

m One main reason for imprecision is aliasing, i.e. the program
may have several ways to refer to the same memory location

o Example: Pointer aliasing
void mergesort (int* a, intn)

How could a static analysis

o O

&
i&"»%x N«\‘g

Remark on static analyzability (2)

m Static dependence information is always a (safe)
overapproximation of the real (run-time) dependences

e Finding out the latter exactly is statically undecidable!

e If in doubt, a dependence must be assumed
- may prevent some optimizations or parallelization
m Another reason for imprecision are statically unknown valueg
that imply whether a dependence exists or not

e Example: Unknown dependence distance
/ value of K statically unknown

Loop-carried dependence

C_Kessler,

{ ..
mergesort (a, n/2);
mergesort (a + n/2, n-n/2);

Linkdpings universitef, 2

tool (e.g., compiler) know
that the two recursive
calls read and write

disjoint subarrays of a?

C_Kessler,

for (i=0; i<N; i++)

S: ali] = a[i] + a[KJ;

LinkSpings universitet, 52

if K<N.
Otherwise, the loop is
parallelizable.

Ty o,
§ kY f\eﬂ* g,
. . . - B DF00100 Advanced Compiler Construction
OUtIOOk' Runtlme Para"ellzatlon %‘aa £ TDDC86 Compiler optimizations and code generation P ‘%
Reinly piler op! 9 R
s s

Sometimes parallelizability cannot be decided statically.

if is_parallelizable(...)

forall 7 in [0..n-1] do

iteration(i);

od

else

for i from O to n— 1 do

iteration(i);

od

fi

The runtime dependence test is_parallelizable(...)

itself may partially run in parallel.
C.Kessler, IDA, Link&pil i i 53

// parallel version of the loop

// sequential version of the loop

Run-Time Parallelization

Christoph Kessler, IDA,
Linkopings universitet, 2014.

¥
E

Goal of run-time parallelization

,,m.u%
g‘) %,
s

m Typical target: irregular loops
for (i=0; i<n; i++)
ali] = f(alg(i)], alh()], ...);

e Array index expressions g, h... depend on run-time data

o |terations cannot be statically proved independent
(and not either dependent with distance +1)

m Principle:
At runtime, inspect g, h ... to find out the real dependences
and compute a schedule for partially parallel execution

e Can also be combined with speculative parallelization

¥
E

Overview

,,m.u%
g‘) %,
s

® Run-time parallelization of irregular loops
o DOACROSS parallelization
o Inspector-Executor Technique (shared memory)
o Inspector-Executor Technique (message passing) *
® Privatizing DOALL Test *
m Speculative run-time parallelization of irregular loops *
e LRPD Test *
m General Thread-Level Speculation
e Hardware support *

* = not covered in this course. See the references.

C.Kessler, IDA, Linkdpil iversi 55 C_Kessler, IDA, Linkopil iversi 56
= =
DOACROSS Parallelization fjt:f Inspector-Executor Technique (1) ,fjt:g

m Useful if loop-carried dependence distances are unknown, but often > 1
m Allow independent subsequent loop iterations to overlap
m Bilateral synchronization between really-dependent iterations

Example:

for (i=0; i<n; i++)

afil = f(alg@] ...)

sh float aold[n];

sh flag donel[n]; //flag (semaphore) array

foralliin 0..n-1 { // spawn n threads, one per iteration|
done|[n] = 0;
aold[i] = a[i]; // create a copy

for_afll(i ;r; 0.._;1—1 {_t// sglaévn n[thz_e)a]d)s, one per iteration
if (9(i) <i) wait until done[g(i)]);
afi] = f(a[(i)f---):

m Compiler generates 2 pieces of customized code for such loops:

m Inspector

e calculates values of index expression
by simulating whole loop execution

» typically, based on sequential version of the source loop Y/
(some computations could be left out)

computes implicitly the real iteration dependence graph

computes a parallel schedule as (greedy) wavefront traversal of the
iteration dependence graph in topological order

» all iterations in same wavefront are independent
» schedule depth = #wavefronts = critical path length

| set(done[i]); m Executor
ese afi] = f(aold[g(i)], ...); set doneli]; o follows this schedule to execute the loop
C_Kessler, IDA. Linkpil el 57 €. Kessler. IDA. Linkéol o 58

PR PR
Inspector-Executor Technique (2) fjt:g Inspector-Executor Technique (3) ,& i

= Source loop: m Example: i 0o |1 |2 |3 |4 |5

for (|=0, i<|’\; i++))] for (|=0‘ i<n; i++) a(i) 2 0 2 1 1 0

afil = f(alg()1,alh@)],...) alil=...a[g(i)] .. wiil o [1 Jo |2 {2 [+
m Inspector: g(i)<i? |no |yes |no |yes |yes |yes

m Executor:

int wf[n]; // wavefront indices

int depth = 0;
for (i=0; i<n; i++)
wili] = 0; //init.

for (i=0; i<n; i++) {
wili] = max (Wil g()) 1, wiL h())], ...) + 1;
depth = max (depth, wffi]);

}

m Inspector considers only flow dependences (RAW),
anti- and output dependences to be preserved by executor
i 5

C_Kessler, IDA, Linkdpil i

float aold[n]; // buffer array
aold[1:n] = a[1:n];
for (w=0; w<depth; w++)
forall (i, 0, n, #) if (wffi] ==w) {
a1 =(g() <i)? a[g(i)] : aold[g(i)];
... Il similarly, a2 for h etc.
alil]= f(a1,az2,...);
} iteration (flow) dependence graph
oA Linkéoinas universi o

10

Inspector-Executor Technique (4)

Problem: Inspector remains sequential — no speedup

Solution approaches:

B Re-use schedule over subsequent iterations of an outer loop
if access pattern does not change

e amortizes inspector overhead across repeated executions

m Parallelize the inspector using doacross parallelization
[Saltz,Mirchandaney’91]

m Parallelize the inspector using sectioning [Leung/Zahorjan'91]
e compute processor-local wavefronts in parallel, concatenatd
o trade-off schedule quality (depth) vs. inspector speed
e Parallelize the inspector using bootstrapping [Leung/Z.’91]

e Start with suboptimal schedule by sectioning,
use this to execute the |nspector - refined schedule

C. Kessler, IDA_ Lil

g9t
DF00100 Advanced Compiler Construction 5"

o 55

oo
§

TDDC86 Compiler optimizations and code generation
"os v

Thread-Level Speculation

Christoph Kessler, IDA,
Link3pings universitet, 2014.

A u,,,,%%\ A um,%%
Speculatively parallel execution by t’g TLS Example B t’g
a"”cx uﬂ\““ a"”cx uﬂ\““
® For automatic para”elization of Sequential code where Code view Sequential thread view I'LS thread view
dependences are hard to analyze statically Ty Pt Non-speculaiive
m Works on a task graph met | —— | @)
. . . a=fl (T2)
e constructed implicitly and dynamically o W01 . AN
£20): o Speculative
H Speculate on: 200 || - TN
. . . | Return
e control flow, data independence, synchronization, values i ,'*“'“‘ b; value b
We focus on thread-level speculation (TLS) for CMP/MT processors. Retmrn valne b
Speculative instruction-level parallelism is not considered here. i
f1()
m Task: J,‘.:,‘,‘:m" main() 20 f1(
o statically: Connected, single-entry subgraph of the control-
flow graph | £20 Exploiting module-level
» Basic blocks, loop bodies, loops, or entire functions aind speculative parallelism
fmain (across function calls)
° dynamlca"y. Contlguous fragment Of dynarr“C InStrUCtlon Source: F. Warg: Techniques for Reducing Thread-Level Speculation Overhead
stream W|th|n static task reg|on entered at static task entry in Chip Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.
C_Kessler, IDA, Linkd C. Kessler. IDA. Linképi N N 64

T T
g ' §! g ' §!
Data dependence problem in TLS b\ t:g Speculatively parallel execution of tasks 3 t:g
g v s o
Original . .
thread m Speculation on inter-task control flow
o After having assigned a task,
predict its successor task and start it speculatively
Rb Ryg m Speculation on data independence
Wb X o For inter-task memory data (flow) dependences
. w) » conservatively: await write (memory synchronization, message)
g @
'g ' » speculatively: hope for independence and continue (execute the
3 @ load)
g (6) W
- % /a
© [C1 — m Roll-back of speculative results on mis-speculation (expensive)
Wb e When starting speculation, state must be buffered
Ra e Squash an offending task and all its successors, restart
m Commit speculative results when speculation resolved to correct
Source: F. Warg: Techniques for Reducing Thread-Level Speculation Overhead
in Chip Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006. e Taskis retlred
C. Kessler, IDA, Linkdpil iversi 65 C.Kessler, IDA, Linkspi 66

11

S5 B S5 B
. . AL . AL
Selecting Tasks for Speculation De o TLS Implementations De o

® Small tasks:
e too much overhead (task startup, task retirement)
o low parallelism degree
m Large tasks:
e higher misspeculation probability
e higher rollback cost

® many speculations ongoing in parallel may saturate the
resources

m Load balancing issues
e avoid large variation in task sizes
m Traversal of the program’s control flow graph (CFG)
e Heuristics for task size, control and data dep. speculation

m Software-only speculation
o forloops [Rauchwerger, Padua '94, '95]

m Hardware-based speculation
e Typically, integrated in cache coherence protocols

e Used with multithreaded processors / chip multiprocessors
for automatic parallelization of sequential legacy code

o If source code available, compiler may help e.g. with
identifying suitable threads

C. Kessler, IDA,_ Linkopil i i 67 C. Kessler, IDA,_ Linkopil i i 68
DF00100 Advanced Compiler Construction f@mw%’@ Some refe rences on Dependence Analys i;—séumb%a".
TDDC86 Compiler optimizations and code generation %‘q% a“j Loop optimizations and Transfo rmations ’&a,%wsw“f
m H. Zima, B. Chapman: Supercompilers for Parallel and Vector
Computers. Addison-Wesley / ACM press, 1990.
m M. Wolfe: High-Performance Compilers for Parallel Computing
Addison-Wesley, 1996.
Questions? m R. Allen, K. Kennedy: Optimizing Compilers for Modern

Christoph Kessler, IDA,
Linkopings universitet, 2014.

Architectures. Morgan Kaufmann, 2002.

Idiom recognition and algorithm replacement:

m C. Kessler: Pattern-driven automatic parallelization. Scientific
Programming 5:251-274, 1996.

m A. Shafiee-Sarvestani, E. Hansson, C. Kessler: Extensible
recognition of algorithmic patterns in DSP programs for
automatic paral-lelization. Int. J. on Parallel Programming,

¢ tcess B3 viopings univers 70

oLy,

iy
g
Some references on run-time parallelization a%ab;

"ag v

R. Cytron: Doacross: Beyond vectorization for multiprocessors. Proc. ICPP-1986

m D. Chen, J. Torrellas, P. Yew: An Efficient Algorithm for the Run-time Parallelization of DO-
ACROSS Loops, Proc. IEEE Supercomputing Conf., Nov. 2004, IEEE CS Press, pp. 518-527

® R. Mirchandaney, J. Saltz, R. M. Smith, D. M. Nicol, K. Crowley: Principles of run-time suppor}
for parallel processors, Proc. ACM Int. Conf. on Supercomputing, July 1988, pp. 140-152.

m J. Saltz and K. Crowley and R. Mirchandaney and H. Berryman: Runtime Scheduling and
Execution of Loops on Message Passing Machines, Journal on Parallel and Distr. Computing|
8 (1990): 303-312.

m J. Saltz, R. Mirchandaney: The preprocessed doacross loop. Proc. ICPP-1991 Int. Conf. on
Parallel Processing.

m 8. Leung, J. Zahorjan: Improving the performance of run-time parallelization. Proc. ACM
PPoPP-1993, pp. 83-91.

®m Lawrence Rauchwerger, David Padua: The Privatizing DOALL Test: A Run-Time Technique
for DOALL Loop Identification and Array Privatization. Proc. ACM Int. Conf. on
Supercomputing, July 1994, pp. 33-45.

® Lawrence Rauchwerger, David Padua: The LRPD Test: Speculative Run-Time Parallelization
of Loops with Privatization and Reduction Parallelization. Proc. ACM SIGPLAN PLDI-95,
1995, pp. 218-232.
C.Kessler, IDA, Linkspi iversi ba)

o O

R . I,
Some references on speculative execution / ‘”éba
parallelization i

%
h"fox

oLy,

m T. Vijaykumar, G. Sohi: Task Selection for a Multiscalar Processor.
Proc. MICRO-31, Dec. 1998.

m J. Martinez, J. Torrellas: Speculative Locks for Concurrent Execution of Critical
Sections in Shared-Memory Multiprocessors. Proc. WMPI at ISCA, 2001.

® F. Warg and P. Stenstrom: Limits on speculative module-level parallelism in
imperative and object-oriented programs on CMP platforms. Pr. IEEE PACT 2001.

m P. Marcuello and A. Gonzalez: Thread-spawning schemes for speculative
multithreading. Proc. HPCA-8, 2002.

m J. Steffan et al.: Improving value communication for thread-level speculation.
HPCA-8, 2002.

m M. Cintra, J. Torrellas: Eliminating squashes through learning cross-thread
violations in speculative parallelization for multiprocessors. HPCA-8, 2002.

m Fredrik Warg and Per Stenstrom: Improving speculative thread-level parallelism
through module run-length prediction. Proc. IPDPS 2003.

m F. Warg: Techniques for Reducing Thread-Level Speculation Overhead in Chip
Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.

m T. Ohsawa et al.: Pinot: Speculative multi-threading processor architecture
exploiting parallelism over a wide range of granularities. Proc. MICRO-38, 2005.

C.Kessler, IDA, Linkopil i i 12

12

