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Assembler Emitter

asm code

(a) Optimizations on low-level IR only

Text stream Postpass Optimizer

asm code

(b) Mixed model

Text stream

Low-level IR

Multi-Level IR

 Multi-level IR, e.g.

 AST abstract syntax tree – implicit control and data flow AST abstract syntax tree – implicit control and data flow

 HIR high-level IR

 MIR medium-level IR

 LIR low-level IR, symbolic registers

 VLIR very low-level IR, target specific, target registers

 Standard form and possibly also SSA (static single assignment) form Standard form and possibly also SSA (static single assignment) form

 Open form (tree, graph) and/or closed (linearized, flattened) form

 For expressions: Trees vs DAGs (directed acyclic graphs)

 Translation by lowering

 Analysis / Optimization engines can work on
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 Analysis / Optimization engines can work on
the most appropriate level of abstraction

 Clean separation of compiler phases,
somewhat easier to extend and debug

 Framework gets larger and slower

Example: WHIRL
(Open64 Compiler)C, C++ F95

Very High WHIRL
(AST)

front-ends
(GCC)

VHO
standalone inliner

Lower aggregates(AST)

High WHIRL

Mid WHIRL

IPA (interprocedural analysis)
PREOPT
LNO (Loop nest optimizer)

WOPT (global optimizer,

Lower aggregates
Un-nest calls …

Lower arrays
Lower complex numbers
Lower HL control flow
Lower bit-fields …

Mid WHIRL

Low WHIRL

WOPT (global optimizer,
uses internally an SSA IR)

RVI1 (register variable
identification)

RVI2

Lower intrinsic ops to calls
All data mapped to segments
Lower loads/stores to final form
Expose code sequences for

constants, addresses
Expose #(gp) addr. for globals
…
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CGIR

Very Low WHIRL
CG

CG

…

code generation, including
scheduling, profiling support,
predication, SW speculation
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Multi-Level IR Overview

HIR SSA-HIR

AST

MIR SSA-MIR
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AST, Symbol table

Hierarchical symbol table 1

globals (Level 0)
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Hierarchical symbol table

follows nesting of scopes

1

2

3

1

locals, level 1

AST Example: Open64 VH-WHIRL

8 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköpings universitet.

Symbol table

 Some typical fields in a symbol table entry

Field Name Field Type MeaningField Name Field Type Meaning

name char * the symbol’s identifier

sclass enum { STATIC, ...} storage class

size int size in bytes

type struct type * source language data typetype struct type * source language data type

basetype struct type * source-lang. type of elements of a
constructed type

machtype enum { ... } machine type corresponding to
source type (or element type if
constructed type)
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constructed type)

basereg char * base register to compute address

disp int displacement to address on stack

reg char * name of register containing the
symbol’s value
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Multi-Level IR Overview

HIR SSA-HIR

AST

MIR SSA-MIR

Christoph Kessler, IDA,
Linköpings universitet, 2012.
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SSA-LIR

HIR - high-level intermediate representation

 A (linearized) control flow graph,
but level of abstraction close to AST for v = v1 by v2 to v3 dobut level of abstraction close to AST

 loop structures and bounds explicit

 array subscripts explicit

 suitable for data dependence analysis

for v = v1 by v2 to v3 do
a[i] = 2

endfor

and loop transformation / parallelization

 artificial entry node for the procedure

 assignments var = expr
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 assignments var = expr

 unassigned expressions, e.g. conditionals

 function calls

TDDC86 Compiler Optimizations and Code Generation
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Flattening 0:
From AST to HIR (or other CFG repr.)

HIR SSA-HIR

AST

MIR SSA-MIR

Christoph Kessler, IDA,
Linköpings universitet, 2012.
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SSA-MIR

SSA-LIR
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Generating a CFG from AST

 Straightforward for structured programming languages

 Traverse AST and compose control flow graph recursively Traverse AST and compose control flow graph recursively

 As in syntax-directed translation, but separate pass

 Stitching points: single entry, single exit point of control;
symbolic labels for linearization

CFG ( while (expr) stmt ) =

CFG(expr)
entry
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CFG ( stmt1; stmt2 ) =
CFG(stmt)CFG(stmt1)

CFG(stmt2)

exit

{
b = a + 1;
while (b>0)

Creating a CFG from AST (2)

 Traverse AST
recursively, while (b>0)

b = b / 3;
print(b);
}

recursively,
compose CFG

 Example:
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Multi-Level IR Overview
Standard vs. SSA Form

HIR SSA-HIR

AST

MIR SSA-MIR
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MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

HIR/MIR/LIR Example

 HIR:
for v = v1 by v2 to v3 do

(adapted from Muchnick’97)

for v = v1 by v2 to v3 do
a[i] = 2

endfor

 MIR:
v = v1

 LIR:
s2 = s1

assuming that v2
is positive

symbolic registers
allocated: v in s2, v1

in s1, i in s9 ...

v = v1
t2 = v2
t3 = v3

L1: if v > t3 goto L2
t4 = addr a
t5 = 4 * i
t6 = t4 + t5

s2 = s1
s4 = s3
s6 = s5

L1: if s2 > s6 goto L2
s7 = addr a
s8 = 4 * s9
s10 = s7 + s8
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t6 = t4 + t5
*t6 = 2
v = v + t2
goto L1

L2:

s10 = s7 + s8
[s10] = 2
s2 = s2 + s4
goto L1

L2:

Example with SSA-LIR (adapted from Muchnick’97)

s2 is assigned (written, defined)

 LIR:
s2 = s1

s21 = s1
s4 = s3
s6 = s5

s22 = f ( s21, s23 )

B1

B2

s2 is assigned (written, defined)
multiple times in the program text
(i.e., multiple static assignments)

s2 = s1
s4 = s3
s6 = s5

L1: if s2 > s6 goto L2
s7 = addr a
s8 = 4 * s9
s10 = s7 + s8

s22 = f ( s21, s23 )
s22 > s6 ?

s7 = addr a
s8 = 4 * s9
s10 = s7 + s8

Y N

B2

B3
After introducing one

version of s2 for each
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s10 = s7 + s8
[s10] = 2
s2 = s2 + s4
goto L1

L2:

s10 = s7 + s8
[s10] = 2
s23 = s22 + s4

version of s2 for each
static definition and explicit

merger ops for different
reaching versions (phi

nodes, f): Static single
assignment (SSA) form

SSA-Form vs. Standard Form of IR

 SSA form makes data flow (esp., def-use chains) explicit

 Certain program analyses and transformations are easier to Certain program analyses and transformations are easier to
implement or more efficient on SSA-representation

 (Up to now) SSA is not suitable for code generation

 Requires transformation back to standard form

 Comes later… Comes later…

HIR SSA-HIR

AST

MIR SSA-MIR
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MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR
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MIR – medium-level intermediate representation

 “language independent”

 control flow reduced to simple branches, call, return control flow reduced to simple branches, call, return

 variable accesses still in terms of symbol table names

 explicit code for procedure / block entry / exit

 suitable for most optimizations suitable for most optimizations

 basis for code generation

HIR SSA-HIR

AST

MIR SSA-MIR
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LIR

VLIR (target code)

SSA-LIR
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Flattening 1:
From HIR to MIR

HIR SSA-HIR

AST

MIR SSA-MIR

Christoph Kessler, IDA,
Linköpings universitet, 2012.

MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

HIRMIR (1): Flattening the expressions

By a postorder traversal of each expression tree in the CFG:

 Decompose the nodes of the expression trees (operators, ...) Decompose the nodes of the expression trees (operators, ...)
into simple operations (ADD, SUB, MUL, ...)

 Infer the types of operands and results (language semantics)

 annotate each operation by its (result) type

 insert explicit conversion operations where necessary

 Flatten each expression tree (= partial order of evaluation)
to a sequence of operations (= total order of evaluation)
using temporary variables t1, t2, ... to keep track of data flow
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 This is static scheduling!
May have an impact on space / time requirements

HIRMIR (2): Lowering Array References (1)

 HIR:
t1 = a [ i, j+2 ]t1 = a [ i, j+2 ]

 the Lvalue of a [ i, j+2 ] is
(on a 32-bit architecture)

(addr a) + 4 * ( i * 20 + j + 2 )

 MIR:
t1 = j + 2
t2 = i * 20
t3 = t1 + t2
t4 = 4 * t3
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t4 = 4 * t3
t5 = addr a
t6 = t5 + t4
t7 = *t6

HIRMIR (2): Flattening the control flow graph

 Depth-first search of the control flow graph

 Topological ordering of the operations, starting with entry Topological ordering of the operations, starting with entry
node

 at conditional branches:
one exit fall-through, other exit branch to a label

 Basic blocks = maximum-length subsequences of Basic blocks = maximum-length subsequences of
statements containing no branch nor join of control flow

 Basic block graph obtained from CFG by merging
statements in a basic block to a single node
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Control flow graph

 Nodes: primitive operations
(e.g., quadruples)

1: ( JEQZ, 5, 0, 0 )

2: ( ASGN, 2, 0, A )

(e.g., quadruples)

 Edges: control flow transitions

 Example:

1: ( JEQZ, 5, 0, 0 )

2: ( ASGN, 2, 0, A )

3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )2: ( ASGN, 2, 0, A )

3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

7: ( MUL, A, B, C )
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6: ( SUB A, 1, B )

7: ( MUL, A, B, C )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )
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Basic block

 A basic block is a sequence of textually consecutive
operations (e.g. MIR operations, LIR operations, quadruples)operations (e.g. MIR operations, LIR operations, quadruples)
that contains no branches (except perhaps its last operation)
and no branch targets (except perhaps its first operation).

 Always executed in same order from entry to exit

 A.k.a. straight-line code 1: ( JEQZ, 5, 0, 0 ) B1 A.k.a. straight-line code 1: ( JEQZ, 5, 0, 0 )

2: ( ASGN, 2, 0, A )

3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )

B1

B2

B3
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5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

7: ( MUL, A, B, C )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )

B3

B4

Basic block graph

 Nodes: basic blocks

 Edges: control flow transitions

1: ( JEQZ, 5, 0, 0 )

2: ( ASGN, 2, 0, A )

B1

B2
 Edges: control flow transitions

1: ( JEQZ, 5, 0, 0 )

2: ( ASGN, 2, 0, A )

2: ( ASGN, 2, 0, A )

3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )B3
3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

7: ( MUL, A, B, C )

5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

7: ( MUL, A, B, C )

B3

B4
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7: ( MUL, A, B, C )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )

LIR – low-level intermediate representation

 in GCC: Register-transfer language (RTL)

 usually architecture dependent usually architecture dependent

 e.g. equivalents of target instructions + addressing modes
for IR operations

 variable accesses in terms of target memory addresses

HIR SSA-HIR

AST

MIR SSA-MIR
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MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

MIRLIR: Lowering Variable Accesses

Seen earlier:  Memory layout:

 Local variables relative to

 HIR:
t1 = a [ i, j+2 ]

 the Lvalue of a [ i, j+2 ] is
(on a 32-bit architecture)

 Local variables relative to
procedure frame pointer fp

 j at fp – 4

 i at fp – 8

 a at fp – 216
(on a 32-bit architecture)

(addr a) + 4 * ( i * 20 + j + 2 )

 MIR:
t1 = j + 2
t2 = i * 20
t3 = t1 + t2

 LIR:
r1 = [fp – 4]
r2 = r1 + 2
r3 = [fp – 8]
r4 = r3 * 20
r5 = r4 + r2
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t3 = t1 + t2
t4 = 4 * t3
t5 = addr a
t6 = t5 + t4
t7 = *t6

r5 = r4 + r2
r6 = 4 * r5
r7 = fp – 216
f1 = [r7 + r6]

Example: The LCC-IR

 LIR – DAGs (Fraser, Hanson ’95)

29 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköpings universitet.

TDDC86 Compiler Optimizations and Code Generation
DF00100 Advanced Compiler Construction

Flattening 2:
From MIR to LIR

HIR SSA-HIR

AST

MIR SSA-MIR

Christoph Kessler, IDA,
Linköpings universitet, 2012.

MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR



6

MIRLIR: Storage Binding

 mapping variables (symbol table items) to addresses

 (virtual) register allocation (virtual) register allocation

 procedure frame layout implies addressing of formal
parameters and local variables relative to frame pointer fp,
and parameter passing (call sequences)

 for accesses, generate Load and Store operations for accesses, generate Load and Store operations

 further lowering of the program representation
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MIRLIR translation example

MIR: LIR, bound to
storage locations:

LIR, bound to
symbolic registers:

a = a * 2

b = a + c [ 1 ]

storage locations:

r1 = [gp+8] // Load
r2 = r1 * 2
[gp+8] = r2 // store
r3 = [gp+8]
r4 = [fp – 56]

symbolic registers:

s1 = s1 * 2

s2 = [fp – 56]
s3 = s1 + s2r4 = [fp – 56]

r5 = r3 + r4
[fp – 20] = r5

s3 = s1 + s2
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Storage layout:
Global variable a addressed relative
to global pointer gp
local variables b, c relative to fp

MIRLIR: Procedure call sequence (1)
[Muchnick 5.6]

 call instruction assembles arguments
and transfers control to calleeand transfers control to callee

 evaluate each argument (reference vs. value param.) and

 push it on the stack, or
write it to a parameter register

 determine code address of the callee determine code address of the callee
(mostly, compile-time or link-time constant)

 store caller-save registers (usually, push on the stack)

 save return address (usually in a register)
and branch to code entry of callee.
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and branch to code entry of callee.

MIRLIR: Procedure call sequence (2)

Procedure prologue

executed on entry to the procedureexecuted on entry to the procedure

 save old frame pointer fp

 old stack pointer sp becomes new frame pointer fp

 determine new sp (creating space for local variables) determine new sp (creating space for local variables)

 save callee-save registers
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MIRLIR: Procedure call sequence (3)

Procedure epilogue

executed at return from procedureexecuted at return from procedure

 restore callee-save registers

 put return value (if existing) in appropriate place (reg/stack)

 restore old values for sp and fp restore old values for sp and fp

 branch to return address

Caller cleans up upon return:

 restore caller-save registers
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 restore caller-save registers

 use the return value (if applicable)

TDDC86 Compiler Optimizations and Code Generation
DF00100 Advanced Compiler Construction

From Trees to DAGs:From Trees to DAGs:

Common Subexpression
Elimination (CSE)Elimination (CSE)

E.g., at MIRLIR Lowering

Christoph Kessler, IDA,
Linköpings universitet, 2012.
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From Trees to DAGs:
Local CSE
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Local CSE on MIR produces a MIR DAG

1. c = a

2. b = a + 12. b = a + 1

3. c = 2 * a

4. d = – c

5. c = a + 1

negd : add

5. c = a + 1

6. c = b + a

7. d = 2 * a

8. b = c ac :2 1

addb :mul
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Flattening 3:
From LIR to VLIR

HIR SSA-HIR

AST

MIR SSA-MIR

Christoph Kessler, IDA,
Linköpings universitet, 2012.

MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

LIRVLIR: Instruction selection

 LIR has often a lower level of abstraction than most target
machine instructions (esp., CISC, or DSP-MAC).machine instructions (esp., CISC, or DSP-MAC).

 One-to-one translation LIR-operation to equivalent target
instruction(s) (“macro expansion”) cannot make use of more
sophisticated instructions

 Pattern matching necessary! Pattern matching necessary!
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LIR / VLIR: Register Allocation

 Example for a SPARC-specific VLIR

int a, b, c, d;

c = a + b;

d = c + 1;

ldw a, r1

ldw b, r2

add r1, r2, r3

stw r3, addr c

add r1, r2, r3

add r3, 1, r4

ldw addr c, r3

add r3, 1, r4

stw r4, addr d

There is a lot to
be gained by
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be gained by
good register

allocation!

On LIR/VLIR: Global register allocation

 Register allocation

 determine what values to keep in a register determine what values to keep in a register

 “symbolic registers”, “virtual registers”

 Register assignment

 assign virtual to physical registers assign virtual to physical registers

 Two values cannot be mapped to the same register if they
are alive simultaneously, i.e. their live ranges overlap
(depends on schedule).
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On LIR/VLIR: Instruction scheduling

 reorders the instructions (LIR/VLIR)
(subject to precedence constraints given by dependences)(subject to precedence constraints given by dependences)
to minimize

 space requirements (# registers)

 time requirements (# CPU cycles)

 power consumption power consumption

 ...
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Remarks on IR design (1) [Cooper’02]

AST? DAGs? Call graph? Control flow graph? Program dep. graph? SSA? ...

 Level of abstraction is critical for implementation cost and opportunities:

 representation chosen affects the entire compiler

Example 1: Addressing for arrays and aggregates (structs)

source level AST: hides entire address computation A[i+1][j] source level AST: hides entire address computation A[i+1][j]

 pointer formulation: may hide critical knowledge (bounds)

 low-level code: may make it hard to see the reference

 “best” representation depends on how it is used

 for dependence-based transformations: source-level IR (AST, HIR)
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 for dependence-based transformations: source-level IR (AST, HIR)

 for fast execution: pointer formulation (MIR, LIR)

 for optimizing address computation: low-level repr. (LIR, VLIR, target)

Remarks on IR Design (2)

Example 2: Representation for comparison&branch

 fundamentally, 3 different operations: fundamentally, 3 different operations:

 Compare  convert result to boolean  branch

combined in different ways by processor architects

 “best” representation may depend on target machine “best” representation may depend on target machine

 r7 = (x < y) cmp x y (sets CC) r7 = (x < y)
br r7, L12 brLT L12 [r7] br L12
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  design problem for a retargetable compiler

Summary

 Multi-level IR

 Translation by lowering Translation by lowering

 Program analyses and transformations can work on
the most appropriate level of abstraction

 Clean separation of compiler phases

 Compiler framework gets larger and slower

HIR SSA-HIR

ASTLowering:

Gradual loss of
source-level
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MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

source-level
information

Increasingly target
dependent
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APPENDIX – For Self-Study

Compiler FrameworksCompiler Frameworks

A (non-exhaustive) survey

with a focus on open-source frameworks

Christoph Kessler, IDA,
Linköpings universitet, 2012.

LCC (Little C Compiler)

 Dragon-book style C compiler implementation in C

 Very small (20K Loc), well documented, well tested, widely used

 Open source: http://www.cs.princeton.edu/software/lcc

 Textbook A retargetable C compiler [Fraser, Hanson 1995]
contains complete source code

 One-pass compiler, fast

 C frontend (hand-crafted scanner and recursive descent parser)
with own C preprocessorwith own C preprocessor

 Low-level IR

 Basic-block graph containing DAGs of quadruples

 No AST

 Interface to IBURG code generator generator

 Example code generators for MIPS, SPARC, Alpha, x86 processors
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 Example code generators for MIPS, SPARC, Alpha, x86 processors

 Tree pattern matching + dynamic programming

 Few optimizations only

 local common subexpr. elimination, constant folding

 Good choice for source-to-target compiling if a prototype is needed soon
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GCC 4.x

 Gnu Compiler Collection (earlier: Gnu C Compiler)

 Compilers for C, C++, Fortran, Java, Objective-C, Ada …

sometimes with own extensions, e.g. Gnu-C sometimes with own extensions, e.g. Gnu-C

 Open-source, developed since 1985

 Very large

 3 IR formats (all language independent)

 GENERIC: tree representation for whole function (also statements)

 GIMPLE (simple version of GENERIC for optimizations) GIMPLE (simple version of GENERIC for optimizations)
based on trees but expressions in quadruple form.
High-level, low-level and SSA-low-level form.

 RTL (Register Transfer Language, low-level, Lisp-like) (the traditional GCC-IR)
only word-sized data types; stack explicit; statement scope

 Many optimizations

 Many target architectures
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 Version 4.x (since ~2004) has strong support for retargetable code generation

 Machine description in .md file

 Reservation tables for instruction scheduler generation

 Good choice if one has the time to get into the framework

Open64 / ORC Open Research Compiler

 Based on SGI Pro-64 Compiler for MIPS processor, written in C++,
went open source in 2000

 Several tracks of development (Open64, ORC, …)

 For Intel Itanium (IA-64) and x86 (IA-32) processors.
Also retargeted to x86-64, Ceva DSP, Tensilica, XScale, ARM …
”simple to retarget” (?)

 Languages: C, C++, Fortran95 (uses GCC as frontend),
OpenMP and UPC (for parallel programming)OpenMP and UPC (for parallel programming)

 Industrial strength, with contributions from Intel, Pathscale, …

 Open source: www.open64.net, ipf-orc.sourceforge.net

 6-layer IR:

 WHIRL (VH, H, M, L, VL) – 5 levels of abstraction
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WHIRL (VH, H, M, L, VL) – 5 levels of abstraction

All levels semantically equivalent

Each level a lower level subset of the higher form

 and target-specific very low-level CGIR

 Many optimizations, many third-party contributed components

Open64 WHIRL C, C++ F95

Very High WHIRL
(AST)

front-ends
(GCC)

VHO
standalone inliner

Lower aggregates(AST)

High WHIRL

Mid WHIRL

IPA (interprocedural analysis)
PREOPT
LNO (Loop nest optimizer)

WOPT (global optimizer,

Lower aggregates
Un-nest calls …

Lower arrays
Lower complex numbers
Lower HL control flow
Lower bit-fields …

Mid WHIRL

Low WHIRL

WOPT (global optimizer,
uses internally an SSA IR)

RVI1 (register variable
identification)

RVI2

Lower intrinsic ops to calls
All data mapped to segments
Lower loads/stores to final form
Expose code sequences for

constants, addresses
Expose #(gp) addr. for globals
…
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CGIR

Very Low WHIRL
CG

CG

…

code generation, including
scheduling, profiling support,
predication, SW speculation

LLVM (llvm.org)

 LLVM (Univ. of Illinois at Urbana Champaign)

 ”Low-level virtual machine” ”Low-level virtual machine”

 Front-ends (Clang, GCC) for C, C++, Objective-C, Fortran, …

 One IR level: a LIR + SSA-LIR,

 linearized form, printable, shippable, but target-dependent,

 ”LLVM instruction set” ”LLVM instruction set”

 compiles to many target platforms

x86, Itanium, ARM, Alpha, SPARC, PowerPC, Cell SPE, …

And to low-level C

 Link-time interprocedural analysis and optimization framework
for whole-program analysis
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for whole-program analysis

 JIT support available for x86, PowerPC

 Open source

VEX Compiler

 VEX: ”VLIW EXample”

 Generic clustered VLIW Architecture and Instruction Set Generic clustered VLIW Architecture and Instruction Set

 From the book by Fisher, Faraboschi, Young:
Embedded Computing, Morgan Kaufmann 2005

 www.vliw.org/book

 Developed at HP Research

 Based on the compiler for HP/ST Lx (ST200 DSP)

 Compiler, Libraries, Simulator and Tools
available in binary form from HP for non-commercial use

 IR not accessible, but CFGs and DAGs can be dumped or visualized

 Transformations controllable by options and/or #pragmas
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 Transformations controllable by options and/or #pragmas

 Scalar optimizations, loop unrolling, prefetching, function inlining, …

 Global scheduling (esp., trace scheduling),
but no software pipelining

TDDC86 Compiler Optimizations and Code Generation
DF00100 Advanced Compiler Construction

CoSy

A commercial compiler framework

Christoph Kessler, IDA,
Linköpings universitet, 2012.

www.ace.nl
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Traditional Compiler Structure

 Traditional compiler model: sequential process

 Improvement: Pipelining
(by files/modules, classes, functions)

Lexer Parser
Semant.
Analysis

Optimizer
Code
generator

text codetokens tree IR IR

(by files/modules, classes, functions)

 More modern compiler model with shared symbol table and IR:

text code

Symbol tableCoordination
data flow
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Lexer Parser
Semant.
Analysis

Optimizer
Code
generator

text code

Intermediate representation (IR)
Data fetch/store

A CoSy Compiler with
Repository-Architecture

Parser

Semantic
analysis

Optimizer

Transformation
“Engines”
(compiler tasks,
phases)

Lexer

Codegen
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Codegen

“Blackboard architecture”
Common
intermediate representation
repository

Engine

 Modular compiler building block

 Performs a well-defined task

 Focus on algorithms, not compiler configuration

 Parameters are handles on the underlying common IR repository Parameters are handles on the underlying common IR repository

 Execution may be in a separate process or as subroutine call -
the engine writer does not know!

 View of an engine class:
the part of the common IR repository that it can access
(scope set by access rights: read, write, create)
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(scope set by access rights: read, write, create)

 Examples: Analyzers, Lowerers, Optimizers, Translators, Support

Composite Engines in CoSy

 Built from simple engines or from other composite engines
by combining engines in interaction schemesby combining engines in interaction schemes
(Loop, Pipeline, Fork, Parallel, Speculative, ...)

 Described in EDL (Engine Description Language)

 View defined by the joint effect of constituent engines

 A compiler is nothing more than a large composite engine A compiler is nothing more than a large composite engine

ENGINE CLASS compiler (IN u: mirUNIT) {
PIPELINE

frontend (u)
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frontend (u)
optimizer (u)
backend (u)

}

Optimizer

A CoSy Compiler

Optimizer
II

Parser

Optimizer
I

Logical view

Generated FactoryGenerated Factory Logical view
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59

Generated
access layer

Example for CoSy EDL
(Engine Description Language)

 Component classes (engine class) ENGINE CLASS optimizer ( procedure p )
{ Component instances (engines)

 Basic components
are implemented in C

 Interaction schemes (cf. skeletons)
form complex connectors
 SEQUENTIAL

{
ControlFlowAnalyser cfa;
CommonSubExprEliminator cse;
LoopVariableSimplifier lvs;

PIPELINE cfa(p); cse(p); lvs(p);
}

ENGINE CLASS compiler ( file f )
 SEQUENTIAL

 PIPELINE

 DATAPARALLEL

 SPECULATIVE

 EDL can embed automatically
Single-call-components into

ENGINE CLASS compiler ( file f )
{ ….

Token token;
Module m;
PIPELINE // lexer takes file, delivers token stream:

lexer( IN f, OUT token<> );
// Parser delivers a module

parser( IN token<>, OUT m );
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 Single-call-components into
pipes

 p<> means a stream of p-items

 EDL can map their protocols to
each other (p vs p<>)

parser( IN token<>, OUT m );
sema( m );
decompose( m, p<> );
// here comes a stream of procedures
// from the module

optimizer( p<> );
backend( p<> );

}
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Evaluation of CoSy

 The outer call layers of the compiler are generated from view description
specifications

 Adapter, coordination, communication, encapsulation

 Sequential and parallel implementation can be exchanged

 There is also a non-commercial prototype
[Martin Alt: On Parallel Compilation. PhD thesis, 1997, Univ.
Saarbrücken]Saarbrücken]

 Access layer to the repository must be efficient
(solved by generation of macros)

 Because of views, a CoSy-compiler is very simply extensible
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 That's why it is expensive

 Reconfiguration of a compiler within an hour

Source-to-Source compiler frameworks

 Cetus

 C / OpenMP source-to-source compiler written in Java. C / OpenMP source-to-source compiler written in Java.

 Open source

 ROSE

 C++ source-to-source compiler C++ source-to-source compiler

 Open source

 Tools and generators

 TXL source-to-source transformation system
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 TXL source-to-source transformation system

 ANTLR frontend generator
...

More frameworks (mostly historical) …

 Some influential frameworks of the 1990s
...some of them still active today...some of them still active today

 SUIF Stanford university intermediate format,
suif.stanford.edu

 Trimaran (for instruction-level parallel processors)
www.trimaran.org

 Polaris (Fortran) UIUC

 Jikes RVM (Java) IBM

 Soot (Java)

 GMD Toolbox / Cocolab Cocktail™ compiler generation

63 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköpings universitet.

 GMD Toolbox / Cocolab Cocktail™ compiler generation
tool suite

 and many others …

 And many more for the embedded domain …


