Christoph Kessler with Mattias Eriksson

DF00100

Advanced Compiler Construction
VT1 / 2010

Exercise Set 2

Exercise 2.1

Given the following program fragment:

for : from 1 to N do
So: Alil < B[i] + 1

od

for i from 1 to N do
Ss: Cli] < Ali] / 2

od

for : from 1 to N do
Sg: D[i] <+ 1/C[i + 1]

od

a)
b)

c¢) Apply loop fusion as far as possible. Show the resulting data dependence graph.

(a) Draw the data dependence graph. Identify loop-carried and loop-independent dependences.
(b) Is it safe to apply loop fusion to all the three loops? Why or why not?

(

(d) Discuss strategies that enable loop fusion for loops that (slightly) differ in their lower or
upper bounds.

Exercise 2.2

Consider the safety conditions for loop distribution (aka. loop fission). Do loop-carried anti-
dependences or output dependences that contribute to a dependence cycle / SCC really con-
stitute a prohibiting factor for loop distribution? Propose a (safe) transformation to get rid
of loop-carried anti- and output dependences, and give an example where this enables loop
distribution.

Exercise 2.3

Apply loop tiling to the following loop nest:

for (i=0; i<n; i++)
for (j=0; j<m; j++)
X[i1 03] = Y[il[3];

Exercise 2.4

Given the following loop nest:

for (i=0; i<n; i++)
for (j=0; j<m/2; j++)

for (k=1; k<r; k++) {

S1: B[il[j] = fsin(i*wxt) + fcos(j*w*t);
S2: Afi] [k-1][2*j] = A[i+1][k][2*j+1] + B[i] [j];

¥

(a) Draw the data dependence graph and determine the direction vectors of loop-carried depen-

dences.

(b) Which loop headers are interchangeable?

(c) Identify loop-invariant code and move it to a more appropriate place.

Exercise 2.5

Loop distribution involves computing the strongly connected components (SCCs) of the data
dependence graph. Recapitulate Tarjan’s algorithm for computing SCCs (take a look into the
DFS slides linked from the course homepage or any good book on algorithms, such as [COR-
MEN/LEISERSON/RIVEST 1990]). What is the time complexity for Tarjan’s algorithm?

Exercise 2.6

Given the following tree grammar (from the lecture):

Nonterminals N = { stmt, reg, con, addr, mem, ...
terminals ' = { CNSTI, ADDRLP, ... };

and the production rules with costs are as follows:

} where the start symbol is stmt;

reg — ADDI(reg, con)
reg — ADDI(reg, reg)
reg — MULI(reg, con)
reg — MULI(reg, reg)

and isPowerOfT'wo(con)

reg — MULI(reg, con) if con.value < 256

addi %r,%c,%T

addi %r,%r,%r

muli %r,%c,%r; nop
muli %r,%r,%r; nop
1shi %r,log2(%c),%r

— NN

(left shift)

stmt — ASGNI(addr, reg)
stmt — ASGNI(reg, reg)

store %r,%a
store %r,0(%r)

reg — ADDRLP
addr - ADDRLP
reg — addr

addi fp,#%d,%T
%d(£fp)
addi %a,%r

reg — INDIRI(addr)
reg — INDIRI(reg)
reg — INDIRC(addr)
reg — INDIRC(reg)

load %a,’%r; nop
load 0(%r),%r; nop
load %a,’%r; nop
load 0(%r),%r; nop

reg — CVCI(INDIRC(addr))
reg — CVCI(INDIRC(reg))

load %a,%r; nop
load 0(%r),%r; nop

con — CNSTI
reg — con

%d
addi RO,#%c,%r

= OIN NN DNDNN O ==

Use the dynamic programming algorithm of the lecture to find a least-cost derivation for the
following LIR tree for int x, i, all; x = al[i] * 4:

ASGNI

I

ADDRLP MULI
X

™~

IN[%IRI CNSTI
4
ADDI
AN
ADDRLP INDIRI
= A
ADDRLP

1

Exercise 2.7

In the lecture on local instruction scheduling we described the list scheduling algorithm as a
forward scheduling algorithm, that is, topological sorting in forward direction of the dependences.

Give the pseudocode of backward list scheduling.

Please prepare Exercises 2.1-2.5 for the second lesson, the remaining ones for the third lesson.

