In: Proc. Second EXCESS Workshop, Chalmers, Gothenburg, Sweden, 26 Aug. 2016.
(©Copyright held by the authors.

Programming Frameworks for Optimized
Software Composition for Parallel Systems

Christoph KESSLER #
U'and Lu LI® and Erik HANSSON # and Nicolas MELOT # and August ERNSTSSON #

& Linkoping University, 58183 Linkoping, Sweden

Abstract. EXCESS (Execution Models for Energy-Efficient Computing Systems)
is a European research project funded by EU FP7 2013-2016. The EXCESS
project developed a holistic approach to energy optimization across the entire hard-
ware/system software/application software stack. Targeting architectures and ap-
plications in both HPC and the embedded domain, its goal has been to bridge
the gap between such systems and their tool chains by providing a generic, retar-
getable framework for programming and optimization. Work package WP1 of EX-
CESS, led by Link&ping University, Sweden, investigates execution, platform and
programming models for energy optimization. This presentation gives a high-level
overview of the EXCESS programming and optimization framework.

Keywords. Energy optimization, energy modeling, performance modeling, platform
modeling, XPDL, heterogeneous parallel system, context-aware software composition,
skeleton programming, SkePU, smart containers, VectorPU, microbenchmarking,
MeterPU, parallel streaming computations, global optimization, Drake

Beyond the traditional goal of pure computational performance, energy efficiency is
currently the most important quality concern both in high-end embedded computing and
in high-performance computing systems. For a best-effort optimization of programs and
their execution environments for energy efficient execution, the EU FP7 project EXCESS
(2013-2016) investigated a holistic approach considering the whole stack consisting of
hardware, system software, libraries and application software.

Traditionally, programming frameworks and tool chains have been developed sep-
arately in the embedded computing domain and the HPC domain. One goal of the EX-
CESS project has been to develop techniques for modeling and optimization of computer
systems, energy and performance behavior, and software building blocks that can span
both domains, thereby bridging the gap in tool chain design.

In the following, we give a high-level overview of the EXCESS modeling, program-
ming and optimization framework, towards

e systematic modeling of software components, performance, energy, and plat-
forms, for high-level portable programming at multiple layers of abstraction;

e cross-layer, static and dynamic optimization for time and performance;

e composition of applications from their building blocks; and

e automatic deployment of programs for performance- and energy-aware execution
especially on heterogeneous parallel target systems.

HW expert
XPDL Platform
Global Annotated Component / Calls based Annotated Streaming Tasks Modeling Lang.
Programming Interface Programming Interface XPDL

Global Optimization Toolchain
GCF, GRS optimizer (WP1) Drake (WP1) (WP1)

Application Programs Application Programs

(Local) Component-based Programming Interface

(DS)Language/Library Programming AP Task Progr. API

ComPU| VectorPU | SkePU, SkePU 2 | Runtime Systems

PEPPUER] Smart Multi-Backend for Multi-Variant

compo-|| Containers Skeletons Tasks
nent and ’

compo- . incl. Smart containers, StarPU-based
sition || @nnotation | Tuning framework, (Wp3)
framework Myriad backend ‘

(WPTH (wp1) (WP1) GRS (WP1)

ydomawel4 Sul0UON
wawAo|dag ‘Buinpayds umol)
‘S4AQ ‘Suiddely ‘uonieojje a10)

$ainjnJis ejeq

(€dm)
Alonsoday ysewysuaqg-o.oiAl

Low-Level Portability Layer
Basic Lin. Alg. | Synchronization | Measurement Abstraction API
(WP2, WP4) Library (WP2) MeterPU (WP1)
Heterogeneous Hardware, Drivers, Native Libraries

1dY A1anD a1wpuAqg pup 21301S 1ddX
Aioysoday SuljapolA wiiojie|d 1AdX

Figure 1. Layering structure of programming interfaces and prototypes in the EXCESS programming and tool
infrastructure, with special emphasis on WP1 frameworks.

Figure 1 shows an overview of the different programming models / interfaces and
prototypes developed in EXCESS WP1 and some other work packages towards a multi-
layer, multi-programming-model infrastructure.

Overall, we distinguish between six different layers of EXCESS programming, i.e.,
different APIs, as shown in Figure 1. Let us consider them from bottom to top:

1. Native platform programming layer

The native platform programming layer is provided by the hardware and native system
software like nvcc, icc, gcc or MDK. It has been our goal in WP1 to raise the level of ab-
straction and portability beyond that of native APIs. We achieved that goal by designing
and implementing new, higher-level programming frameworks (such as those given be-
low) on top of the native layer(s), so that non-expert programmers should, in most cases,
not need to write code in such platform-specific low-level APIs any more. At the same
time, such frameworks should not generally prevent expert programmers from occasion-
ally and locally escaping to using such low-level APIs where they consider it benefi-
cial for performance or energy efficiency and where a default implementation alternative
always remains for guaranteeing application portability.

2. Low-level hardware abstraction layer

The low-level hardware abstraction layer provides portable basic functionality atop the
native EXCESS platforms’ programming environments. These include portable libraries,

techniques, and tools. Portable libraries wrap native implementations such as basic linear
algebra functionality and basic synchronization mechanisms, and which could then be
called from constructs in higher-level programming frameworks. Another example of
such functionality is the MeterPU portable measurement abstraction library [11].

MeterPU
MeterPU [11] is a generic portable

.) using namespace MeterPU;
measurement abstraction library for

C++. The API is simple and platform // Initialize a meter for GPU
and metric independent; platform- // energy of default device id 0:
specific measurement methods (using Meter< NVML_Energy<GPU_0> > meter;

software or hardware infrastructure)

are reahzed.by plug-ins. Switching be- " // part to be measured

tween metrics or r.neasureme?nt mth— meter.stop () ;

ods then only requires changing a sin- meter.calc () ;

gle line of code. The current ver- ... = meter.get_value();

sion includes platform-specific plug-

ins supporting multicore CPU and

multiple CUDA GPUs and several

measurement techniques. In contrast to the ATOM Monitoring Framework developed in WP3,
which is mainly intended for remote observation of long-running applications on servers and
clusters, MeterPU is light-weight, has very low runtime overhead and is intended to be used
for (node-)local measurements only, in particular for self-tuning applications and system soft-
ware components. For instance, SkePU(1.2) has been made energy-tuneable with the help of
MeterPU [11]. MeterPU has been released as open-source software (GPL v3) in July 2015,
and is available at http://www.ida.liu.se/labs/pelab/meterpu.

meter.start ();

3. Task programming API layer

The task programming API layer, implemented by task-based runtime systems, provides
functions and data types to describe multi-variant tasks and their operands, and to sub-
mit them to the runtime system’s scheduler. A typical representative of such a runtime
system is StarPU [1], which has been adapted in WP3 for energy tuning. Moreover, also
other runtime systems can be used for direct task-level programming, such as the global
composition runtime system (GRS) prototype designed for synchronous task execution,
which we developed in order to experiment with global optimization techniques for vari-
ant selection (see Sect. 6a).

In contrast, some other high-level programming frameworks developed in EXCESS
WP, such as Drake (see Sect. 6b), provide their own, light-weight runtime support. For
example, the Drake runtime library is to be used specifically with the Drake-generated
code for energy-efficient execution of parallel streaming tasks on multicore systems; it is
not intended to be used as an external API for low-level task programming.

4. Library-level programming API layer

The library-level programming API layer provides portable multi-variant implementa-
tions of more high-level, energy-tunable constructs for computations and for data struc-

tures, such as SkePU skeletons and its smart containers [4] with the very recent ver-
sion SkePU 2 [6] that provides a modernized, type-safe and more flexible programming
interface; the new VectorPU [12] smart container framework for flexible, fine-grained
control of operand coherence with (GPU) accelerator execution; or energy-tunable data
structures such as lock-free queues developed in EXCESS WP2.

SkePU 1.x

The SkePU (1.x) skeleton program-
ming library [S] provides generic pro-
gram building blocks, so-called skele-
tons such as map, reduce, scan, sten- BINARY_FUNC (plus_£, double, a, b,
cil, for high-level portable parallel pro- return at+b;

gramming. Aggregate operand data is)

wrapped in so-called smart contain-
ers [4] for transparent memory man-

#include "skepu/vector.h"
#include "skepu/reduce.h"

int main ()

{

agement and optimization of the data /) instamtinte Redues skelctems
transfer volume between the memory skepu: :Reduce<plus_£>

units in a heterogeneous system at run- globalSum(new plus_f£);
time. For each skeleton, SkePU pro- skepu: :Vector<double> vl (...);

vides multiple backends (implemen-

tation variants) for various execution

units and programming models in a }
heterogeneous system, and supports
automated selection tuning for perfor-

mance or energy efficiency. SkePU is
available as open-source software under GPL v3. For download and documentation see
http://www.ida.liu.se/labs/pelab/skepu.

While originally implemented for multicore and single and multi GPGPU-based systems
(with OpenMP, CUDA and OpenCL backends), a new SkePU backend supporting Movidius
Myriad2 has been developed recently [16], providing seamless portability of the same source
code on multicore, GPGPU, and Myriad.

double r = globalSum(vl);

SkePU 2

The SkePU programming interface was defined in 2010 [5], i.e. before C++11 was well
supported on CUDA systems. Being a C++ include library without any further tool support,
its objective of full code portability across a wide variety of C/C++ based programming
models including CUDA could, at that time, only be achieved with the help of C preprocessor
macros to define user functions in a portable way and generating the necessary glue code
towards the parallel and accelerator implementations (i.e., backends) of the skeletons. This
worked, but came at the price of reduced flexibility, unnecessary complexity, and a risk of
type errors that only could be caught at runtime.

SkePU 2 [6] is a partial rewrite of SkePU with a new, fully C++11 compliant programming in-
terface (i.e., frontend). It uses a precompiler (LLVM clang) to allow for programmer-friendly,
type-safe and flexible specification of user functions. SkePU 2 preserves the architecture and
mature runtime system of SkePU 1.2, such as highly optimized skeleton algorithms for each
supported backend target, multi-GPU support, smart containers, tuning etc. The increased
programmer friendliness and type safety is demonstrated, and the increased flexibility even
leads to performance improvements in certain cases. For download and documentation see
http://www.ida.liu.se/labs/pelab/skepu.

5. Local component-level programming interface

The local component-level programming interface generalizes the library and task-
level programming interfaces by allowing the programmer to define (possibly, multi-
variant) components for arbitrary functionality with arbitrary implementation variants
for supported programming models, as long as they adhere to a simple component model
that uses smart containers for aggregate data operands like vectors and matrices and that
states the direction of operand data flow (in, out or inout).

Representatives are the new Call skeleton in SkePU 2 and the VectorPU annotation
framework. Also the ComPU framework can be mentioned here, an XML-based anno-
tation framework for multi-variant C++ components based on the PEPPHER Composi-
tion Tool [2] that has been adapted for constrained composition with XPDL. Moreover,
our EXCESS research contribution of an improved adaptive sampling technique for ef-
fective modeling of relative performance and energy for selection tuning [10] has been
implemented and evaluated atop ComPU.

ComPU

ComPU is an XML-based annotation framework for multi-variant C++ components for GPU-
based systems. It is technically based on the PEPPHER Composition Tool [2] that we de-
veloped in the previous FP7 project PEPPHER 2010-2012. ComPU allows to expose and
annotate multi-variant components, i.e., functions with multiple implementation variants for
the various programming models (sequential C++, OpenMP, CUDA, OpenCL) coexisting on
a GPU-based system. Annotations of components and of their variants are done externally
in XML descriptor files. From this metadata, glue code is generated for calls to multivari-
ant components, which contains context-dependent variant selection logic that attempts to
optimize for expected execution time. The code can be provided on request. Examples and
documentation can be found at http://www.ida.liu.se/labs/pelab/ctool.

VectorPU

VectorPU is a library based framework for high-level programming of heterogeneous sys-
tems in C++ providing a shared data abstraction for array operands by leveraging generic
smart containers and a domain-specific embedded language for data access annotations. By
declaring specific operand access modes to aggregate data containers (e.g., vectors), the re-
quirements for memory coherence can be programmed very flexibly such that the amount of
really required invalidations and update data transfers in the coherence protocol can be kept
to a minimum. We could show that VectorPU can achieve speedups over Nvidia’s Unified
Memory of 1.40x to 13.29x, and achieves almost the efficiency of manually programmed data
movements while maintaining a unified memory abstraction.

6. Global component-level programming interface

The global component-level programming interface allows to extend local (multi-variant)
component models by mechanisms and techniques to coordinate optimization (such as
variant selection, voltage and frequency scaling, core allocation for parallelizable tasks,
core shutdown, settings for tunable parameters, etc.) at a more global scope. At this level,

the high-level programmer (or, in future, a tool such as a compiler frontend) needs to
specify groups of component calls (i.e., tasks) to be considered together in the optimiza-
tion to take inter-component dependences properly into account. Here, we provide pro-
totype global optimization frameworks for two very different styles of programming:

(a)

(b)

Global selection for component calls, represented by the global composition
runtime system (GRS) with its semi-static optimizer. Groups of calls to multi-
variant components to be considered together for selection optimization are con-
nected by control flow and, most often, also by operand data flow, and form a
contiguous program region of interest, which is then analyzed at runtime to cal-
culate a dispatch table with globally best selections for all calls in the region.
Optimization attempts to minimize overall execution time or energy usage for the
whole region.

GRS Global Composition Runtime System

GRS is a C-based runtime system for prototyping techniques for the global opti-
mization of variant selection in multi-variant functions (components). The global
selection optimizer in GRS, based on the formalization and algorithmic solution in
[7], performs at runtime a semi-static global optimization of variant selections for
groups of calls to multi-variant functions (components), in particular, for program
regions consisting of loops and sequences containing calls to multi-variant compo-
nents. GRS has been used with GPU-based systems and with an ARM big. LITTLE
based platform. The GRS source code is available upon request.

Global optimization of streaming task collections, represented by the Drake
framework. Drake is applicable to programs consisting of (possibly, complex)
task pipelines also known as Kahn Process Networks, where a certain throughput
(e.g., frames per second) is to be maintained while latency (pipeline depth) is only
of secondary interest. Optimization attempts to minimize overall energy usage
across all tasks while maintaining the throughput constraint. We have also devel-
oped several global optimization algorithms, most of them based on the Crown
Scheduling technique [15,14], which can be used as a plug-in to Drake.

Drake

Drake [13] is a framework for the specification, global static optimization and de-
ployment of collections of streaming tasks for energy-efficient execution on multi-
/many-core systems. The programming model can be considered as a special skele-
ton programming system for modeling complex pipelines, where each pipeline task
can be internally parallel, i.e., use parallel algorithms and data structures on mul-
tiple cores to gain speedup. Drake takes a target architecture description and the
input program in the form of a streaming task graph with the tasks’ specific code
and operand access information as input, runs an optimization algorithm (plug-in)
and deploys the tasks with the calculated mapping, core allocations and DVFS set-
tings to produce an executable code. Drake, together with the required support soft-
ware packages such as Pelib, is publically available as open-source (GPL v3) at
http://www.ida.liu.se/labs/pelab/drake. Drake comes with a back-
end for Intel IA multicore architectures.

7. Layering and Dependences

Generally, the upper levels of the software stack in Figure 1 can use functionality pro-
vided by the lower levels. Task programming API and library / local component program-
ming API are at the same level because they may mutually use each other’s functionality:
tasks may contain library or skeleton calls, while skeleton implementations in turn may
create multiple tasks from a single invocation and use the heterogeneous runtime sys-
tem’s dynamic scheduler and data flow driven synchronization in order to provide load
balancing and hybrid execution.

8. Interfaces for access to support functionality

The described infrastructure for portable, high-level programming and optimization is
complemented by auxiliary infrastructure. For instance, the EXCESS platform modeling
language XPDL [9] allows, in principle, to make the entire infrastructure retargetable and
to query platform and performance/energy models from applications and from optimiza-
tion control both at deployment and run time. Moreover, the external ATOM monitoring
framework [8] allows to observe and visualize the time and energy usage of a (possibly,
remotely) running EXCESS application at a relatively coarse level of granularity. The
ATOM visualizer is also used by MeterPU.

XPDL eXtensible Platform Description Language

XPDL [9] is an XML-based platform description language that allows to write scalable for-
mal specifications of the main structure and the main performance and energy relevant prop-
erties of target systems’ hardware and system software. Such specifications are to be used
as machine-readable data sheets to provide platform information to retargetable toolchains
for platform-specific performance/energy modeling, code generation and optimization, and
to allow runtime systems to query platform information for automatic adaptation and appli-
cation self-tuning. The XPDL design encourages reuse by features such as model crossref-
erencing, multiple inheritance, parameters and constraints in models. XPDL is used within
several prototype frameworks within WP1. Further information on XPDL is available at
http://www.ida.liu.se/labs/pelab/xpdl. Our prototype toolchain for XPDL
is available under LGPL v3 license.

9. Conclusions and Outlook

We have contributed a number of techniques and software frameworks in the EXCESS
project. These are of course also applicable outside EXCESS, and we expect that most
of them will be used and/or further developed in future projects. We encourage other
researchers to try them out and send us feedback, and we welcome cooperations on future
development.

Acknowledgments

This work has been funded 2013-2016 by EU FP7 project EXCESS under grant
#611183, and co-funded by SeRC (www.e-science.se) and the CUGS graduate school.

The authors thank all who contributed to the research, development, software and docu-
mentation of the systems described, including Usman Dastgeer, Johan Enmyren, Oskar
Sjostrom, Mudassar Majeed, Claudio Parisi, Rosandra Cuello, Sebastian Thorarensen,
Lukas Gillsjo, Johan Janzén, and Ming-Jie Yang.

References

(1

(2]

(3]

(4]

(3]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. StarPU: A Unified
Platform for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency and Computa-
tion: Practice and Experience, Special Issue: Euro-Par 2009, 23:187-198, February 2011.

Usman Dastgeer and Christoph Kessler. The PEPPHER composition tool: Performance-aware compo-
sition for GPU-based systems. Computing, 96(12):1195-1211, 2014. (online: Nov. 2013).

Usman Dastgeer and Christoph Kessler. Performance-aware composition framework for GPU-based
systems. The Journal of Supercomputing, 71(12):4646-4662, December 2015. (online: Jan. 2014).
Usman Dastgeer and Christoph Kessler. Smart containers and skeleton programming for GPU-based
systems. International Journal of Parallel Programming, June 2016. doi: 10.1007/s10766-015-0357-6.
Johan Enmyren and Christoph W. Kessler. SkePU: A multi-backend skeleton programming li-
brary for multi-GPU systems. In Proc. 4th Int. Workshop on High-Level Parallel Programming and
Applications (HLPP-2010), Baltimore, Maryland, USA, pages 5-14. ACM, September 2010. doi:
10.1145/1863482.1863487.

August Ernstsson, Lu Li, and Christoph Kessler. SkePU 2: Flexible and type-safe skeleton program-
ming for heterogeneous parallel systems. Accepted for International Journal of Parallel Programming,
Special issue for selected papers from HLPP-2016, to appear (2017).

Erik Hansson and Christoph Kessler. Optimized variant-selection code generation for loops on het-
erogeneous multicore systems. In Gerhard R. Joubert, Hugh Leather, Mark Parsons, Frans Peters, and
Mark Sawyer, editors, Advances in Parallel Computing, Volume 27: Parallel Computing: On the Road
to Exascale. Proc. of ParCo-2015 conference, Edinburgh, UK, Sep. 2015., pages 103—112. IOS Press,
April 2016.

Dennis Hoppe et al. ATOM Monitoring Framework. http://mf.excess-project.eu/about, 2016.
Christoph Kessler, Lu Li, Aras Atalar, and Alin Dobre. XPDL: Extensible Platform Description Lan-
guage to Support Energy Modeling and Optimization. In 2015 44th International Conference on Parallel
Processing Workshops (ICPPW), pages 51-60. IEEE, Sept 2015.

Lu Li, Usman Dastgeer, and Christoph Kessler. Pruning Strategies in Adaptive Off-Line Tuning for
Optimized Composition of Components on Heterogeneous Systems. Parallel Computing, 51:37-45,
January 2016. doi: 10.1016/j.parco.2015.09.003.

Lu Li and Christoph Kessler. MeterPU: A Generic Measurement Abstraction API Enabling Energy-
tuned Skeleton Backend Selection. Journal of Supercomputing, pages 1-16, 2016. doi: 10.1007/s11227-
016-1792-x.

Lu Li and Christoph Kessler. VectorPU: A generic and efficient data-container and component model for
transparent data transfer on GPU-based heterogeneous systems. In Proc. PARMA-DITAM’17 workshop,
Stockholm. ACM, January 2017.

Nicolas Melot, Johan Janzen, and Christoph Kessler. Mimer and Schedeval: Comparison tools for static
schedulers and streaming applications on concrete manycore architectures. In Proc. 8th Int. Workshop
on Parallel Programming Models and Systems Software for High-End Computing (P252) at ICPP’15.
IEEE, September 2015.

Nicolas Melot, Christoph Kessler, and Jorg Keller. Improving energy-efficiency of static schedules
by core consolidation and switching off unused cores. In Gerhard R. Joubert, Hugh Leather, Mark
Parsons, Frans Peters, and Mark Sawyer, editors, Advances in Parallel Computing, Volume 27: Parallel
Computing: On the Road to Exascale. Proc. of ParCo-2015 conference, Edinburgh, UK, Sep. 2015.,
pages 285-294. I0S Press, April 2016.

Nicolas Melot, Christoph Kessler, Jorg Keller, and Patrick Eitschberger. Fast crown scheduling heuristics
for energy-efficient mapping and scaling of moldable streaming tasks on many-core systems. ACM
Transactions on Architecture and Code Optimization (TACO), 11(4), January 2015. Article No. 62.
Sebastian Thorarensen, Rosandra Cuello, Christoph Kessler, Lu Li, and Brendan Barry. Efficient execu-
tion of SkePU skeleton programs on the low-power multicore processor Myriad2. In Proc. Euromicro
PDP-2016 Int. Conf. on Parallel, Distributed, and Network-Based Processing, Heraklion, Greece, pages
398-402. IEEE, February 2016.

