
A Refined Understanding of Cost-optimal Planning with Polytree Causal Graphs

Christer Bäckström
Linköping University

christer.backstrom@liu.se

Peter Jonsson
Linköping University
peter.jonsson@liu.se

Sebastian Ordyniak
University of Sheffield
sordyniak@gmail.com

Abstract

Complexity analysis based on the causal graphs of planning
instances has emerged as a highly important area of research.
In particular, tractability results have led to new methods for
the identification of domain-independent heuristics. Impor-
tant early examples of such tractability results have been pre-
sented by, for instance, Brafman & Domshlak and Katz &
Keyder. More general results based on polytrees and bound-
ing certain parameters were subsequently derived by Aghighi
et al. and Ståhlberg. We continue this line of research by
analyzing cost-optimal planning restricted to instances with
a polytree causal graph, bounded domain size and bounded
depth (i.e. the length of the longest directed path in the causal
graph). We show that no further restrictions are necessary for
tractability, thus generalizing the previous results. Our ap-
proach is based on a novel method of closely analysing op-
timal plans: we recursively decompose the causal graph in a
way that allows for bounding the number of variable changes
as a function of the depth, using a reording argument and
a comparison with prefix trees of known size. We can then
transform the planning instances into constraint satisfaction
instances; an idea that has previously been exploited by, for
example, Brafman & Domshlak and Bäckström. This allows
us to utilise efficient algorithms for constraint optimisation
over tree-structured instances.

1 Introduction
Analysing the complexity of planning has been an important
research area for quite some time, and identifying tractable
(i.e. polynomial-time) fragments of planning is very impor-
tant. An obvious application is efficient planning in concrete
systems, like control systems for industrial plants (Cooper,
Maris, and Régnier 2014) and spacecrafts (Muscettola et
al. 1998). Another highly important usage is in the con-
struction of efficient search heuristics based on solving
tractable fragments. This is a well-studied topic so we will
not go into details here; the interested reader is referred to,
for example, Helmert (2004), Helmert, Haslum, and Hoff-
mann (2007), and Katz and Domshlak (2010). Further moti-
vations are planning problem decomposition (aka. factored
planning) (Brafman and Domshlak 2006) and multi-agent
planning (Brafman and Domshlak 2013).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A common approach for identifying tractable fragments
of planning is to analyse the causal graph (Knoblock 1994),
a directed graph where the vertices represent variables and
the arcs represent certain dependencies between variables.
By combining restrictions on the structure of this graph with
bounds on certain problem-specific parameters, many dif-
ferent tractability results have been obtained. It was early
noted that if the causal graph is acyclic, then all actions
are unary, i.e. change one variable only, yet such restricted
instances can be useful even in practice (Williams and
Nayak 1997). Helmert (2006) pioneered the idea of defin-
ing heuristics based on subgraphs of the causal graph. He
removed arcs in the graph to be able to find acyclic sub-
graphs, which made it easier to define heuristics. However,
not even acyclicity is sufficient in the general case; plan-
ning is still PSPACE-complete even when restricted to ar-
bitrary acyclic causal graphs (Jonsson, Jonsson, and Lööw
2014). Hence, there has been much focus on various re-
stricted types of acyclic graphs, for example forks, inverted
forks and hourglasses, which are illustrated in Figure 1.
Cost-optimal planning is NP-hard if the causal graph is of
either of these types with no further restrictions, but be-
comes tractable for all three types if we also bound the
variable domain size by a constant (Katz and Keyder 2012;
Katz and Domshlak 2010).

Inverted forkFork Hourglass

Figure 1: Some special cases of polytree graphs.

A directed graph is a polytree if it is acyclic and its un-
derlying undirected graph is a tree (an example appears in
Fig. 2). Problems with causal graphs that are polytrees have
been intensively studied in the literature. It is easy to verify
that (inverted) forks and hourglasses are polytrees. Aghighi,
Jonsson, and Ståhlberg (2015) show that cost-optimal plan-
ning is tractable for instances with bounded domain size and
a polytree causal graph with bounded diameter, the length
of the longest path in the underlying undirected graph.

Clearly, all graphs in Figure 1 have diameter 2. Another
popular parameter is the in-degree of the causal graph, i.e.
the maximum number of arcs that go into a vertex. The in-
degree is 1 for forks but unbounded for inverted forks and
hourglasses. Cost-optimal planning is tractable for instances
with polytree causal graphs, domain size 2 and bounded
in-degree (Katz and Domshlak 2008). This result cannot
be generalised to arbitrarily large domains: even satisfic-
ing planning is NP-hard for domain size 5 and in-degree 1
(Giménez and Jonsson 2009). Ståhlberg (2017) considered
the depth of the causal graph, i.e. the length of the longest
directed path (which is obviously upper bounded by the di-
ameter). He showed that cost-optimal planning is tractable
for instances with bounded domain size and polytree causal
graphs with bounded depth and in-degree. We will improve
on his result, showing that it is sufficient to bound only the
depth and the domain size to achieve tractability. The re-
sulting tractable fragment is maximal for polytrees in the
sense that we cannot drop the domain size bound nor the
depth bound with retained tractability; it is known that cost-
optimal planning is NP-hard for causal graphs of arbitrary
depth, even if the domain size is 2 (Giménez and Jonsson
2008) and for inverted-fork causal graphs and unbounded
domain size (Domshlak and Dinitz 2001).

In Sec. 2 we provide basic definitions for planning. In
Sec. 3 we first derive a complexity bound for cost-optimal
planning for polytree causal graphs based on the domain
size and a bound B the number of variables changes in a
plan. We then state such a bound as a function of the domain
size and the depth of the causal graph, and combine this into
the main theorem (Thm. 4). The actual bound is proven in
Section 4. The paper concludes with a discussion section.

2 Preliminaries
We use the SAS+ planning framework (Bäckström and
Nebel 1995). Let V be a finite set of variables with a finite
domain D of size s = |D|. The state space S(V,D) is D|V |
and the members of S(V,D) are called (total) states. The
projection s[v] of a state s onto a variable v is the value of v
in s. This can be viewed as a total function over V such that
s[v] ∈ D(v) for all v ∈ V . A partial state s is similarly a
partial function over V such that for each v ∈ V , either s[v]
is undefined or s[v] ∈ D(v). The notation vars(s) denotes
the set of variables v ∈ V such that s[v] is defined. Projec-
tion is extended to sets of variables such that if V ′ ⊆ V , then
s[V ′] is a partial state that agrees with s on all variables in
vars(s) ∩ V ′ and is otherwise undefined.

A planning instance is a tuple P = 〈V,A, sI , sG, c〉where
V is a set of variables, with an implicit domain D, A is a
set of actions and c : A → Q≥0 is a cost function. The
initial state sI is a total state and the goal sG is a partial
state. Each action a ∈ A has two associated partial states the
precondition pre(a) and the effect eff(a). Let a ∈ A and let
s be a total state. Then a is valid in s if pre(a)[v] = s[v] for
all v ∈ vars(pre(a)). Furthermore, the result of a in s is a
state t ∈ S(V,D) such that for all v ∈ V , t[v] = eff(a)[v]
if v ∈ vars(eff(a)) and t[v] = s[v] otherwise. Let s0, s` ∈
S(V,D) and let ω = 〈a1, . . . , a`〉 be a sequence of actions.
Then ω is a plan from s0 to s` if either (1) ω = 〈〉 and ` = 0

or (2) there are states s1, . . . , s`−1 ∈ S(V,D) such that for
all i (1 ≤ i ≤ `), ai is valid in si−1 and si is the result
of ai in si−1. An action sequence ω is a plan for P if it is
a plan from sI to some state s such that s[v] = sG[v] for
all v ∈ vars(sG). The length of ω is |ω| = ` and its cost is
c(ω) =

∑`
i=1 c(ai). We also define C(v, ω) for all v ∈ V

as the number of value changes of v when executing ω, i.e.
C(v, ω) is the number of indices i (1 ≤ i ≤ `) such that
si[v] 6= si−1[v]. Let ω be a plan for P. Then ω is a shortest
plan for P if there is no plan ω′ for P such that |ω′| < |ω|;
ω is a cost-optimal plan for P if there is no plan ω′ for P
such that c(ω′) < c(ω); and ω is a shortest cost-optimal
plan for P if it is cost optimal and there is no plan ω′ for P
such that c(ω′) = c(ω) and |ω′| < |ω|. The latter concept is
important in the presence of zero-cost actions, since a cost-
optimal plan can then be arbitrarily long. In order to find a
cost-optimal plan, it is obviously sufficient to find a shortest
cost-optimal plan.

We extend projections as follows. Let V ′ ⊆ V . For
each a ∈ A, a[V ′] is the restriction a′ of a where
pre(a′) = pre(a)[V ′] and eff(a′) = eff(a)[V ′]. Also
define A[V ′] = {a[V ′] | a ∈ A and vars(eff(a[V ′])) 6= ∅}
and P[V ′] = 〈V ′, A[V ′], sI [V

′], sG[V ′]〉. The projection of
an action sequence ω = 〈a1, . . . , a`〉 over A onto V ′ is
denoted ω[V ′] and defined as follows. First define the se-
quence ω′ = 〈a′1, . . . , a′`〉 such that a′i = ai[V

′] for all
i (1 ≤ i ≤ `). Then define ω[V ′] as the subsequence of
ω′ that contains only those a′i where vars(eff(a′i)) 6= ∅. For
all cases, we also define projection onto a single variable v
such that a[v] = a[{v}] etc.

Each v ∈ V has a domain-transition graph DTG(v) =
〈D,T 〉, where for all x, y ∈ D, T contains an arc 〈x, a, y〉
if there is some a ∈ A such that eff(a)[v] = y and ei-
ther pre(a)[v] = x or v 6∈ vars(pre(a)). The causal graph
CG(P) for P describes how the variables depend on each
other, as implicitly defined by the actions. It is defined as
the directed graph CG(P) = 〈V,E〉 where for all distinct
v, w ∈ V , 〈v, w〉 ∈ E if (1) v ∈ vars(pre(a)) ∪ vars(eff(a))
and (2) w ∈ vars(eff(a)) for some action a ∈ A. An ac-
tion a ∈ A is unary if |vars(eff(a))| = 1 and P is unary if
all a ∈ A are unary. It is immediate that P must be unary
if CG(P) is acyclic, and the following proposition is imme-
diate since a shortest (cost-optimal) plan cannot have any
redundant actions.
Proposition 1. Let P be a unary SAS+ instance. If ω is a
shortest or shortest cost-optimal plan for P, then |ω[v]| =
C(v, ω) for all v ∈ V .

A directed graph G = 〈V,E〉 is a polytree if it is acyclic
and the undirected variant of it is a tree, i.e. if we ignore the
direction of the edges thenGmust be connected and contain
no cycles. The depth d(v) of a vertex v ∈ V is the length
of the longest directed path from v to any sink in G, i.e.
d(v) = 0 if v itself is a sink.

3 Planning for Polytrees
We will focus on planning for instances where the causal
graph is a polytree. In this section, we will first derive a
bound on the complexity of cost-optimal planning for such

instances given that we know how many variable changes we
must consider. We will then present such a bound as a func-
tionB(s, d) of the domain size and the depth, satisfying that
for every variable v and every shortest cost-optimal plan ω,
it holds that C(v, ω) ≤ B(s, d(v)). Finally, we combine this
into our main result (Theorem 4).

3.1 Planning as CSP
We first improve a known complexity result.
Lemma 2. Let P = 〈V,A, sI , sG, c〉 be a SAS+ instance
such that CG(P) is a polytree. Let B be an upper bound on
C(v, ω) for all v ∈ V and all shortest cost-optimal plans
ω for P. Then cost-optimal planning can be solved in time
O((BsB+1)6n), where n = ‖P‖ is the instance size.

Proof. First assume that all DTGs are acyclic. Let k be the
maximum number of walks from sI [v] to sG[v] in DTG(v)
over all v ∈ V . Bäckström (2014) shows how to decide if
such an instance has a plan by making a tree decomposition
of CG(P) and then encode P as an instance C of the Con-
straint Satisfaction Problem (CSP). Since the resulting pri-
mal graph of the CSP instance is a tree, this instance can be
solved in time O(NCD

2
C) (Dechter and Pearl 1989), where

NC is the number of CSP variables and DC is their domain
size. When CG(P) is a polytree, this whole process runs in
time O((ks)6n) (the dominating term in the proof of Corol-
lary 10 in Bäckström (2014)). He also solves cost-optimal
planning in this way by encoding P as an instance of the Val-
ued CSP (VCSP) problem (Bäckström 2014, Theorem 12).
No complexity figure is given here, but the only difference
in the encoding is the additional weight function, so cost-
optimal planning can also be solved in timeO((ks)6n) since
VCSP with tree primal graphs can also be solved in time
O(NCD

2
C) (Cooper and Schiex 2004, Theorem 5.4).

Bäckström remarks that the only reason for requiring
acyclic DTGs is to bound the number of walks in the DTGs,
and the CSP encoding does not require acyclic DTGs. In
the encoding, each CSP variable x corresponds to a node
in the tree decomposition, i.e. x corresponds to some sub-
set V ′ ⊆ V , and the domain of x is all possible plans for
the projection P[V ′]. However, it is sufficient that the CSP
variable domains are sets of subplans that guarantee there is
a solution if P has a plan (possibly with certain properties).
The parameter k is then the maximum number of walks we
have to consider in any DTG under this condition. This ob-
servation was later exploited by Bäckström (2015).

Let B be a bound on C(v, ω) for all v ∈ V over all
shortest cost-optimal plans ω for P. Let ω be such a plan.
Since CG(P) is a polytree, it follows from Prop. 1 that
|ω[v]| = C(v, ω) ≤ B for all v ∈ V . Hence, we only
have to consider walks up to length B and there are at
most

∑B
i=0(s − 1)i ≤ BsB such walks, so we can set

k = BsB . Using the result above, we get that cost-optimal
planning when CG(P) is a polytree can be solved in time
O((ks)6n) ⊆ O((BsBs)6n) = O((BsB+1)6n).

3.2 Bounds for Polytree Causal Graphs
In the derivation and definition of the bound function B, we
need a function τ , defined such that τ(s, h) is the number

of nodes in a maximal tree of height h where the root has
branching factor s and all other interior nodes have branch-
ing factor s − 1. The reason for this definition will become
clear later. For all s ≥ 2 and h ≥ 1, we thus have

τ(s, h) = 1 + s

h−1∑
i=0

(s− 1)i

(we do not need the special cases where s < 2 or h < 1).
For the special case where s = 2, we can simplify this ex-
pression to

τ(2, h) = 1 + 2h,

and otherwise (when s ≥ 3) we can rewrite it as

τ(s, h) = 1 + s

h−1∑
i=0

(s− 1)i = 1 + s
(s− 1)h − 1

(s− 1)− 1

= 1 +
s

s− 2
(s− 1)h − s

s− 2
which can be upperbounded as

τ(s, h) ≤ 3(s− 1)h

since 1 ≤ s
s−2 ≤ 3 for all s ≥ 3.

We can now define the bound function B of the domain
size s and the depth d as

B(s, d) =

{
s− 1, if d = 0
τ
(
s,B(s, d− 1) + 1

)
+ (s− 2), if d > 0.

This function upper bounds the number of variable changes
in all shortest cost-optimal plans.
Lemma 3. Let P = 〈V,A, sI , sG, c〉 be a SAS+ instance
with a polytree causal graph. If ω is a shortest cost-optimal
plan for P, then C(v, ω) ≤ B(s, d(v)) for all v ∈ V .
The proof of the lemma appears in Sec. 4. We can now state
our main result.
Theorem 4 (Main result). Let P = 〈V,A, sI , sG, c〉 be a
SAS+ instance such that CG(P) is a polytree with maximum
depth d. If P is solvable, we can find a cost-optimal plan for
it in time O

(
(B(s, d) · sB(s,d)+1)6 · ‖P‖

)
.

Proof. It is sufficient to find a shortest cost-optimal plan, so
the result follows from Lemmas 2 and 3.

In order to get a better understanding of the function B,
we will now study a non-recursive form of it. For s ≥ 3, we
can use the upper bound τ(s, h) ≤ 3(s−1)h to upper bound
B(s, d) as follows

B(s, d) + 1 = τ
(
s,B(s, d− 1) + 1

)
+ (s− 2) + 1

≤ 3(s− 1)B(s,d−1)+1 + (s− 1)

≤ 4(s− 1)B(s,d−1)+1.

It follows that B(s, d) can be upperbounded by a ’tower
function’ of the form

4(s− 1)4(s−1)
· ·
·4(s−1)s

with d levels of exponentiation. We do not derive a corre-
sponding non-recursive bound for the case where s = 2
since an even better bound will be derived at the end of Sec-
tion 4.

4 Plan Lengths for Polytree Causal Graphs
This section is entirely devoted to the proof of Lemma 3. We
first provide a higher-level overview of the proof to make it
easier to understand the formal proof that follows.

4.1 Overview of the Proof
The proof assumes a planning instance P = 〈V,A, sI , sG, c〉
with a polytree causal graph CG(P). We will use the poly-
tree in Figure 2 as an example, where the vertices are num-
bered 1, . . . , 15 for simplicity. Recall that the vertices of
CG(P) are the variables of P and we will interchange-
ably refer to them as vertices or variables. The graph is
drawn such that all vertices with the same depth are aligned
horizontally. The proof assumes an arbitrary shortest cost-
optimal plan ω and shows by induction over the depth that
all vertices satisfy the bound.

The base case is all vertices at depth 0, i.e. the sinks,
which are vertices 1, . . . , 5 on the top row in the example.
This case is straightforward since no other variables depend
on the values of a sink, so the subplan for a sink only has to
achieve the goal for this variable itself.

For the induction step, we must prove that if all vertices
at depth d or less satisfy the bound, then also all vertices on
depth d + 1 satisfy the bound. Consider an arbitrary vertex
u at depth d + 1 and let Out(u) = {v1, . . . , vm} be the set
of outgoing vertices of u. In the example, we assume the
bound holds for all vertices at depth 0 and 1 and want to
prove that it holds also for depth 2. We illustrate the case
where we choose u = 9, which gives Out(u) = {2, 7} and
we choose v1 = 2 and v2 = 7 (the choice is arbitrary).
Note that it follows from the definition of depth that at least
one of v1, . . . , vm have depth d = d(u) − 1, but the other
vertices may have a smaller depth. We see in the example
that d(v2) = 2 = d(u)− 1 but d(v1) = 0.

Removing all outgoing arcs from u would split the graph
into m + 1 components U, V1, . . . , Vm such that u ∈ U
and vi ∈ Vi for 1 ≤ i ≤ m, i.e. these arcs are
the only dependencies between the components. Note that
{U, V1, . . . , Vm} is a partition of V . In the example we get
the sets V1 = {1, 2, 6, 8, 11}, V2 = {3, 4, 7} and U =
{5, 9, 10, 12, 13, 14, 15}, which clearly forms a partition of
the vertex set. Note that this does not necessarily partition
the vertices according to depth. For instance, V1 contains
vertex 11 with depth 3, which is larger than the depth of u,
and U contains vertex 5 with depth 0, which is smaller than
the depth of u. However, if a path from a source to a sink
contains such a vertex, then it cannot also contain vertex u.

Since there are no arcs between the sets V1, . . . , Vm, these
are all independent of each other. Furthermore, the only de-
pendencies between U and V1, . . . , Vm are the arcs from u
to v1, . . . , vm. Because of these limited dependencies, we
can prove the bound independently for each vertex at depth
d + 1, so the proof only needs to consider an arbitrary such
vertex u. The actual proof of the bound for u then proceeds
in three steps, I–III.

In step I we exploit the limited dependencies between
the parts U, V1, . . . , Vm and split the plan ω into the cor-
responding subplans ω[U], ω[V1], . . . , ω[Vm]. Since all ac-
tions are unary, these subplans have no actions in common

1 2 3 4 5

6 7

8 9 10

11 12 13 14

15

u

v1

v2

UV1

V2

d = 0

1

2

3

4

Figure 2: Example of partitioning a polytree into U , V1, V2,
for a vertex u with two out vertices v1 and v2.

so they form a kind of partition of ω. Furthermore, the re-
stricted dependencies makes it possible to split ω into these
subplans and then reassemble them in a different order as
long as the dependencies between ω[U] and each one of
ω[V1], . . . , ω[Vm] are satisfied. In particular, we show that
there exists such a reordered plan ω′ where all actions in
ω[V1], . . . , ω[Vm] that depend on some variable in U occur
as early as possible in the new plan. Since ω and ω′ have ex-
actly the same actions, they have the same length and cost,
but the properties of ω′ makes it easier to analyse than ω.

In step II we exploit that only the actions in the subplans
ω[v1], . . . , ω[vm] can depend on variables in U and that u is
the only such variable they can depend on. Let χ1, . . . , χm
be the corresponding sequences of precondition values on u
in the subplans ω[v1], . . . , ω[vm] and let ψ be the sequence
of values that u has during the plan. Since all actions must
have satisfied preconditions, it follows that all of χ1, . . . , χm
are subsequences of ψ. Figure 3 illustrates an example with
four sequences χ1, . . . , χ4 and how these can be mapped to
subsequences of ψ. We then define a tree T that contains all
prefixes of the sequences χ1, . . . , χm and all nodes of this
tree must then occur as subsequences of ψ. The prefix tree
for the four sequences in Figure 3 is drawn in black.

In step III we prove the actual bound on the number of
variable changes, by proving a bound on the length of ψ. We
do this by embedding the prefix tree T into another prefix
tree T s,h+1

max of known size. We then show that the prefixes of
T can be mapped toψ in such a way that for every element of
ψ that does not contribute to satisfying some new prefix in T ,
the size of T is correspondingly smaller than T s,h+1

max . This
analysis is then used to show that the length of ψ is upper
bounded by the size of T s,h+1

max . It is shown in Figure 3 how
T is embedded as a subtree of T s,h+1

max , where the additional
arrows and nodes of the latter are drawn in grey.

4.2 Proof
Proof of Lemma 3. Let P = 〈V,A, sI , sG, c〉 be an arbitrary
solvable SAS+ instance with a polytree causal graph. Let
ω be an arbitrary shortest cost-optimal plan for P. Proof by

T

ε

3

1

32

31

13
132

131

312

323

T 3,4
max

2

12

23

21

321

313

232

231

213

212

123

121 1212
1213
1231
1232
1312
1313
1321
1323
2121
2123
2131
2132
2312
2313
2321
2323
3121
3123
3131
3132
3212
3213
3231
3232

ψ = 1 2 3 1 2 3

r′

χ1 =1 3 1 χ2 =1 3 2 χ3 =3 1 2 χ4 =3 2 3

r′T

Figure 3: Example illustrating the induction part of the proof of Lemma 3. We have S = {χ1, . . . , χ4}, where χ1 = 131,
χ2 = 132, χ3 = 312 and χ4 = 323, and we have ψ = 123123. The maximal prefix tree T 3,4

max is drawn in grey with the prefix
tree T for S drawn on top of it with solid black arcs to illustrate that T is a subtree of T 3,4

max. The example also shows the minimal
release-time function r′ from S to ψ and a minimal tree mapping r′T from T to ψ with dotted arrows.

induction over the depth d, that for all d ≥ 0 it holds that
C(v, ω) ≤ B(s, d(v)) for all v ∈ V such that d(v) ≤ d.

Base case: We have d = 0 in the base case. Let v ∈ V be
an arbitrary variable with d(v) = 0 in CG(P). Then v is a
sink so Out(v) = ∅ and, thus, no other variable depends on
it. Hence, the plan ω[v] only needs to be a walk in DTG(v)
from sI [v] to sG[v]. A cycle in ω[v] cannot make ω shorter
or cheaper, so in the worst case, sI [v] is a Hamilton path, i.e.
of length s − 1. It follows that C(v, ω) ≤ s − 1 = B(s, 0)
for all v ∈ V with d(v) = 0, which proves the base case.

Induction: Suppose the claim holds for some d ≥ 0, i.e.
C(v, ω) ≤ B(s, d(v)) for all v ∈ V with d(v) ≤ d. We
must prove that C(v, ω) ≤ B(s, d(v)) also for all v ∈ V
with d(v) = d+ 1. Let u ∈ V be an arbitrary variable such
that d(u) = d+ 1 and assume that Out(u) = {v1, . . . , vm}.
Let U, V1, . . . , Vm be the corresponding partition of V as ex-
plained above. To enhance readability, we will define names
for the subplans of ω defined by the projections of ω onto

these sets as follows:

µ = ω[U]

ωi = ω[Vi] for 1 ≤ i ≤ m

That is, µ contains the subsequence of all actions that have
an effect on some variable in U (since there is a one-to-one
correspondence between the vertices and the variables of P),
and each ωi is analogously the subsequence of actions with
an effect on some variable in Vi. Recall that since a polytree
is acyclic, all actions must be unary, i.e. each action can have
an effect on one variable only. Since U, V1, . . . , Vm is a par-
tition of the variable set V , it follows that the subsequences
µ, ω1, . . . , ωm partition ω in the sense that every action in ω
occurs in exactly one of the subsequences µ, ω1, . . . , ωm.

We will be particularly interested in the subsequences cor-
responding to variables u, v1, . . . , vm. First note that we can
write µ on the form

µ = ω[U] = µ0, b1, µ1, b2, µ2, . . . , b`, µ`,

where the subsequence

β = µ[u] = b1, . . . , b`

are the actions that have a defined effect on u. That is, the
actions in β have an effect on u only and the actions in the
sequences µ0, . . . , µ` have effects on the variables inU\{u}
only. For each i, we can similarily write ωi on the form

ωi = ω[Vi] = ω0
i , a

1
i , ω

1
i , a

2
i , ω

2
i , . . . , a

hi
i , ω

hi
i ,

where the subsequence

αi = ωi[vi] = a1i , a
2
i , . . . , a

hi
i ,

are the actions in ωi that have a defined effect on vi and
where hi is the length of αi. That is, the actions in αi
have an effect on vi only and the actions in the sequences
ω0
i , . . . , ω

hi
i only have effect on the variables in Vi \ {vi}.

We also define names for the following sequences of do-
main values. For each i (1 ≤ i ≤ m), let

χi = x1i , . . . , x
hi
i = pre(a1i)[u], . . . , pre(ahii)[u],

i.e. the sequence of precondition values that the actions in
αi have on u. Also let

ψ = y0, . . . , y`,

corresponding to β such that y0 = sI [u] and yk = eff(bk)[u]
for 1 ≤ k ≤ `, i.e. ψ is the sequence of values of variable
u while executing ω. For each i (1 ≤ i ≤ m), every defined
values in χi must be achieved by the initial state or some
action in β. Consider two consecutive values xti, x

t+1
i in χi.

If both are defined and have different values, then β must
contain at least one action between ati and at+1

i to change u,
while this is not necessary if xti = xt+1

i or if either or both
are undefined. We will later want to prove an upper bound
on the length of ψ in the worst case, so we can assume for
all i (1 ≤ i ≤ m) that

1. xti is defined for all t (1 ≤ t ≤ hi) and
2. xti 6= xt+1

i for all t (1 ≤ t < hi).

Under this assumption, it obviously also holds that each of
the sequences χ1, . . . , χm appear as subsequences of ψ. We
also define h = maxi hi and S = {χi | 1 ≤ i ≤ m}. Given
a plan ω, we will also use the shorthand ai ≺ω aj when
i < j1.

The remainder of the proof will be in three steps:
I) We define a ’release-time function’ r for ω that maps

χ1, . . . , χm to ψ. Then we show that ω can be reordered into
an equivalent plan ω′ with such a function r′ with certain
minimality properties.

II) We define a tree T of all prefixes of χ1, . . . , χm and
a ’tree mapping’ rT from T to ψ, and show that we can

1Formally, this definition requires that a plan is defined as a se-
quence of action instances, rather than actions. In order to simplify
the presentation we do not explicitly make this distinction, trusting
the reader to interpret correctly. Furthermore, since we will only
consider a given plan and reorderings of it, we can alternatively as-
sume that all actions in a plan are unique, even if they may have
the same definitions.

use function r′ above to construct such a mapping r′T with
certain minimality properties. We also define the maximal
prefix tree T s,hmax of height h.

III) We show that the length of ψ is bounded by the size of
T s,h+1

max by embedding T as a subtree of T s,h+1
max and compare

their sizes. This also yields the bound for C(u, ω).

Step I. We know that:

1. All actions are unary, i.e. have effect on one variable only.
2. All actions in µ have preconditions on variables inU only.
3. For each i, the only actions in ωi that can have a precon-

dition on some variable outside Vi are the actions in αi,
which can have a precondition also on variable u.

It follows from 1 and 3 that every interleaving of ω1, . . . , ωm
must be a plan for P[V1 ∪ . . . ∪ Vm] = P[V \ U]. Combin-
ing this with 2 yields that an interleaving of µ, ω1, . . . , ωm
is a plan for P if all actions in α1, . . . , αm have their precon-
ditions on u satisfied. In particular, we will show below that
we can make such an interleaving which satisfies a certain
minimality property.

The condition that all actions actions in α1, . . . , αm have
their preconditions on u satisfied in ω can be modelled by a
’release-time function’ r that maps all pairs i, t (1 ≤ i ≤ m,
1 ≤ t ≤ hi) to {0, . . . , `}, such that:

1. r(i, 1) = 0 if a1i ≺ω b1,

2. r(i, hi) = ` if b` ≺ω ahii and otherwise
3. r(i, t) = k where bk ≺ω ati ≺ω bk+1 for 1 ≤ t ≤ h.

One may think of r(i, t) as the ’release time’ of action ati in
ω with respect to the actions in β, i.e. r(i, t) does not specify
an exact position in ω, but only a sufficient ordering between
ati and β. Case 1 only occurs when x1i = y0. Otherwise,
bk sets the precondition on u for ati in ω. Note that x1i =
y0 may hold also in this case, if yr(i,1) = y0; the actual
value depends on ω. It must hold that yr(i,t) = xti for all i
and t so r is also a mapping from the sequences in S to ψ,
constituting a witness that all χi ∈ S are subsequences of ψ.

We will furthermore say that a release-time function is
minimal if all actions in α1, . . . , αm occur as early as possi-
ble. Formally, r is a minimal release-time function if it also
satisfies that for all i (1 ≤ i ≤ m):

1. r(i, 1) = k, for the minimum k such that yk = x1i , and
2. r(i, t) = k, for the minimum k > r(i, t − 1) such that
yk = xti, for 1 < t ≤ hi.

The release-time function r′ in in Figure 3 is minimal. Note
that minimality is defined with respect to S and ψ, not a
particular plan, so there is always a unique minimal release-
time function, but not every plan satisfies it.

Using the previous observation on interleaving of plans,
we will now show that we can always reorder the subplans
µ, ω1, . . . , ωm with respect to each other such that the result
is a plan with a minimal release-time function.

Claim 5. There exists a plan ω′ for P with release-time func-
tion r′ such that ω′ is a reordering of ω and r′ is minimal.

Proof of the claim. First define r′ as a function satisfying
the minimality criteria above. We must show that we can
construct ω′ as an interleaving of µ, ω1, . . . , ωm such that r′
is the release-time function for ω′. This exploits the obser-
vation above that ω1, . . . , ωm are independent of each other,
so it is only necessary to order each of them with respect to
µ. Furthermore, they only need to be ordered with respect to
β, since µ[U \ {u}] does not interact with ω1, . . . , ωm.

First interleave α1, . . . , αm with β, using r′ as a guide.
Start with ω′ = β. For each i and t (1 ≤ i ≤ m, 1 ≤ t ≤ hi),
insert ati at any position between br

′(i,t) and br
′(i,t)+1, alter-

natively before b1 if r′(i, 1) = 0 or after b` if r′(i, hi) = `.
This preserves the internal orders of α1, . . . , αm and β and
each ati has its precondition on u satisfied, so this is a plan
for P[{u, v1, . . . , vm}]. Then for each i (1 ≤ i ≤ m), in-
terleave the remainder of ω1, . . . , ωm with ω′ as follows. In-
sert ω0

i anywhere before a1i , insert ωhii anywhere after ahii
and for each t (1 ≤ t < hi), insert ωti anywhere between
ati and at+1

i . None of these subplans have any variables in
common with β. Furthermore, since ωi, . . . , ωm have only
variable u in common and can only have preconditions on
it, they cannot interfere with each other. Since the inter-
nal orders of ω1, . . . , ωm are preserved, this is a plan for
P[{u} ∪ V1 ∪ . . . ∪ Vm].

Finally, we interleave the remainder of µ with ω′ as fol-
lows. Insert µ0 anywhere before b1, insert µ` anywhere after
b` and for each k (1 ≤ k < `), insert µk anywhere between
bk and bk+1. This preserves the internal order of µ and since
none of µ0, . . . , µ` share any variables with ω1, . . . , ωm, it
follows that ω′ is a plan for P.

Since ω′ is a reordering of ω it has exactly the same ac-
tions with the same number of occurences, so the two plans
have the same length and cost, i.e. either both ω and ω′ are
shortest cost-optimal plans or none of them is. In particular,
it holds that ω′[v] = ω[v] for all v ∈ V , so the sequences
χ1, . . . , χm and ψ are the same for both plans. Hence, we
can analyse ω′ instead of ω. Note that this reordering is pos-
sible due to the inherent restrictions of polytrees.

Step II. We will now define the concept of prefix trees and
tree mappings. Given a sequence σ and a value t (0 ≤ t ≤
|σ|), we define the t-prefix of σ as the prefix consisting of
the t first elements in σ. For every χi ∈ S and every t (1 ≤
t ≤ hi), let ρti be the t-prefix of χi, and let P be the set of all
such prefixes, including the empty prefix ε. Then define the
prefix tree T for P as a directed tree T = 〈N,F 〉 as follows:

1. The node set N contains a node nρ for each prefix ρ ∈ P .
2. The arc set F contains an arc 〈nρ, nρ′〉 for each pair of

prefixes ρ, ρ′ ∈ P such that ρ′ = ρx for some x ∈ D.

It follows that nε is the root of T . One may think of a node
nρ as representing the set of all χi ∈ S that have the same
t-prefix ρ, where t = |ρ|. All values in D are possible in the
first position of the prefixes and otherwise it follows from the
worst-case assumption above that the values must alternate.
Hence, the root has at most s children and all other nodes
have at most s − 1 children. The height of T is the length

of the longest prefix, i.e. h. An example of a prefix tree T
appears in Figure 3.

Also let T s,hmax denote the largest possible prefix tree of
height h for domain size s, which is the prefix tree for the set
of all possible alternating sequences of length h over the do-
main. The root in this tree has exactly s children and every
other interior node has exactly s − 1 children, so it follows
that T s,hmax has exactly τ(s, h) nodes. Also note that any prefix
tree of height h, or less, must be a subtree of T s,hmax.

A prefix tree T represents a strict partial order ≺T on N
such that nρ ≺T nρ′ if nρ is an ancestor of nρ′ , i.e. if ρ is
a proper prefix of ρ′. Define a function v : N → D such
that v(nε) = y0 and otherwise v(nρ) is the value in the last
position of ρ. A function rT : N → {0, . . . , `} is a tree
mapping of T to ψ if it holds that:

1. yrT (n) = v(n) for all n ∈ N ,
2. if n ≺T n′ then rT (n) < rT (n′), for all n, n′ ∈ N .

Note that nodes along the same branch of T must be ordered
in strictly increasing order by rT , while it is possible that
nodes on different branches are mapped to the same index.
Furthermore, rT is a minimal tree mapping if

1. rT (nε) = 0 and
2. for every 〈n, n′〉 ∈ F , rT (n′) is the smallest index k such

that rT (n) < k and yk = v(n′).

The tree mapping r′T in the example in Figure 3 is minimal.
It is immediate from the definition of tree mappings that if

a tree mapping exists from T to ψ, then every prefix ρ ∈ P is
a subsequence of ψ. We will now show that also the opposite
holds, but we first need the following result.

Claim 6. If r is a minimal release-time function, then it has
the following property: for all χi, χj ∈ S and all t (1 ≤
t ≤ min{hi, hj}), if χi and χj have the same t-prefix, then
r(i, t) = r(j, t).

Proof of the claim. Proof by induction over t.
Base case: For t = 1, we have x1i = x1j so it is immediate

from the minimality definition that r(i, 1) = r(j, 1).
Induction: Suppose the claim holds for some t. Let χi and

χj have the same (t+1)-prefix. Then xti = xtj so it follows
from the induction hypothesis that r(i, t) = r(j, t). It also
holds that xt+1

i = xt+1
j so it follows from the minimality

definition that also r(i, t+ 1) = r(j, t+ 1).

We can now prove that a minimal tree mapping must exist.

Claim 7. If all ρ ∈ P are subsequences of ψ, then there
exists a minimal tree mapping r′T from T to ψ.

Proof of the claim. Let r′ be the minimal release-time func-
tion. We define a function r′T : N → {0, . . . , `} based on r′
as follows. Let r′T (nε) = 0. For every other node nρ ∈ N ,
let t = |ρ| and let r′T (nρ) = r′(i, t) for some χi ∈ S that has
ρ as a t-prefix. The choice does not matter since r′ assigns
the same value for all such χi (Claim 6). We must show that
rT is a tree mapping from T to ψ.

For condition 1, let nρ ∈ N \ {nε} be an arbitrary node
and let t = |ρ|. Then ρmust be a t-prefix of some χi ∈ S, so
v(nρ) = xti. We get that yRT (nρ) = yr

′(i,t) = xti = v(nρ).
The condition is trivially satisfied for nε.

For condition 2, suppose nρ ≺T nρ′ . Then ρ is a proper
prefix of ρ′. Let t = |ρ| and t′ = |ρ′|. Let χi ∈ S be any
sequence having ρ′ as a prefix. Then r′T (nρ) = r′(i, t) and
r′T (nρ′) = r′(i, t′), so it follows that r′T (nρ) < r′T (nρ′)
since r′(i, t) < r′(i, t′) must hold.

Finally, suppose that r′T is not minimal. Then there must
exist some 〈nρ, nρ′〉 ∈ F and an index k such that r′T (nρ) <
k < r′T (nρ′) and yk = v(nρ′). Let χi ∈ S be any sequence
with ρ′ as a t-prefix. Then χi also has ρ as a (t−1)-prefix, so
r′(i, t− 1) = r′T (nρ) and r′(i, t) = r′T (nρ′). However, then
yk = xti, which contradicts that r′ is minimal. It follows that
also r′T must be minimal.

Step III. We are now ready to prove a bound on the length
of ψ, which implies the bound on C(u, ω).

Claim 8. |ψ| ≤ τ(s, h+ 1) + (s− 1).

Proof of the claim. Let r′T be the minimal tree mapping in
the proof of Claim 7. Let R = {r′T (n) | n ∈ N} and let
r1, . . . , r|R| be the values in R in increasing order. That is,
R is the set of all indices in ψ that r′T maps some node to
and yr|R| is the last position in ψ that is used to satisfy some
precondition in α1, . . . , αm. Let ψ′ = y0 . . . yr|R| , i.e. ψ′ is
the shortest prefix of ψ satisfying S. Let ∆ = |ψ′| − |R|,
i.e. the number of elements in ψ′ that r′T does not map any
node to.

Recall that T is a subtree of the maximal prefix tree T s,hmax,
and thus also of T s,h+1

max . We will determine an upper bound
on the length of ψ′ based on comparing the sizes of T and
T s,h+1

max . For every consecutive pair ri, ri+1 ∈ R, arbitrar-
ily choose nodes ni, ni+1 ∈ N such that R′T (ni) = ri
and R′T (ni+1) = ri+1 (note that there can be more than
|R| nodes in T , but r′T does not map these to more than
|R| different indices). Then there can be no n ∈ N such
that ri < R′T (n) < ri+1. Hence, none of the elements
yri , . . . , yri+1 is used to satisfy S, i.e. to satisfy any precon-
dition of the actions in α1, . . . , αm. It follows that a cycle
in yri , . . . , yri+1 would be redundant, contradicting that ω′
is a shortest cost-optimal plan, so no value occurs more than
once in this sequence. There are thus rδ = ri+1 − ri − 1
values between positions ri and ri+1 and they contribute the
amount rδ to ∆. None of these values can be the value of a
child of ni since R′T is minimal, so node ni has rδ unique
subtrees in T s,h+1

max that ni does not have in T . Note that
this holds also if ni is a leaf in T since T s,h+1

max has height
h + 1 and ni thus cannot be a leaf in T s,h+1

max . The size of
each such subtree is at least 1, so together they reduce the
size of T with at least rδ compared to the size of T s,h+1

max .
We know that T s,h+1

max has τ(s, h + 1) nodes, so it follows
that |N | ≤ τ(s, h + 1) − ∆. Since |R| ≤ |N | we get
|ψ′| = |R|+ ∆ ≤ (τ(s, h+ 1)−∆) + ∆ = τ(s, h+ 1).

The remainder yr|R|+1, . . . , y` of ψ serves only to sat-
isfy the goal. If this suffix is longer than s − 1, then it

must contain a redundant cycle which contradicts that ω′,
and thus ω, is a shortest cost-optimal plan. It follows that
|ψ| ≤ τ(s, h+ 1) + (s− 1).

This proof is illustrated in Fig. 3, where r′T does not map
any node in T to the first occurence of 2 in ψ Hence, the
whole subtree rooted at node 2 in T s,h+1

max is missing in T .
Note that also some more subtrees are missing, without con-
tributing to the length of ψ, i.e. these reduce the length of ψ
further than the analysis in the proof above shows.

It remains to prove that C(u, ω) ≤ B(s, d(u)). We know
that C(u, ω) = |β| = |ψ| − 1, from Prop. 1, and that
C(vi, ω) = hi for all i (1 ≤ i ≤ m). We also know from the
induction hypothesis thatC(vi, ω) ≤ B(s, d(vi)) ≤ B(s, d)
so we get that h ≤ B(s, d) and, thus, that

C(u, ω) = |ψ| − 1

≤ τ(s, h+ 1) + (s− 1)− 1

= τ(s, h+ 1) + s− 2

≤ τ(s,B(s, d) + 1) + s− 2

= B(s, d+ 1).

This ends the induction and, thus, the proof of Lemma 3.

For the special case where s = 2, we can easily get a
better bound. Assume D = {1, 2}. Then all of χ1, . . . , χm
and ψ must be alternating sequences of 1 and 2, starting with
either 1 or 2. Every χi ∈ S is then equivalent to, or a prefix
of, either y0, . . . , yh−1 or y1, . . . , yh. One final alternation
may be necessary to satisfy the goal, so we get that |ψ| ≤
h + 2 in this case, i.e. β ≤ h + 1. For this special case, we
can thus improve the bound to B(2, d) = d+ 1.

5 Concluding Remarks
We have presented a polynomial-time algorithm for cost-
optimal planning restricted to polytree causal graphs,
bounded depth, and bounded domain size. It, thus, advances
the tractability frontier since previous tractability results us-
ing these restrictions also require further restrictions. Our
algorithm is based on transforming cost-optimal planning
into VCSP, using a transformation originally suggested by
Bäckström (2014). The main technical result is a bound
on the number of variable changes defined in terms of the
depth of the causal graph and the domain size. This re-
sult is maximal in the sense that dropping the domain size
bound or the depth bound size leads to an NP-hard prob-
lem. A natural open question is thus how to generalise the
tractability result to larger classes of planning instances. It
is not obvious what other parameter bounds would lead to
tractability so it may be easier to consider larger classes
of causal graphs than polytrees. The obvious generalisa-
tion is to consider causal graphs that have bounded tree-
width—this is a method that have led to a large num-
ber of tractability results in many different areas of com-
puter science, with a few examples also in planning (Braf-
man and Domshlak 2006; Domshlak and Nazarenko 2013;
Bäckström 2014). The very same planning algorithm would
be useful also in this case: it runs in polynomial time when-
ever the tree-width of the causal graph and the number of

variable changes are bounded. Unfortunately, it is not at all
clear how to generalise the bound on variable changes when
the causal graph has bounded tree-width larger than one.

Another possible generalisation is to relax the domain size
bound to hold only for certain variables, which Katz and
Keyder (2012) used to prove that planning for fork causal
graphs is tractable when only the root variable is bounded.

Although our algorithm is polynomial-time, its run-
ning time is admittedly not impressive. However, pre-
vious tractability results like Aghighi, Jonsson, and
Ståhlberg (2015) and Ståhlberg (2017), have similar tower
functions despite using more restrictions than we do. We
believe that our bounds can be considerably improved by
an even more careful analysis, combining these proof tech-
niques with others to give an even more refined picture of
optimal plans. Otherwise, to construct substantially faster
algorithms may require that they are based on some other
principle than the VCSP transformations used in the litera-
ture, cf. Bäckström (2014), Brafman and Domshlak (2006),
and Cooper, de Roquemaurel, and Régnier (2011).

Acknowledgments
We are grateful to the reviewers for very detailed and valu-
able comments. Bäckström is partially supported by the
Swedish Research Council (VR) under grant 621-2014-
4086.

References
Aghighi, M.; Jonsson, P.; and Ståhlberg, S. 2015. Tractable
cost-optimal planning over restricted polytree causal graphs.
In Proc. 29th AAAI Conference on Artificial Intelligence
(AAAI 2015), Austin, TX, USA, 3225–3231.
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Comput. Intell. 11:625–656.
Bäckström, C. 2014. Parameterising the complexity of plan-
ning by the number of paths in the domain-transition graphs.
In Proc. 21st Eur. Conf. Artif. Intell. (ECAI-14), Prague,
Czech Rep., 33–38.
Bäckström, C. 2015. Some fixed parameter tractabil-
ity results for planning with non-acyclic domain-transition
graphs. In Proc.29th AAAI Conf. Artif. Intell., 2015, Austin,
TX, USA., 3232–3238.
Brafman, R. I., and Domshlak, C. 2006. Factored planning:
How, when, and when not. In Proc. 21st Nat’l Conf. Artif.
Intell. 2006, Boston, MA, USA, 809–814.
Brafman, R. I., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artif. Intell. 198:52–71.
Cooper, M. C., and Schiex, T. 2004. Arc consistency for
soft constraints. Artif. Intell. 154(1-2):199–227.
Cooper, M. C.; de Roquemaurel, M.; and Régnier, P. 2011.
A weighted CSP approach to cost-optimal planning. AI
Commun. 24(1):1–29.
Cooper, M.; Maris, F.; and Régnier, P. 2014. Monotone
temporal planning: Tractability, extensions and applications.
J. Artif. Intell. Res. 50:447–485.

Dechter, R., and Pearl, J. 1989. Tree clustering for constraint
networks. Artif. Intell. 38(3):353–366.
Domshlak, C., and Dinitz, Y. 2001. Multi-agent off-line co-
ordination: Structure and complexity. In Proc. 6th European
Conference on Planning (ECP 2001), Toledo, Spain, 34–43.
Domshlak, C., and Nazarenko, A. 2013. The complexity
of optimal monotonic planning: The bad, the good, and the
causal graph. J. Artif. Intell. Res. 48:783–812.
Giménez, O., and Jonsson, A. 2008. The complexity of
planning problems with simple causal graphs. J. Artif. Intell.
Res. 31:319–351.
Giménez, O., and Jonsson, A. 2009. Planning over chain
causal graphs for variables with domains of size 5 is NP-
hard. J. Artif. Intell. Res. 34:675–706.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proc.17th Int’l Conf. Automated Planning and Scheduling,
ICAPS 2007, Providence, RI, USA, 2007, 176–183.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In ICAPS, 161–170.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res. 26:191–246.
Jonsson, A.; Jonsson, P.; and Lööw, T. 2014. Limitations of
acyclic causal graphs for planning. Artif. Intell. 210:36–55.
Katz, M., and Domshlak, C. 2008. New islands of tractabil-
ity of cost-optimal planning. J. Artif. Intell. Res. 32:203–
288.
Katz, M., and Domshlak, C. 2010. Implicit abstraction
heuristics. J. Artif. Intell. Res. 39:51–126.
Katz, M., and Keyder, E. 2012. Structural patterns be-
yond forks: Extending the complexity boundaries of clas-
sical planning. In Proc. 26th AAAI Conf. Artif. Intell. (AAAI
2012), Toronto, ON, Canada.
Knoblock, C. A. 1994. Automatically generating abstrac-
tions for planning. Artif. Intell. 68(2):243–302.
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C.
1998. Remote agent: To boldly go where no AI system has
gone before. Artif. Intell. 103(1-2):5–47.
Ståhlberg, S. 2017. Methods for Detecting Unsolvable Plan-
ning Instances using Variable Projection. Ph.D. Disserta-
tion, Linköping University, Sweden.
Williams, B. C., and Nayak, P. P. 1997. A reactive planner
for a model-based executive. In Proc. 15th International
Joint Conference on Artificial Intelligence (IJCAI 1997),
Nagoya, Japan, 1178–1185.

