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Abstract

Several algebras have been proposed for
reasoning about qualitative constraints over
time. One of these algebras is Vilain’s point-
interval algebra, which can relate time points
with time intervals. Apart from being a
stand-alone qualitative algebra, it is also used
as a subalgebra in Meiri’s approach to tem-
poral reasoning, which combines reasoning
about quantitative and qualitative temporal
constraints over both time points and time
intervals. While the satsifiability problem
for the full point-interval algebra is known to
be NP-complete, not much has been known
about its 4294967296 subclasses. We provide
in this paper a complete classification of sat-
isfiability for all these subclasses into polyno-
mial and NP-complete respectively. We also
identify all maximal tractable subalgebras—
nine in total.

1 INTRODUCTION

Reasoning about temporal constraints is an important
task in many areas of Al and elsewehere, such as plan-
ning (Allen, 1991), natural language processing (Song
and Cohen, 1988), time serialization in archeology
(Golumbic and Shamir, 1993) ete. In most applica-
tions, knowledge of temporal constraints is expressed
in terms of collections of relations between time inter-
vals or time points. Often we are only interested in
qualitiative relations,; i.e. the relative ordering of time
points but not their exact occurrences in time. There
are two archetypical examples of qualitative temporal
reasoning: Allen’s algebra (A) (Allen, 1983) for rea-
soning about time intervals and the point algebra (PA)
(Vilain, 1982) for reasoning about time points.

Attempts have been made to integrate reasoning about
time intervals and time points. Meiri’s (1991) ap-
proach to temporal reasoning makes it possible to rea-
son about time points and time intervals with respect

to both qualitative and quantitative time. This frame-
work can be restricted to qualitiative time and the
resulting fragment is known as the qualitative algebra
(QA). In QA, a qualitative constraint between two ob-
jects O; and O; (each may be a point or an interval),
is a disjunction of the form (O;r10;) V...V (0;7;0;)
where each one of the r;’s is a basic relation that may
exist between two objects. There are three types of
basic relations:

1. Interval-interval relations that can hold between
pairs of intervals. These relations correspond to

Allen’s algebra.

2. Point-point relations that can hold between pairs
of points. These relations correspond to the point
algebra.

3. Point-interval and interval-point relations that
can hold between a point and an interval and
vice-versa. These relations were introduced by Vi-
lain (1982). The point-interval and interval-point
relations are symmetric so we will only consider
the point-interval relations in the sequel.

The satisfiability problem for the point algebra is
known to be tractable (Vilain et al., 1989) and the sat-
isfiability problem for Allen’s algebra is NP-complete
(Vilain et al., 1989). However, a large number of
tractable subclasses of Allen’s algebra has been re-
ported in the literature (van Beek and Cohen, 1990;
Golumbic and Shamir, 1993; Nebel and Burckert,
1995; Drakengren and Jonsson, 1996a). Clearly, QA
suffers from computational difficulties since it sub-
sumes the Allen algebra. Even worse, Meiri (1991)
shows that the satisfiability problem is NP-complete
even for point-interval relations. Besides this nega-
tive result, not very much is known about the compu-
tational properties of subclasses of the point-interval
algebra. This is an unfortunate situation if we want
to find tractable subclasses of the qualitative algebra
since the point-interval and interval-point algebras are
the glue that ties the world of time points together
with the world of time intervals.



We also have reasons to believe that the point-interval
algebra itself can be interesting in applications such
as reasoning about action and change. In certain ap-
proaches to action and change, such as the Features
and Fluents framework by Sandewall (1994), a clear
distinction is made between observations and actions.
Typically, observations occur at a single time point
while actions occur over extended periods of time.
Determining temporal relations between observations
and actions in a given scenario seems to be a prob-
lem which can be addressed by reasoning in the point-
interval algebra.

The main result of this paper is a complete classifica-
tion of all subclasses of the point-interval algebra with
respect to tractability. The classification makes 1t pos-
sible to determine whether a given subclass is tractable
or not by a simple test that can be easily carried out
by hand or automatically. We have thus gained a clear
picture of the borderline between tractability and in-
tractability in the point-interval algebra. In this pro-
cess, we have also taken a small step towards a deeper
understanding of the qualitative algebra.

A few words on methodology seem appropriate at this
point. The proof of the main theorem relies on a quite
extensive case analysis performed by a computer. The
number of cases considered in this analysis was ap-
proximately 10%. Naturally, such an analysis cannot
be reproduced in a research paper or be verified man-
ually. To allow for the verification of our results, we
include a description of the program used in the anal-
ysis. Furthermore, the programs used can be obtained
from the authors.

The rest of this paper is organized as follows: Section 2
defines the point-interval algebra and some auxiliary
concepts. Section 3 contains the classification of sub-
classes. Section 4 is a brief discussion of the results
and Section 5 concludes the paper. Most of the proofs
are postponed to the appendix. Due to space limita-
tions, we have not been able to give all proofs in their
entirety. The full proofs can be found in the technical
report (Jonsson et al., 1996).

2 POINT-INTERVAL RELATIONS

The point-interval approach to reasoning about time
is based on the notions time points, time intervals and
binary relations on them. A time point p is a variable
interpreted over the set of real numbers R. A time
interval [ is represented by a pair (I, I") satisfying
I= < It where I~ and IT are interpreted over R.
We assume that we have a fixed universe of variable
names for time points and time intervals. Then, an
V-interpretation is a function that maps time point
variables to R and time interval variables to R x R
and satisfies the previously stated restrictions. We will
frequently extend the notation by denoting the the first
component of F(7) by S(I7) and the second by S(I).

Given an interpreted time point and an interpreted
time interval, their relative positions can be described
by exactly one of the elements of the set B of five basic
point-interval relations where each basic relation can
be defined in terms of its endpoint relations (see Table
1). A formula of the form pBI where p is a time point,
I a time interval and B € B, is said to be satisfied by
an V-interpretation iff the interpretation of the points
and intervals satisfies the endpoint relations specified
in Table 1.

To express indefinite information, unions of the basic
relations are used, written as sets of basic relations,
leading to 2° binary point-interval relations. Natu-
rally, a set of basic relations is to be interpreted as a
disjunction of the basic relations. The set of all point-

interval relations 2B is denoted by V. Relations of
special interest are the null relation & (also denoted
by 1) and the universal relation B (also denoted T).
With the notation =2 we mean the relation B — {x},
e.g. a={b,s,d,f}.

A formula of the form p{ B, ..., B, }[ is called a poini-
wnterval formula. Such a formula is satisfied by an
V-interpretation < iff pB; 1 is satisfied by & for some
t, 1 < ¢ < n. A finite set © of point-interval for-
mulae 1s said to be V-satisfiable iff there exists an
V-interpretation & that satisfies every formula of O.
Such a satisfying V-interpretation is called an V-model
of ©. The reasoning problem we will study is the fol-
lowing:

INSTANCE: A finite set © of point-interval formulae.
QUESTION: Does there exist an V-model of ©7

We denote this problem V-SAT. In the following, we
often consider restricted versions of V-SAT where the
relations used in formulae in © are only from a subset
S of V. In this case we say that © is a set of formulae
over § and we use a parameter in the problem de-
scription to denote the subclass under consideration,

e.g. V-SAT(S).

Meiri’s extended definition of the point-interval alge-
bra consists of V equipped with two binary operations
intersection and composition. However, this defini-
tion does not constitute an algebra because it is not
closed under composition. We replace the composi-
tion operation with an operation on V we call cross-
composition. The reason for introducing the algebra
is that it is needed for the introduction of a closure
operation which will simplify the forthcoming proofs.

Definition 2.1 Let B = {b,;s,d,f,a}. The poinit-
interval algebra consists of the set V = 27 and the
operations binary intersection (denoted by N) and
ternary cross-composition (denoted by ®). Intersec-
tion is defined as Vp, I : p(RNS)I < pRI A pST while
cross-composition is defined as Vp, I : p(R®S@T)I <
¢, J : (qRJ AqgSI ApTJ).



Table 1: The five basic relations of the V-algebra. The
endpoint relation I~ < I7T that is valid for all relations
has been omitted.

[ Basic relation | Symbol | Example | Endpoint rel. |

p before 1 b P p<I”
ITI

p starts [ s P p=1I"
ITI

p during [ d p I—<p<It
ITI

p finishes [ f P p=1T
ITI

p after 1 a P p>IT
ITI

It can easily be verified that R@ S®T = | J{B® B’ ®
B"|B € R,B" € 5,B" € T}, i.e. cross-composition
1s the union of the component-wise cross-composition
of basic relations.

Next, we introduce a closure operation Cy together
with a duality operator Dy. Both Cy and Dy trans-
form a given subclass of V to one that is polynomially
equivalent to the original subclass wrt. satisfiability.
The closure operation is similar to the closure oper-
ation for the Allen algebra introduced in (Nebel and
Biirckert, 1995), and is defined as follows.

Definition 2.2 Let § C V. Then we denote by
Cy(8) the V-closure of S, defined as the least subalge-

bra containing § closed under intersection and cross-
composition.

A program for computing V-closures can be obtained
from the authors.

Lemma 2.3 Let S C V. Then V-SAT(Cy(S)) can be
polynomially transformed to V-SAT(S).

Corollary 2.4 Let § C V. V-SAT(S) is polynomial
iff V-SAT(Cy(S)) is polynomial. V-SAT(S) is NP-
complete iff V-SAT(Cy(S)) is NP-complete.

Next we introduce the duality operator and show that
it has the same transformational properties as the clo-
sure operation.

Definition 2.5 Let R € V. Define Dy(R) as the set
{B(r) | r € R} where 3(r) is defined as follows: 5(b) =
a, B(s) =1, f(d) =4, 5(f) = s and f(a) = b.

Let 8§ € V. Define Dy(S) as the set {Dy(R) | R € S}.

Lemma 2.6 Let S C V. Then V-SAT(Dy(S)) can be
polynomially transformed to V-SAT(S).

Proof sketch: Let ©® be an instance of the
V-SAT(Dy(S)) problem that have a V-model S.

Construct the following V-SAT(S) instance: © =
{pDyv(R)I |pRI € ©}. A V-interpretation 3’ of © can
be constructed as follows: Let &'(p) = —S(p) for each
time point p appearing in © and let (1) = —S(I™1),
§'(IT) = —=S(I7) for each time interval I appearing
in ©. Clearly, &' is a V-model of ©’. Showing the
converse direction is analogous. ad

Corollary 2.7 Let § C V. V-SAT(S) is polynomial
iff V-SAT(Dy(S)) is polynomial. V-SAT(S) is NP-
complete iff V-SAT(Dy(S)) is NP-complete.

3 CLASSIFICATION OF V

We begin this section by defining nine tractable subal-
gebras of the point-interval algebra. Later on, we show
that these algebras are the only maximal tractable sub-
algebras of V. Before we can define the algebras we
need a definition concerning the point algebra.

Definition 3.1 A PA formula is an expression of the
form zry where r is a member of {<, <, = #,> >
, L, T}and «, y denote real-valued variables. The sym-
bol L denotes the relation & which is unsatisfiable for
every choice of z,y € R. Similarly, T denotes the re-
lation R x R which is satisfiable for every choice of
x,y €R.

Let Q be a set of PA formulae and X the set of vari-
ables appearing in 2. An assignment of real values to
the variables in X is said to be an PA-interpretation of
Q. Furthermore, Q2 is satisfiable iff there exists an PA-

interpretation & such that for each formula zry € Q,

S(2)rS(y) holds. Such an PA-interpretation S is said

to be an PA-model of .

The first algebra we will consider has a very close con-
nection to PA. It is defined as follows.

Definition 3.2 The set V%3 consists of those relations
in V that can be expressed as one or more PA formulae

over time points and endpoints of intervals.

The other eight subalgebras are defined in terms of the
Cy and Dy, operators.

Definition 3.3
v3? = {{s},{b,s}, {b,a}, ~d, —£}, VZ° = Cp(vZ’)
V' =Dy (V5’)
Uéo = {{b, a}, —|b, -8, —F_f, —|a}, VZO = Cv(véo)
via = {{d}, {b,s,a}, =5, ~f, =2}, VIR = Cp(vl})
vy =Dv(Vi3)

vl = {{d},{b,a},-s,~d, —£}, VI8 = Cy(v'Y)



W= {L}u{rev]{siCr}
VE = Dy (V)

Given a subalgebra V', « is the number of relations
in the algebra and y 1s an element that is unique for
V, among the subalgebras of size z. For instance, V&7
is the only subalgebra of size 17 that contains {s}.
Let Vp be the set of all subalgebras in Definition 3.3
plus the algebra V3. The relations included in each
of these algebras can be found in Table 2. Further, let
Vyp denote the set of subalgebras listed in Table 3.

We have the following theorem.

Theorem 3.4 If V € Vp then V-SAT(V) is polyno-
mial. If V € Vyp then V-SAT(V') is NP-complete.

Proof: See Appendices A and B for the results con-
cerning Vp and Vyp, respectively. a

The main theorem can now be stated.

Theorem 3.5 For § C V, V-SAT(S) is polynomial iff
S 1s a subset of some member of Vp.

Proof: if: Foreach V € Vp, V-SAT(V) is polynomial
by Theorem 3.4.

only-if: Assume there exists a subclass S C V such
that V-SAT(S) is polynomial and § is not a subset
of any algebra in Vp. Without loss of generality, let
S be such a class with the least number of elements.
For each subalgebra V' in Vp, choose a relation & such
that # € § and € V. This can always be done since
S ¢ V. Let X be the set of these relations. The
following holds for X:

1. V-SAT(X) is polynomial since X C §.
2. X is not a subset of any algebra in Vp.

S is a minimal set satisfying (1) and (2) above. Hence,
|S] < |X]|. Furthermore, X C & so [S] < |X]| and
|S] = |X]|. The set Vp contains nine algebras so by
the construction of X, |X| < 9. As a consequence,

S <9.

To show that & does not exist, a machine-assisted case
analysis of the following form was performed:

1. Generate all subsets of V of size < 9. There are
9
Z ( 32 ) ~ 4.3 x 10° such subsets.

1
=0

2. Let 7 be such a set. Test: 7 is a subset of some
subalgebra in Vp or D C Cy(7) for some D €
Vnp.

The test succeeds for all 7. Hence, by Theorem 3.4,
either V-SAT(S) is NP-complete or S is a subset of
some member of Vp. Both cases contradict our initial
assumptions so § cannot exist. a

4 DISCUSSION

We have only considered qualitative relations between
time points and intervals in this paper. For cer-
tain applications this is satisfactory—for others we
must have the ability to reason also about quantita-
tive time. Previous research on reasoning about com-
bined qualitative and quantitative time has proven
this problem to be computationally hard. However,
recent results show that tractable reasoning is pos-
sible in certain subclasses of Allen’s algebra aug-
mented with quite advanced quantitative information.
The linear-programming approach by Jonsson and
Béckstrom (1996) offers a straightforward method for
extending the ORD-Horn subclass with quantitative
information. Several other subclasses of Allen’s alge-
bra with this property are exhibited in (Drakengren
and Jonsson, 1996b). Almost certainly, these meth-
ods can be adapted to the point-interval algebra. This
opens up for some interesting future research. Another
interesting research direction is the study of tractable
subclasses of Meiri’s unrestricted approach, i.e., al-
lowing for time points and time intervals to be both
qualitatively and quantitatively related.

The number of subclasses of V (2%? & 4.3 x 10°) is very
small in comparison with the 28192 ~ 102466 subclasses
of A. In principle it would have been possible to enu-
merate all subclasses of V with the aid of a computer.
Obviously, this is not the case with A (at least not
with the computers available today). If we want to
classify the subclasses of A with respect to tractabil-
ity, we must use other methods. We are not pessimistic
about the possibility of creating a complexity map of
A. Similar projects have been successfully performed
in mathematics and computer science. A well-known
example is the proof of the four-colour theorem (Appel
and Haken, 1976) which combine theoretical studies of
planar graphs with extensive machine-generated case
analyses. It seems likely that we shall need methods
that combine theoretical studies of the structure of A
with brute-force computer methods. Here we can see
a challenge for both theoreticians and practitioners in
computer science.

5 CONCLUSIONS

We have studied computational properties of the
point-interval algebra. All of the 232 possible sub-
classes are classified with respect to whether their cor-
responding satisfiability problem is tractable or not.
The classification reveals that there are exactly nine
maximally tractable subclasses of the algebra.
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Appendix

This appendix collects the tractability and intractabil-
ity proofs needed for the proof of Theorem 3.5. The
former results can be found in part A and the latter
results in part B. Due to space limitations, we have not
been able to give all proofs in their entirety. Hence,
certain proofs are only sketched or outlined. The full
proofs can be found in the technical report (Jonsson

et al., 1996).

A TRACTABILITY RESULTS

To make the forthcoming proofs less cumbersome, we
need a few results of more general character. These
can be found in Section A.1. The actual proofs of
tractability can be found in Section A.2.

A.1 MODEL TRANSFORMATIONS

One of our main vehicles for showing computational
properties of different subclasses is that of model trans-
formations. It is a method for transforming a solution
of one problem to a solution of a related problem.

Definition A.1 Let
interpretations.
mation.

T be a mapping on V-
We say that T is a model transfor-

This definition is very general. To make it applicable
in practice, we need a way of describing model trans-
formations in greater detail.

Definition A.2 Let T be a model transformation. A
function fr : B — 2% is a description of T" iff for arbi-
trary V-interpretations <, the following holds: ifb € B
and p(b)J under < then p(fr(b))J under T(J). A de-
scription fr can be extended to handle disjunctions in

the obvious way: fr(R) = U,cg fr(r).

We can now provide two lemmata showing how model
transformations can be used.

Lemma A.3 Let R = {ry,...,7,} CV be such that
V-SAT(R) is polynomial. Let R = {r},...,r,} C V.
Let T be a model transformation and fr a description
of T. If the following holds: (1) vy C 7}, for 1 < k < n;
and (2) fr(ry,) Cry for 1 < k < n, then V-SAT(R') is

polynomial.

Proof: Let © be a instance of V-SAT(R’). Let © =
{prJ | pri,J € ©'}. Obviously, this is a polynomial
transformation and © is an instance of V-SAT(R). We
show that © has a model iff ® has a model. Since it
can be decided in polynomial time whether © has a
model or not, the lemma follows.

only-if: Let I be a model of ©. Recall that r, C 7,
1 < k < n. Hence, & is a model for ® since every
relation pr'] € ©’ is weaker than the corresponding
relation prl € ©.

if: Let &' be a model of ©'. We show that T(3J') is a
model of ©. Arbitrarily choose a formula pril in O.
Clearly, there exists a formula pri7 € ©'. Thus, we
have that prf, I under S’ which implies pfr(r})I under
T(SJ') since fr is a description of T. Furthermore,
fr(ry) C ri so pri] under T(S). Hence, T(S) is a
model of O.

Lemma A4 Let R = {ry,...,7,} €V and R/ =
{ri,...,7,} C V be such that V-SAT(R) is NP-
complete. If there exists a model transformation 7'

with a description fr such that fr(r}) C ry for every
1 <k < n then V-SAT(R') is NP-complete.

Proof: Let © be an arbitrary instance of V-SAT(R).
Let © = {pfr(r)J | prJ € ©}. Obviously, this is
a polynomial transformation and ©’ is an instance of
V-SAT(R’). We show that © is satisfiable iff ©' is
satisfiable.

if: Let S’ be a model of ®'. Recall that fr(r}) C 7,
1 < k < n. Hence, & is a model for © since every
relation prl € © is weaker than the corresponding
relation pfr(r)l € ©'.

only-if: Let & be a model of ©. We show that T(3)
is a model of ©. Arbitrarily choose a formula prl in
©’. By the construction of @', there exists a formula
psl € © such that r = fp(s). Thus, we have that ps/
under & which implies pfr(s)I under T(S) since fr is
a description of T'. Hence, I'rJ under T(S). a

Before we define a number of model transformations
that we will use later on, we need an auxiliary defini-
tion.

Definition A.5 Let S C R be finite and denote the
absolute value of z with abs(x) The minimal distance
in S, MD(S), is defined as min{abs(z — y) | z,y € S
and « # y}.

Observe that |S| > 2 in order to make MD(S) de-
fined. For all such S, MD(S) > 0. The definition of



minimal distance can be extended to V-interpretations
in the following way: Let & be an V-interpretation
that assigns values to a set of time points P and a
set of intervals 7. Let MD(S) = MD({S(p) | p €
P}U{S(I7), (") | T € T)).

In the forthcoming four propositions, let & be an ar-
bitrary V-interpretation and let ¢ = MD(S).

Proposition A.6 Define 71(J) as follows: (1) for
each time point p let T1(I)(p) = S(p); (2) for
each time interval T let T1(S)(17) = S(I7) + ¢ and
Ty (S)(IT) = S(I*T). The description of Ty, fr, is
then: le(b) = {b}a le(S) = {b}a le(d) = {d}’
Fr.(2) = (2] and fr, () = {2},

Proposition A.7 Define T5(J) as follows: (1) for
each time point p let T2(S)(p) = S(p); (2) for
each time interval T let T5(3)(17) = S(I7) + ¢ and
To(3)(IT) = S(It) — e. The description of Ts, fr,
is then: fT2(b) = {b}a fT2(S) = {b}a fT2(d) = {d}’
fr.(£) = {a} and fp,(a) = {a}.

Proposition A.8 Define 75(J) as follows: (1) for
each time point p let T3(3)(p) = S(p); (2) for
each time interval T let T5(S)(17) = S(I7) — ¢ and
T5(3)(IT) = S(IT). The description of Tj, fT3 is
then: fTa(b) = {b}a fTa(S) = {d}a fTa(d) = {d}’
fry(£) = {f} and fr,(a) = {a}.

Proposition A.9 Define T,(J) as follows: (1) for
each time point p let T4(S)(p) = S(p); (2) for
each time interval I let Ty(3)(I7) = (1) and
Tu(S)(IT) = S(IT) — € The description of Ty, fr,
1s then: fT4(b) = {b}a fT4(S) = {S}a fT4(d) = {d}’
fr.(£) = {a} and fr,(a) = {a}.

A.2 PROOFS OF TRACTABILITY

Proving tractability of V-SAT(V?3) is straightforward.

Proposition A.10 Deciding satisfiability of a set of
PA formulae is polynomial.

Proof: See (Vilain et al., 1989). a
Lemma A.11 V-SAT(V?3) is polynomial.

Proof: Follows immediately from the definition of
V23 and the previous proposition. m|

Lemma A.12 V-SAT(V3?) is polynomial.

Proof: By Corollary 2.4, it is sufficient to show
that V-SAT(v3") is polynomial. Let © be an arbi-
trary instance of V-SAT(vZ"). Define the function
o vd — {<,=,#,T} as follows: o({s}) = “=7,
o({b,s}) = “<7, o({b,a}) = “#”, o({b;s,d,a}) =
“T” and o({b,s, f,a})= “T".

Let © = {z,0(R)yr | pRI € ©}. In the sequel, yr
will be considered as the starting point of the interval
1. By Proposition A.10, it is polynomial to decide R-
satisfiability of ©’. We show that © is V-satisfiable iff
©’ is R-satisfiable.

if: Let &' be an R-model of ©'.
We construct an V-interpretation

Let ¢ = MD(3')/2.

3 of © as follows:

e For each variable z, in @' let J(p) = I/ (zp).
/

e For each variable yy in ©' let S(I7) = $'(yr) and

SUIT) =Sy +¢

We show that & is an V-model of ©. Let pRI be an
arbitrary formula in ©. We have five different cases.

L. R = {s}. Then J'(x))o({s})3"(yr) & '(x,) =
(dyj)o S(p) = S(I7). Consequently, p{s}I
2. R = {b,s}. Then ¥ (zp)0({b,s})S(y;) <

S'(zp) < S'(yr) © I(p) < §(I‘). Consequently,
p{b, s} under .
R = {b,a}. Then '(zp)o({b,a})I'(yr) <
Vo) £ V) & 30) £ ). 5 <
$(17) then p{b}7 under . 1 I7) then
S(p) > \Y(I+) since [T = I~ +¢. In this case
p{a}l under & . Consequently, p{b,a}] under &
4. R = {b,s,f,a}. Assume p{d}] under &. Then
%(I—) < %(p) < S(IM) & S(I7) < S(p) <
S )+e e S (yr) < S'(zp) < ¥(yr) + ¢ which
contradicts the choice of €. Hence, p{b,s,f, a}l

under <

5. R = {b,s,d,a}. This case is analogous to the
previous case.

3

~—
\/\.'/
A

only-if: Let & be an V-model of @. We construct an
R-interpretation &’ of ©' as follows:

3'(zp) = 3(p)-
e For each time interval I in © let I'(yr) = S(17).

e For each time point p in © let

Next, we show that 3’ is an R-model of ©'. Let z, Ryr
be an arbitrary formula in ®'. We have four different
cases:

1. R= “=". Assume S'(z,) # ¥'(yr). Then S(p) #
S(I7) and p{b,d,f,a}l under . But 2, = yr €
©' iff p{s}I € © which leads to a contradiction.
Hence, &, = yr under '.

2. R=
case.

3. R= “<”. Assume 3'(z,) > S'(yr). Then S(p) >
I(L7) and p{d,£,a}] under I. But z, < y;r € &’
iff p{b,s}I € © ‘which leads to a contradiction.
Hence, x, < yr under /.

4. R = “T”. This relation holds trivially in every
R-model of ©'. O

“#”. This case is analogous to the previous



Lemma A.13 V—SAT(VCZIO) is polynomial.

Proof sketch: By Corollary 2.4, it is sufficient to
show that V—SAT(U?IO) is polynomial. Let © be an

arbitrary instance of V—SAT(véO). Define the func-
tion o : véo — {<,>,#, T} as follows: o({b,a}) =
cc;én’ U({S,d,f,a}) — 44277’ O'({b,S,d,f}) — ccgn’
oc({b,s,d,a})= “T”, and o({b,q,f,a})= “T".

Let © = {z,0(R)yr | pRI € ©}. By Proposition A.10,
it is polynomial to decide R-satisfiability of ©. To
show that © is V-satisfiable iff ©' is R-satisfiable is
analogous to the proof of Lemma A.12. ad

Lemma A.14 V-SAT(V!%) is polynomial.

Proof: By Corollary 2.4, it is sufficient to show
that V-SAT(vl}) is polynomial. Let r{ = {d}, v} =
{b,s,a}, 5 = —f, 4, = —a and rf, = —s. Note
that v§ = Uf’zl{rg} Furthermore, let r; = r} for
i €{1,3,4,5} and let r5 = {b,a}. It can easily be
verified that 7 C r} for 1 < k < 5. Furthermore,
fr(r,) € rp for 1 < k < 5. Hence, by Lemma A.3,
the polynomiality of V-SAT(V13) follows. O

Lemma A.15 V—SAT(V}%) is polynomial.

Proof: By Corollary 2.4, it is sufficient to show that
V-SAT(v!%) is polynomial. Let #} = {d}, v, = {b,d},
ry = —s, 4 = ~d and r§ = —f. Note that v'% =
U?Il{rg}. Furthermore, let r; = r} for i € {1,3,4,5}
and let r4 = {b,a}. It can easily be verified that
ry C rf for 1 < k < 5. Furthermore, fr,(r},) C r
for 1 < k < 5. Consequently, by Lemma A.3, the
polynomiality of V—SAT(V}%) follows. O

Lemma A.16 V-SAT(VL") is polynomial.

Proof: Let © be an arbitrary instance of V-
SAT(VL?). If a formula of the form p L[ is in © then
O is not satisfiable. Otherwise, consider the following
V-interpretation: I(p) = 0 for every time point p and
J(I7) = 0 and S(IT) = 1 for every interval I. Let
pRI be an arbitrary formula in ©. By the definition
of V7, s € R. Obviously, S satisfies pRI. Since it
is polynomial to check whether pRI € © or not, the
lemma follows. ad

B INTRACTABILITY RESULTS

This section provides proofs for the NP-complete sub-
classes of V presented in Table 3. The reductions are
mostly made from different subalgebras of Allen’s in-
terval algebra. Consequently, we begin this section by
recapitulating some results concerning Allen’s algebra.

Table 3: NP-complete subclasses of V.

[ Subclass | Relations | Proof |
D1 {d}a {S}a {ba a} Lemma B7
D {d}’{f}’{b’a} Ds :DV(Dl)
D3 {d},{S},{b,f,a} Lemma B.8
D, {d}’{f}’{basaa} Dy = DV(DS)
D5 {d},{S},{S,a} Lemma B9
De {d}’{f}’{b’f} De :DV(D5)
D {d}, {=. £} Lemma B.10
Dy {s}, {b. £} Lemma B.11
Do {f}’{saa} Dy :DV(DS)
D1o {S},{b,f,a},{b,s,d,f} Ds QCV(Dlo)
D11 {f},{b,s,a},{s,d,f,a} Dll :DV(Dlo)
Dz {d}, {b, £} Lemma B.12
D13 {d}, {=.a} D13 = Dy(D12)
Dy {d,a},{p, £} Lemma B.13
D1s {b,d},{s,a} Dys = DV(D14)
D {d}, {=.1,a} Lemma B.14
Dz {d},{b,S,f} D7 = DV(D16)
Dy {s, £}, {pb,d} Lemma B.15
D1s {Saf}a{da a} Dy = DV(D18)
Do {s, £}, {pb,a} Lemma B.16
Do {d,a},{b, s, £} Lemma B.17
D2z {bad}a {Safaa} Dyy = DV(D21)
D {s,d},{p, £} Lemma B.18
D24 {d,f},{s,a} Doy = DV(D23)
D5 {s,d,a},{b, £} Lemma B.19
D2 {badaf}a{saa} Dys = DV(D25)
Doy {b, £}, {s,a} Lemma B.20
Dog {s,£},{b,d,a} Lemma B.21

B.1 ALLEN’S ALGEBRA

Allen’s interval algebra (Allen, 1983) is based on the
notion of relations between pairs of intervals. An in-
terval X is represented as an ordered pair (X, XT)
of real numbers with X~ < X*, denoting the left
and right endpoints of the interval, respectively, and
relations between intervals are composed as disjunc-
tions of basic interval relations. Their exact definitions
can be found in (Allen, 1983). Such disjunctions are
represented as sets of basic relations. The algebra is
provided with the operations of converse, intersection
and composition on intervals. The exact definitions of
these operations can be found in (Allen, 1983). By
the fact that there are thirteen basic relations, we get
213 = 8192 possible relations between intervals in the
full algebra. We denote the set of all interval relations
by A. The reasoning problem we will consider is the
problem of satisfiability (A-SAT) of a set of interval
variables with relations between them, 7.e. deciding
whether there exists an assignment of intervals on the
real line for the interval variables, such that all of the
relations between the intervals hold. Such an assign-
ment is said to be a A-model for the interval variables
and relations. For A, we have the following result.

Theorem B.1 Let A5 be the set {{<,d™7,0,m, {7},
{<,d,o,m,s},{d7,0,07,s7,f7}} and let Ag be



the set {{‘<’ >_}’ {Ea da dvaoa ova m, mvasa sv’f’fx/}},
A—SAT(S) is NP-complete if N2 C 8 (Nebel and
Biirckert, 1995), or Ay € S8 (Golumbic and Shamir,
1993).

To facilitate the forthcoming proofs we will use a clo-
sure operation for Allen’s algebra which was defined

in (Nebel and Biirckert, 1995).

Definition B.2 Let S C A. Then we denote by
C4(S) the A-closure of S under converse, intersection
and composition, 7.e. the least subalgebra containing
S closed under the three operations.

The key result for C4 is the following. The proof ap-
pears in (Nebel and Biirckert, 1995).

Proposition B.3 Let § € A. Then A-SAT(S) is
polynomial iff A-SAT(C4(S)) is and A-SAT(S) is NP-
complete iff A-SAT(C4(S)) is.

Next, we will define a number of subclasses of A and
prove that A-SAT for them is NP-complete. These
subclasses will be used later on in the NP-completeness
proofs for the subclasses in Table 3.

Definition B.4 Let sg,sq,...,s7 be defined as fol-

lows: sp = {d,o7,f}, s1 = {<,>,d7,0,m, I},
s5 = {=,>,s,s7}, 53 = {E,vm,mv,s,sv,f,fv},
S4 = {d,O,OV,S,f}, S5 = {_<ad ,o,m,mv}, 56

{=,s,s7} and s7 = {<,>,d 70,07, mm~,s7 ,{ }.
Denote by S;; the set {s;,s;}.

Proposition B.5
IsgJ it J- <I= < Jt;
IsyJif I- < J-VvI~ > JT;
Iss Jif I- =J- VI~ >Jt,

IssJ it (I-=J)v(I- =JH)v({It=J7)V
(It =7%);

Isa Mt (J- < I-<JH)V(J™ <IT <J%)
IssJ iff (I= < J7)V (I~ =J%);
IsgJiff I~ = J;

IszJiff (I-<J )V~ >JHv(IT <] )V
(It >Jh).

Lemma B.6 A-SAT(S) is NP-complete for S €
{501,50%534,556,537}

Proof: By Corollary B.3, we can study .A-
SAT(C4(S)) instead of A-SAT(S). Tt can be verified
that N, is a subset of C4(S01), Ca(So2) and C4(Ss6).

Likewise, it can be shown that Ay is a subset of

C4(S34) and C4(S557). Hence, NP-completeness follows
from Theorem B.1. O

In the previous lemma, C4 was computed by the utility
aclose (Nebel and Biirckert, 1993).

B.2 NP-COMPLETE SUBCLASSES OF V
Lemma B.7 V-SAT(D;) is NP-complete.

Proof: Reduction from A-SAT(Spy) which is NP-
complete by Lemma B.6. Let © be an instance of

A-SAT(Sp1). We construct a set © as follows.

1. For each formula of the type Is¢J in O, intro-
duce a new time point pr y and let pr s{s}I and
pI,J{d}J n @l;

2. For each formula of the type Is;J in O, intro-

duce a new time point ¢ y and let ¢r s{s}I and
gr,7{b,a}J in O,

Clearly ©’ is an instance of the V-SAT(D;) problem.
We show that © is satisfiable iff ©’.

only-if: Assume there exists a A-model & of ©. We
construct an V-interpretation &’ of ©' as follows:
S'(I7) =S(7), $'UT) = S(IT), S'(pra) = SU7)
and S'(¢r ) = S(I7).

By the construction of ©’, three types of formulae can
appear in ©®’. We consider them one at a time.

1. prs{s}l and ¢r s{s}I. Such formulae are triv-
ially satisfied under 3.

2. prg{d}J. If prs{d}J € © then IsyJ € O.
Since S is a A-model of O, I(JT) < (™) <
3(JT) by Proposition B.5. By the construction
of &', S'(pry) = S(U7), S'(J7) = 3(J7) and
§(J*) = S(JT). Hence, py s{d}J under &'

3. qrs{b,a}J. If pr s{b,a}J € © then Is;J € O.
Since ¥ is a A-model of ©, I(I7) < I(J7) or
S(I7) > S(JT) by Proposition B.5. By the
construction of &', ¥'(¢qr7) = I(I7), S(J7) =
I(J7) and S'(J1) = S(J1). Hence, ¢ j{b,a}J
under &',

As a consequence, &' is a V-model of ©’.

if: Assume there exists an V-model &’ of ©’'. We con-
struct an .A-model § of © as follows: S'(I7) = (1)
and S'(I') = S(IT).

Arbitrarily choose a formula of the form IsyJ in O.
Then there exists a time point py s in ©' such that
pra{stl and prs{d}J. It follows that ¥'(J7) <
J'(IT) < S(JT) and, by the construction of S,
I(J7) < S(IT) < S(JT). Hence, IsoJ under S.

Arbitrarily choose a formula of the form Is;J in O.
Then there exists a time point ¢y s in © such that
gr.7{s}I and q; s{b,a}J. It follows that I'(I7) <



S'(J7) or §'(I7) > S'(JT). By the construction of
F,S(I7) < S(J7) or S(I7) > SI(JT). Hence, IsyJ
under & by Proposition B.5.

o

Consequently, & is a A-model of ©. We have thus
shown that © is satisfiable iff ©' is satisfiable. NP-
completeness of V-SAT(D;) follows immediately. O

Lemma B.8 V-SAT(Ds3) is NP-complete.
Proof: Let Ds = {{d},{s},{b,f,a}} = {r},rh, v5}.
Observe that fr,(r}) = {d}, fr,(rh) = {s}
and fr,(r5) = {b,a}. By Lemma B.7, D; =
{{a}, {s},{b,a}} and V-SAT(D;) is NP-complete.
Hence, V-SAT(D3) is NP-complete by Lemma A 4.
O

Lemma B.9 V-SAT(Ds) is NP-complete.

Proof sketch: Reduction from A-SAT(Sgz2) which
is NP-complete by Lemma B.6. Let © be an instance
of A-SAT(Sp2). We construct a set © as follows.

1. For each formula of the type Is¢J in O, intro-
duce a new time point pr y and let pr s{s}I and
pI,J{d}J n @l;

2. For each formula of the type Is2J in O, introduce

a new time point ¢r ; and let let ¢r sj{s}I and
gr.7{s,a}J in ©.

Clearly ©’ is an instance of the V-SAT(D5) problem.
Show that © is satisfiable iff ©' is similar to the proof
of Lemma B.7. a

Lemma B.10 V-SAT(D7) is NP-complete.

Proof: Reduction from A-SAT(Ss4) which is NP-
complete by Lemma B.6. Let © be an instance of

A-SAT(S34). We construct a set @' as follows.

1. For each formula of the type Is3J in O, intro-
duce a new time point pr s and let pr s{s, £}7
and pr y{s,£}J in ©';

2. For each formula of the type Is3J in O, intro-

duce a new time point g7 y and let ¢7 s {s,f}I and
qLJ{d}J in ©.

Clearly ©’ is an instance of the V-SAT(D7) problem.
We show that © is satisfiable iff ©’.

Assume there exists a A-model & of ©. We construct
an V-interpretation &' of © as follows:

L S(I7) = S(I-);
(1) = S,
S(prs) = S(F) i SU7) = S(7) or S(I-) =
S
4. §'(pr.s) = S(I'T) otherwise. In this case S(IT) =
S(J7) or S(IT) = S(JT);

5. S(ar.s) = S(I7) i S(J7) < S < S(IH);
6. ¥'(qr,5) = S(I1) otherwise. In this case S(J7) <
IUIT) < S(JT)

By the construction of @', four types of formulae can
appear in ©®’. We consider them one at a time.

1. pry{s,£}1. If p; s{s,£}1 € © then Is3J € O.
By Proposition B.5, (I7 = J7)
or (It = J7) or (I = JT). ) =
S(J7) or S(I7) =(J ) then S'(prs) =S(I7)
and, consequently, pr s{s,£}I under 3. Other-
wise, S(IT) = S(J_) or S(IT) = \r(J ) and
%’(PI,J) = Q(I1). Hence pr s{s,£}] under &’

2. prs{s,£}J. This case is analogous to the previous
case.

3. qro{s,£}1. If qrj{s,£}] € © then IssJ € O.
By Proposition B.5, (S(J7) < S(I7) < S(J ™))V
(ST <SUN) <SIN). US(T7)<S(T7) <
S(J T then ¥'(qr,7) = S(I7) and qr s{s} un-
der . Otherwise, S(J7) < S(IT) < S(JT,
S (qr,7) = S(IT) and qr s{£}I under S.

4. gry{a}J. If QIV‘]{d}J € O then IsyJ € ©. By
Proposition B.5, J7) < S(I7) < S(JT) Vv
(S(J_)<\Y(I+) ST ST <S(I7) <
I(Jt then ¥'(qrs) = I(I7) and g¢r s{d}] un-
der . Otherwise, S(J7) < S(IT) < S(JT,
S'(qr,0) = S(UIT) and qr 7{d} under 3.

As a consequence, &' is a V-model of ©’.

Now, assume there exists a V-model &’ of ©'. We con-

struct an A-interpretation & of © as follows: I(I7) =
F(I7) and S(IT) = S'(IT).

Arbitrarily choose a formula of the form Is3J in O.
Then there exists a time point py s in ©’ such that
prgis,£}1 and prs{s,f}J under ¥’. This implies
that one endpoint in I equals one endpoint in J and,
by Proposition B.5, Is3.J under &

Arbitrarily choose a formula of the form Is,J in O.
Then there exists a time point ¢y s in © such that
gr.7{s, £}l and ¢r s{a}J under 3. Assume q; j{s}/
under . Then J(J7) < S(I7) < §(J1). Assume to
the contrary that pr s{f}I under ¥’. It follows that
I(J7) < S(IT) < S(JT). Hence, by Proposition B.5,
Is4J under . O

Lemma B.11 V-SAT(Dsg) is NP-complete.

Proof sketch: Reduction from A-SAT(Ss¢) which
is NP-complete by Lemma B.6. Let © be an instance
of A-SAT(Ss6). We construct a set © as follows.

1. For each formula of the type IssJ in O, intro-
duce a new time point pr y and let pr s{s}I and
p]”]{b, 'f}J n @l;



2. For each formula of the type IsgJ in O, intro-
duce a new time point ¢ y and let ¢r s{s}I and
gr7{s}J in ©'.

Clearly ©’ is an instance of the V-SAT(Dg) problem.
It is a routine verification to show that © is satisfiable
iff © is satisfiable. m|

Lemma B.12 V-SAT(D;2) is NP-complete.

Proof: By Lemma B.9, V-SAT(Ds) is NP-complete
and V-SAT(Ds) is NP-complete since Dg = Dy (Ds).
Let F = {{b},{d},{b,£}}. Tt can be verified that
Ds C Cy(F) and, hence, V-SAT(F) is NP-complete.
Let © be an arbitrary instance of the V-SAT(FE) prob-
lem. We show how to construct an instance ©’ of the
V-SAT(D;2) problem that is satisfiable iff © is satisfi-

able.

We begin showing how to relate a point p; and an
interval I} such as p;{b}I; by only using the rela-
tions in Dys. We introduce two fresh time points p-
and p3 together with two fresh time intervals I and
I5. Consider the following construction: py{b, £},
pi{b,t} 15, pi{b, £} 15, po{b, £} 11, p2{d} 12, p2{b, £} 5,
pa{b,f} 11, p3{b, £} 1> and ps{d}Is.

We denote this set of relations with Q. Let & be a
V-model of 2. For the sake of brevity we identify the
time points and time intervals with their values when
interpreted by <. Hence, instead of writing S(py) <
S(I7), we simply write py < I7 .

Obviously, p1 < I] or p; = If'. We begin by showing
that there exists a V-model of @ such that p; < I .
Let & = (I —p1)/5. Consider the following assignment
of values: Iy = p1+6, ps = p1 + 26, I = p1 + 30,
ps = p1 + 46, I;' = p1 + 46 and I;' = If'. It is not
hard to see that this assignment is a V-model of Q.

Next, we show that there does not exist any V-model
of @ such that p; = II". Assume < is such a V-model.
By relation (4), we can see that py < I7 or py = I
By assumption, p; = I;7. Hence, either p; < I or
p2 = p1. If ps = p1 then relation (2) is equivalent to
pa{b, £} which clearly contradicts relation (5). Thus,
p2 < I7 and pa{b}I;. By analogous reasoning one can
see that ps < I7 and pz{b}I;.

Next, observe that relations (2) and (3) implies p; <
I;' and p; < I;'. Furthermore, ps < I; and ps < I
which implies py < If' and ps < I . By our initial
assumption p; = If' we get py < If' =p < I;' and
ps < I =p1 < If.

Consequently, ps < I;' and ps < I;'. Observe that
pa{b, £}I3 and ps{b, f}Is by relations (6) and (8), re-
spectively. Hence, po < I3 and p3 < I .

By relations (5) and (9), I, < ps < If and I <
ps < If. Hence, p» < I3 < p3 < I; < ps which

is a contradiction. Consequently, every V-model of {2
satisfies p; < Iy .

We have thus shown how to express the relation {b} by
only using {d} and {b,£}. Obviously, we can take an
instance of the V-SAT(F) problem and in polynomial
time transform it into an equivalent instance of the V-
SAT(D;3) problem. NP-completeness of V-SAT(D15)
follows immediately. a

Lemma B.13 V-SAT(D;4) is NP-complete.

Proof sketch: By Lemma B.9, V-SAT(Ds) is
NP-complete and V-SAT(Dg) is NP-complete since
Ds = Dy(Ds). Let E = {{b},{d,a},{b,£}}. It can
be verified that Ds C Cy(FE) and, hence, V-SAT(F) is
NP-complete. Let © be an arbitrary instance of the
V-SAT(FE) problem. We show how to construct an
instance © of the V-SAT(D;4) problem that is satis-
fiable iff © is satisfiable.

The proof boils down to showing how to relate a point
p1 and an interval I; such as p;{b}I; by only using
the relations in Dq4. We introduce two fresh time
points p» and ps together with two fresh time in-
tervals I and Is. Consider the following construc-
tion: pi{b,£}t/1, pi{b,f}ls, pi{b,f}/5, paib,f}]1,
p2id,a}ls, po{b,£}ls5, ps{b,f}[;, psi{b,f}l> and
ps{d,a}ls. It is fairly straightforward to show that p,
can only be related to I; with the relation b. Hence,
we can take an instance of the V-SAT(E) problem and
in polynomial time transform it into an equivalent in-
stance of the V-SAT(D14) problem. NP-completeness
of V-SAT(D14) follows immediately. m|

Lemma B.14 V-SAT(D;¢) is NP-complete.

Proof: Reduction from V-SAT(D;3). Use the model
transformation 7T and apply Lemma A .4. a

Lemma B.15 V-SAT(D;g) is NP-complete.

Proof sketch: By Lemma B.10, V-SAT(D7) is NP-
complete. Let E = {{s},{s,f},{b,d}}. Tt can be
verified that D7 C Cy(F) and, hence, V-SAT(FE) is
NP-complete. Let © be an arbitrary instance of the
V-SAT(E) problem.

We show how to relate a time point p; and an
interval I; with the relation s. Introduce two
fresh time points p, and ps together with a fresh
time interval I5. Consider the following construc-
tion: pi{s,£}/1, pi{b,d}ls, pa{b,d}l1, pais,f}ls,
pa{s,f}]1 and ps{s, £} 1>

It 1s not hard to show that p; can only be related to
I; with the relation s. Consequently, we can take an
instance of the V-SAT(F) problem and in polynomial
time transform it into an equivalent instance of the V-
SAT(D;s) problem. NP-completeness of V-SAT(D;3)
follows immediately. a



Lemma B.16 V-SAT(D2g) is NP-complete.

Proof sketch: Reduction from A-SAT(S57) which
is NP-complete by Lemma B.6. Let © be an instance
of A-SAT(S37). We construct a set © as follows.

1. For each formula of the type Is3J in O, intro-
duce a new time point pr s and let pr s{s, £}7
and pr s{s,f}J in ©';

2. For each formula of the type Is3J in O, intro-

duce a new time point g7 y and let ¢7 s {s,f}I and
gr,7{b,a}J in O,

Clearly ©' is an instance of the V-SAT(D2g) problem.
Proving that © is satisfiable iff ©' is similar to the
proof of Lemma B.10. a

Lemma B.17 V-SAT(D2;) is NP-complete.

Proof: Reduction from V-SAT(D14). Use the model
transformation 7} and apply Lemma A .4. a

Lemma B.18 V-SAT(D23) is NP-complete.

Proof: Reduction from V-SAT(D;3). Use the model
transformation 75 and apply Lemma A .4. a

Lemma B.19 V-SAT(D25) is NP-complete.

Proof: Reduction from V-SAT(D14). Use the model
transformation 75 and apply Lemma A .4. a

Lemma B.20 V-SAT(D27) is NP-complete.

Proof sketch: By Lemma B.10, V-SAT(D7) is NP-
complete. Let E = {{b},{b,£},{s,a}}. It can be
verified that Ds C Cy(F) and, hence, V-SAT(FE) is
NP-complete. Let © be an arbitrary instance of V-
SAT(FE). We show how to construct an instance © of
V-SAT(D37) that is satisfiable iff © is satisfiable.

We begin by showing how to relate a point p; and an
interval I} such as p1{b}I; by only using the relations
in Dy7. We introduce two fresh time points ps and p3
together with a fresh time interval I. Consider the fol-
lowing construction: p1{b, £} 11, p1{b, £} 1z, p2{b, £} 11,
pa{s,atls, ps{s,a}tls and p3{b, £} 1.

It is fairly straightforward to show that p; can only be
related to Iy with the relation b. Hence, we can take an
instance of the V-SAT(F) problem and in polynomial
time transform it into an equivalent instance of the V-
SAT(D37) problem. NP-completeness of V-SAT(Ds7)
follows immediately. a

Lemma B.21 V-SAT(Dag) is NP-complete.
Proof: Reduction from GRAPH 3-COLOURABILITY,

which is NP-complete. Let G = (V, F) be an arbitrary
undirected graph.

In the proof we will make repeated use of the con-
cept of a separator, a construction which forces two
points to have distinct values in all models. Given
two points p, ¢ we construct a separator by introduc-
ing a new interval I and adding the relations p{s, £}I
and ¢{b,d,a}l. Clearly, all models & must satisfy

S(p) #3(q)-
We now construct the set of relations stepwise. First,

we construct a paint-boz by introducing two points p;
and po, two intervals I; and I plus the relations

pits, £}111, pi{s,£}12, pa{s, £} 11, p2{b,d,a}ls

over these. Note that the interval I, acts as a sepa-
rator for p; and po, which are thus forced to take on
different values. Further, the intervals I; and Is must
have some common end-point, coinciding with p;. We
use the constant r to denote this value. Hence, the
remaining end-point of I; must coincide with p, and
the remaining end-point of Is must be distinct from
both p; and ps. We denote the values of these two
remaining end-points ¢ and b respectively. We can
think of the values r, ¢ and b as colours, constituting
our palette. Of course, the actual denotations of these
three values differ between models, but the important
thing is only that they denote three distinct values in
each and every model.

Now, for each vertex v; € V', we construct a selector
consisting of three points ¢!, ¢} and ¢? plus two inter-

vals J? and Jl»l’z, connected as follows. First introduce

a separator for ¢; and ¢7, using interval Jl»l’z, ¢.e. intro-
duce the relations q}{s,f}Jil’z, q?{b,d, a}Jil’z. Then
connect the points to the remaining interval by adding
the relations ¢?{s,£}J?, ¢}{s, £}J?, ¢?{s,£}J. Fi-
nally, connect this whole gadget to the paint-box by
adding the relations ¢}{s,£}11, ¢?{s,£}Is. The selec-
tor works as follows. The endpoints of Iy correspond
to the colours r and g, so ¢} is forced to have either of
these values. Similarly, ¢7 must have either of the val-
ues r and b. Now, ¢} and ¢? are separated, so together
they select a subpalette of two colours, assigning one
colour each to the end-points of J?. Finally, ¢? selects
one of these two colours. So far, there are no further
constraints, so ¢? may be freely assigned any of the
three colours from our palette.

Finally, for each edge {v;,v;} € E we introduce a
separator, consisting of the new interval K; ; and the
two relations ¢ {s, £} K ;, q}){b,d, a} K, ;, preventing
q? and q](»J to have the same value whenever there is an
edge between the vertices v; and v;.

It is obvious that G is 3-colourable iff the network just
constructed is satisfiable, so NP-completeness follows.
O



