
Tractable Subclasses of the Point-Interval Algebra:A Complete Classi�cationPeter Jonsson, Thomas Drakengren and Christer B�ackstr�omDepartment of Computer and Information ScienceLink�oping University, S-581 83 Link�oping, Swedenemail: fpetej,thodr,cbag@ida.liu.seAbstractSeveral algebras have been proposed forreasoning about qualitative constraints overtime. One of these algebras is Vilain's point-interval algebra, which can relate time pointswith time intervals. Apart from being astand-alone qualitative algebra, it is also usedas a subalgebra in Meiri's approach to tem-poral reasoning, which combines reasoningabout quantitative and qualitative temporalconstraints over both time points and timeintervals. While the satsi�ability problemfor the full point-interval algebra is known tobe NP-complete, not much has been knownabout its 4294967296 subclasses. We providein this paper a complete classi�cation of sat-is�ability for all these subclasses into polyno-mial and NP-complete respectively. We alsoidentify all maximal tractable subalgebras|nine in total.1 INTRODUCTIONReasoning about temporal constraints is an importanttask in many areas of AI and elsewehere, such as plan-ning (Allen, 1991), natural language processing (Songand Cohen, 1988), time serialization in archeology(Golumbic and Shamir, 1993) etc. In most applica-tions, knowledge of temporal constraints is expressedin terms of collections of relations between time inter-vals or time points. Often we are only interested inqualitiative relations, i.e. the relative ordering of timepoints but not their exact occurrences in time. Thereare two archetypical examples of qualitative temporalreasoning: Allen's algebra (A) (Allen, 1983) for rea-soning about time intervals and the point algebra (PA)(Vilain, 1982) for reasoning about time points.Attempts have been made to integrate reasoning abouttime intervals and time points. Meiri's (1991) ap-proach to temporal reasoning makes it possible to rea-son about time points and time intervals with respect

to both qualitative and quantitative time. This frame-work can be restricted to qualitiative time and theresulting fragment is known as the qualitative algebra(QA). In QA, a qualitative constraint between two ob-jects Oi and Oj (each may be a point or an interval),is a disjunction of the form (Oir1Oj) _ : : :_ (OirkOj)where each one of the ri's is a basic relation that mayexist between two objects. There are three types ofbasic relations:1. Interval-interval relations that can hold betweenpairs of intervals. These relations correspond toAllen's algebra.2. Point-point relations that can hold between pairsof points. These relations correspond to the pointalgebra.3. Point-interval and interval-point relations thatcan hold between a point and an interval andvice-versa. These relations were introduced by Vi-lain (1982). The point-interval and interval-pointrelations are symmetric so we will only considerthe point-interval relations in the sequel.The satis�ability problem for the point algebra isknown to be tractable (Vilain et al., 1989) and the sat-is�ability problem for Allen's algebra is NP-complete(Vilain et al., 1989). However, a large number oftractable subclasses of Allen's algebra has been re-ported in the literature (van Beek and Cohen, 1990;Golumbic and Shamir, 1993; Nebel and B�urckert,1995; Drakengren and Jonsson, 1996a). Clearly, QAsu�ers from computational di�culties since it sub-sumes the Allen algebra. Even worse, Meiri (1991)shows that the satis�ability problem is NP-completeeven for point-interval relations. Besides this nega-tive result, not very much is known about the compu-tational properties of subclasses of the point-intervalalgebra. This is an unfortunate situation if we wantto �nd tractable subclasses of the qualitative algebrasince the point-interval and interval-point algebras arethe glue that ties the world of time points togetherwith the world of time intervals.



We also have reasons to believe that the point-intervalalgebra itself can be interesting in applications suchas reasoning about action and change. In certain ap-proaches to action and change, such as the Featuresand Fluents framework by Sandewall (1994), a cleardistinction is made between observations and actions.Typically, observations occur at a single time pointwhile actions occur over extended periods of time.Determining temporal relations between observationsand actions in a given scenario seems to be a prob-lem which can be addressed by reasoning in the point-interval algebra.The main result of this paper is a complete classi�ca-tion of all subclasses of the point-interval algebra withrespect to tractability. The classi�cation makes it pos-sible to determine whether a given subclass is tractableor not by a simple test that can be easily carried outby hand or automatically. We have thus gained a clearpicture of the borderline between tractability and in-tractability in the point-interval algebra. In this pro-cess, we have also taken a small step towards a deeperunderstanding of the qualitative algebra.A few words on methodology seem appropriate at thispoint. The proof of the main theorem relies on a quiteextensive case analysis performed by a computer. Thenumber of cases considered in this analysis was ap-proximately 106. Naturally, such an analysis cannotbe reproduced in a research paper or be veri�ed man-ually. To allow for the veri�cation of our results, weinclude a description of the program used in the anal-ysis. Furthermore, the programs used can be obtainedfrom the authors.The rest of this paper is organized as follows: Section 2de�nes the point-interval algebra and some auxiliaryconcepts. Section 3 contains the classi�cation of sub-classes. Section 4 is a brief discussion of the resultsand Section 5 concludes the paper. Most of the proofsare postponed to the appendix. Due to space limita-tions, we have not been able to give all proofs in theirentirety. The full proofs can be found in the technicalreport (Jonsson et al., 1996).2 POINT-INTERVAL RELATIONSThe point-interval approach to reasoning about timeis based on the notions time points, time intervals andbinary relations on them. A time point p is a variableinterpreted over the set of real numbers R. A timeinterval I is represented by a pair hI�; I+i satisfyingI� < I+ where I� and I+ are interpreted over R.We assume that we have a �xed universe of variablenames for time points and time intervals. Then, anV-interpretation is a function that maps time pointvariables to R and time interval variables to R � Rand satis�es the previously stated restrictions. We willfrequently extend the notation by denoting the the �rstcomponent of=(I) by =(I�) and the second by =(I+).

Given an interpreted time point and an interpretedtime interval, their relative positions can be describedby exactly one of the elements of the set B of �ve basicpoint-interval relations where each basic relation canbe de�ned in terms of its endpoint relations (see Table1). A formula of the form pBI where p is a time point,I a time interval and B 2 B, is said to be satis�ed byan V-interpretation i� the interpretation of the pointsand intervals satis�es the endpoint relations speci�edin Table 1.To express inde�nite information, unions of the basicrelations are used, written as sets of basic relations,leading to 25 binary point-interval relations. Natu-rally, a set of basic relations is to be interpreted as adisjunction of the basic relations. The set of all point-interval relations 2B is denoted by V. Relations ofspecial interest are the null relation ? (also denotedby ?) and the universal relation B (also denoted >).With the notation :x we mean the relation B � fxg,e.g. :a = fb; s; d; fg.A formula of the form pfB1; : : : ; BngI is called a point-interval formula. Such a formula is satis�ed by anV-interpretation = i� pBiI is satis�ed by = for somei, 1 � i � n. A �nite set � of point-interval for-mulae is said to be V-satis�able i� there exists anV-interpretation = that satis�es every formula of �.Such a satisfying V-interpretation is called an V-modelof �. The reasoning problem we will study is the fol-lowing:Instance: A �nite set � of point-interval formulae.Question: Does there exist an V-model of �?We denote this problem V-SAT. In the following, weoften consider restricted versions of V-SAT where therelations used in formulae in � are only from a subsetS of V. In this case we say that � is a set of formulaeover S and we use a parameter in the problem de-scription to denote the subclass under consideration,e.g. V-SAT(S).Meiri's extended de�nition of the point-interval alge-bra consists of V equipped with two binary operationsintersection and composition. However, this de�ni-tion does not constitute an algebra because it is notclosed under composition. We replace the composi-tion operation with an operation on V we call cross-composition. The reason for introducing the algebrais that it is needed for the introduction of a closureoperation which will simplify the forthcoming proofs.De�nition 2.1 Let B = fb; s; d; f;ag. The point-interval algebra consists of the set V = 2B and theoperations binary intersection (denoted by \) andternary cross-composition (denoted by 
). Intersec-tion is de�ned as 8p; I : p(R\S)I , pRI ^ pSI whilecross-composition is de�ned as 8p; I : p(R
S
T )I ,9q; J : (qRJ ^ qSI ^ pTJ).



Table 1: The �ve basic relations of the V-algebra. Theendpoint relation I� < I+ that is valid for all relationshas been omitted.Basic relation Symbol Example Endpoint rel.p before I b p p < I�IIIp starts I s p p = I�IIIp during I d p I� < p < I+IIIp �nishes I f p p = I+IIIp after I a p p > I+IIIIt can easily be veri�ed that R
S 
T = SfB
B0
B00jB 2 R;B00 2 S;B000 2 Tg, i.e. cross-compositionis the union of the component-wise cross-compositionof basic relations.Next, we introduce a closure operation CV togetherwith a duality operator DV . Both CV and DV trans-form a given subclass of V to one that is polynomiallyequivalent to the original subclass wrt. satis�ability.The closure operation is similar to the closure oper-ation for the Allen algebra introduced in (Nebel andB�urckert, 1995), and is de�ned as follows.De�nition 2.2 Let S � V. Then we denote byCV(S) the V-closure of S, de�ned as the least subalge-bra containing S closed under intersection and cross-composition.A program for computing V-closures can be obtainedfrom the authors.Lemma 2.3 Let S � V. Then V-SAT(CV (S)) can bepolynomially transformed to V-SAT(S).Corollary 2.4 Let S � V. V-SAT(S) is polynomiali� V-SAT(CV (S)) is polynomial. V-SAT(S) is NP-complete i� V-SAT(CV (S)) is NP-complete.Next we introduce the duality operator and show thatit has the same transformational properties as the clo-sure operation.De�nition 2.5 Let R 2 V. De�ne DV(R) as the setf�(r) j r 2 Rg where �(r) is de�ned as follows: �(b) =a, �(s) = f, �(d) = d, �(f) = s and �(a) = b.Let S � V. De�ne DV (S) as the set fDV (R) jR 2 Sg.Lemma 2.6 Let S � V. Then V-SAT(DV (S)) can bepolynomially transformed to V-SAT(S).Proof sketch: Let � be an instance of theV-SAT(DV (S)) problem that have a V-model =.

Construct the following V-SAT(S) instance: �0 =fpDV(R)I jpRI 2 �g. A V-interpretation =0 of �0 canbe constructed as follows: Let =0(p) = �=(p) for eachtime point p appearing in � and let =0(I�) = �=(I+),=0(I+) = �=(I�) for each time interval I appearingin �. Clearly, =0 is a V-model of �0. Showing theconverse direction is analogous. 2Corollary 2.7 Let S � V. V-SAT(S) is polynomiali� V-SAT(DV (S)) is polynomial. V-SAT(S) is NP-complete i� V-SAT(DV (S)) is NP-complete.3 CLASSIFICATION OF VWe begin this section by de�ning nine tractable subal-gebras of the point-interval algebra. Later on, we showthat these algebras are the only maximal tractable sub-algebras of V. Before we can de�ne the algebras weneed a de�nition concerning the point algebra.De�nition 3.1 A PA formula is an expression of theform xry where r is a member of f<;�;=; 6=;�; >;?;>g and x; y denote real-valued variables. The sym-bol ? denotes the relation ? which is unsatis�able forevery choice of x; y 2 R. Similarly, > denotes the re-lation R � R which is satis�able for every choice ofx; y 2 R.Let 
 be a set of PA formulae and X the set of vari-ables appearing in 
. An assignment of real values tothe variables in X is said to be an PA-interpretation of
. Furthermore, 
 is satis�able i� there exists an PA-interpretation = such that for each formula xry 2 
,=(x)r=(y) holds. Such an PA-interpretation = is saidto be an PA-model of 
.The �rst algebra we will consider has a very close con-nection to PA. It is de�ned as follows.De�nition 3.2 The set V23 consists of those relationsin V that can be expressed as one or more PA formulaeover time points and endpoints of intervals.The other eight subalgebras are de�ned in terms of theCV and DV operators.De�nition 3.3v20s = ffsg; fb; sg; fb; ag;:d;:fg, V20s = CV(v20s )V20f = DV (V20s )v20d = ffb; ag;:b;:s;:f;:ag, V20d = CV(v20d )v18:a = ffdg; fb; s;ag;:s;:f;:ag, V18:a = CV(v18:a)V18:b = DV(V18:a)v18:d = ffdg; fb; dg;:s;:d;:fg, V18:d = CV(v18:d)



V17s = f?g [ fr 2 V j fsg � rgV17f = DV (V18s )Given a subalgebra Vxy , x is the number of relationsin the algebra and y is an element that is unique forVxy among the subalgebras of size x. For instance, V17sis the only subalgebra of size 17 that contains fsg.Let VP be the set of all subalgebras in De�nition 3.3plus the algebra V23. The relations included in eachof these algebras can be found in Table 2. Further, letVNP denote the set of subalgebras listed in Table 3.We have the following theorem.Theorem 3.4 If V 2 VP then V-SAT(V ) is polyno-mial. If V 2 VNP then V-SAT(V ) is NP-complete.Proof: See Appendices A and B for the results con-cerning VP and VNP , respectively. 2The main theorem can now be stated.Theorem 3.5 For S � V, V-SAT(S) is polynomial i�S is a subset of some member of VP .Proof: if: For each V 2 VP , V-SAT(V ) is polynomialby Theorem 3.4.only-if: Assume there exists a subclass S � V suchthat V-SAT(S) is polynomial and S is not a subsetof any algebra in VP . Without loss of generality, letS be such a class with the least number of elements.For each subalgebra V in VP , choose a relation x suchthat x 2 S and x 62 V . This can always be done sinceS 6� V . Let X be the set of these relations. Thefollowing holds for X:1. V-SAT(X) is polynomial since X � S.2. X is not a subset of any algebra in VP .S is a minimal set satisfying (1) and (2) above. Hence,jSj � jXj. Furthermore, X � S so jSj � jXj andjSj = jXj. The set VP contains nine algebras so bythe construction of X, jXj � 9. As a consequence,jSj � 9.To show that S does not exist, a machine-assisted caseanalysis of the following form was performed:1. Generate all subsets of V of size � 9. There are9Xi=0 � 32i � � 4:3� 106 such subsets.2. Let T be such a set. Test: T is a subset of somesubalgebra in VP or D � CV(T ) for some D 2VNP .The test succeeds for all T . Hence, by Theorem 3.4,either V-SAT(S) is NP-complete or S is a subset ofsome member of VP . Both cases contradict our initialassumptions so S cannot exist. 2

4 DISCUSSIONWe have only considered qualitative relations betweentime points and intervals in this paper. For cer-tain applications this is satisfactory|for others wemust have the ability to reason also about quantita-tive time. Previous research on reasoning about com-bined qualitative and quantitative time has proventhis problem to be computationally hard. However,recent results show that tractable reasoning is pos-sible in certain subclasses of Allen's algebra aug-mented with quite advanced quantitative information.The linear-programming approach by Jonsson andB�ackstr�om (1996) o�ers a straightforward method forextending the ORD-Horn subclass with quantitativeinformation. Several other subclasses of Allen's alge-bra with this property are exhibited in (Drakengrenand Jonsson, 1996b). Almost certainly, these meth-ods can be adapted to the point-interval algebra. Thisopens up for some interesting future research. Anotherinteresting research direction is the study of tractablesubclasses of Meiri's unrestricted approach, i.e., al-lowing for time points and time intervals to be bothqualitatively and quantitatively related.The number of subclasses of V (232 � 4:3�109) is verysmall in comparison with the 28192 � 102466 subclassesof A. In principle it would have been possible to enu-merate all subclasses of V with the aid of a computer.Obviously, this is not the case with A (at least notwith the computers available today). If we want toclassify the subclasses of A with respect to tractabil-ity, we must use other methods. We are not pessimisticabout the possibility of creating a complexity map ofA. Similar projects have been successfully performedin mathematics and computer science. A well-knownexample is the proof of the four-colour theorem (Appeland Haken, 1976) which combine theoretical studies ofplanar graphs with extensive machine-generated caseanalyses. It seems likely that we shall need methodsthat combine theoretical studies of the structure of Awith brute-force computer methods. Here we can seea challenge for both theoreticians and practitioners incomputer science.5 CONCLUSIONSWe have studied computational properties of thepoint-interval algebra. All of the 232 possible sub-classes are classi�ed with respect to whether their cor-responding satis�ability problem is tractable or not.The classi�cation reveals that there are exactly ninemaximally tractable subclasses of the algebra.ReferencesAAAI (1996). Proc. 13th (US) Nat'l Conf. on Artif.Intell. (AAAI-96), Portland, OR, USA.



Table 2: The maximal tractable subalgebras of V.V23 V20s V20f V20d V18:a V18:b V18:d V17s V17f? � � � � � � � � �fbg � � � � � � �fsg � � �fb;sg � � � � � �fdg � � � � �fb;dg � � � � � �fs;dg � � � �fb;s; dg � � � � � � �ffg � � �fb;fg � �fs;fg � �fb;s; fg � � �fd;fg � � � �fb;d; fg � � � � �fs;d; fg � � � �fb;s; d; fg � � � � � �fag � � � � � � �fb;ag � � � � � �fs;ag � �fb;s; ag � � � � �fd;ag � � � � � �fb;d; ag � � � � � � �fs;d; ag � � � � �fb;s; d; ag � � � � � � � �ff;ag � � � � � �fb;f; ag � � � � �fs;f; ag � � �fb;s; f; ag � � � � �fd;f; ag � � � � � � �fb;d; f; ag � � � � � � � �fs;d; f; ag � � � � � �> � � � � � � � � �Allen, J. F. (1983). Maintaining knowledge abouttemporal intervals. Comm. ACM, 26(11):832{843.Allen, J. F. (1991). Temporal reasoning and planning.In Allen, J., Kautz, H., Pelavin, R., and Tenenberg,J., editors, Reasoning about Plans, chapter 1, pages1{67. Morgan Kaufmann.Appel, K. and Haken, W. (1976). Every planar mapis four colorable. Bulletin of the American Mathe-matical Society, 82:711{712.Drakengren, T. and Jonsson, P. (1996a). Maximaltractable subclasses of Allen's interval algebra: Pre-liminary report. In (AAAI, 1996).Drakengren, T. and Jonsson, P. (1996b). Eight maxi-mal tractable subclasses of Allen's algebra with met-ric time. Manuscript.Golumbic, M. C. and Shamir, R. (1993). Complexityand algorithms for reasoning about time: A graph-theoretic approach. J. ACM, 40(5):1108{1133.Jonsson, P. and B�ackstr�om, C. (1996). A linear-programming approach to temporal reasoning. In(AAAI, 1996).
Jonsson, P., Drakengren, T., and B�ackstr�om, C.(1996). Tractable subclasses of the point-interval al-gebra: A complete classi�cation. Technical report. Inpreparation.Meiri, I. (1991). Combining qualitative and quanti-tative constraints in temporal reasoning. In Proc. 9th(US) Nat'l Conf. on Artif. Intell. (AAAI-91), pages260{267, Anaheim, CA, USA.Nebel, B. and B�urckert, H.-J. (1993). Softwarefor machine assisted analysis of Allen's interval al-gebra. Available from the authors by anonymousftp from duck.dfki.uni-sb.de as /pub/papers/DFKI-others/RR-93-11.programs.tar.Z.Nebel, B. and B�urckert, H.-J. (1995). Reasoningabout temporal relations: A maximal tractable sub-class of Allen's interval algebra. J. ACM, 42(1):43{66.Sandewall, E. (1994). Features and Fluents. OxfordUniversity Press.Song, F. and Cohen, R. (1988). The interpretationof temporal relations in narrative. In Proc. 7th (US)



Nat'l Conf. on Artif. Intell. (AAAI-88), pages 745{750, St. Paul, MN, USA.van Beek, P. and Cohen, R. (1990). Exact and ap-proximate reasoning about temporal relations. Com-put. Intell., 6(3):132{144.Vilain, M. B. (1982). A system for reasoning abouttime. In Proc. 2nd (US) Nat'l Conf. on Artif. Intell.(AAAI-82), pages 197{201, Pittsburgh, PA, USA.Vilain, M. B., Kautz, H. A., and van Beek, P. G.(1989). Constraint propagation algorithms for tem-poral reasoning: A revised report. In Readings inQualitative Reasoning about Physical Systems, pages373{381. San Mateo, CA.AppendixThis appendix collects the tractability and intractabil-ity proofs needed for the proof of Theorem 3.5. Theformer results can be found in part A and the latterresults in part B. Due to space limitations, we have notbeen able to give all proofs in their entirety. Hence,certain proofs are only sketched or outlined. The fullproofs can be found in the technical report (Jonssonet al., 1996).A TRACTABILITY RESULTSTo make the forthcoming proofs less cumbersome, weneed a few results of more general character. Thesecan be found in Section A.1. The actual proofs oftractability can be found in Section A.2.A.1 MODEL TRANSFORMATIONSOne of our main vehicles for showing computationalproperties of di�erent subclasses is that ofmodel trans-formations. It is a method for transforming a solutionof one problem to a solution of a related problem.De�nition A.1 Let T be a mapping on V-interpretations. We say that T is a model transfor-mation.This de�nition is very general. To make it applicablein practice, we need a way of describing model trans-formations in greater detail.De�nition A.2 Let T be a model transformation. Afunction fT : B! 2B is a description of T i� for arbi-trary V-interpretations =, the following holds: if b 2 Band p(b)J under = then p(fT (b))J under T (=). A de-scription fT can be extended to handle disjunctions inthe obvious way: fT (R) = Sr2R fT (r).We can now provide two lemmata showing how modeltransformations can be used.

Lemma A.3 Let R = fr1; : : : ; rng � V be such thatV-SAT(R) is polynomial. Let R0 = fr01; : : : ; r0ng � V.Let T be a model transformation and fT a descriptionof T . If the following holds: (1) rk � r0k for 1 � k � n;and (2) fT (r0k) � rk for 1 � k � n, then V-SAT(R0) ispolynomial.Proof: Let �0 be a instance of V-SAT(R0). Let � =fprkJ j pr0kJ 2 �0g. Obviously, this is a polynomialtransformation and � is an instance of V-SAT(R). Weshow that � has a model i� �0 has a model. Since itcan be decided in polynomial time whether � has amodel or not, the lemma follows.only-if: Let = be a model of �. Recall that rk � r0k,1 � k � n. Hence, = is a model for �0 since everyrelation pr0I 2 �0 is weaker than the correspondingrelation prI 2 �.if: Let =0 be a model of �0. We show that T (=0) is amodel of �. Arbitrarily choose a formula prkI in �.Clearly, there exists a formula pr0kI 2 �0. Thus, wehave that pr0kI under =0 which implies pfT (r0k)I underT (=0) since fT is a description of T . Furthermore,fT (r0k) � rk so prkI under T (=). Hence, T (=) is amodel of �. 2Lemma A.4 Let R = fr1; : : : ; rng � V and R0 =fr01; : : : ; r0ng � V be such that V-SAT(R) is NP-complete. If there exists a model transformation Twith a description fT such that fT (r0k) � rk for every1 � k � n then V-SAT(R0) is NP-complete.Proof: Let � be an arbitrary instance of V-SAT(R).Let �0 = fpfT (r)J j prJ 2 �g. Obviously, this isa polynomial transformation and �0 is an instance ofV-SAT(R0). We show that � is satis�able i� �0 issatis�able.if: Let =0 be a model of �0. Recall that fT (r0k) � rk,1 � k � n. Hence, =0 is a model for � since everyrelation prI 2 � is weaker than the correspondingrelation pfT (r)I 2 �0.only-if: Let = be a model of �. We show that T (=)is a model of �0. Arbitrarily choose a formula prI in�0. By the construction of �0, there exists a formulapsI 2 � such that r = fT (s). Thus, we have that psIunder = which implies pfT (s)I under T (=) since fT isa description of T . Hence, IrJ under T (=). 2Before we de�ne a number of model transformationsthat we will use later on, we need an auxiliary de�ni-tion.De�nition A.5 Let S � R be �nite and denote theabsolute value of x with abs(x) The minimal distancein S, MD(S), is de�ned as minfabs(x � y) j x; y 2 Sand x 6= yg.Observe that jSj � 2 in order to make MD(S) de-�ned. For all such S, MD(S) > 0. The de�nition of



minimal distance can be extended to V-interpretationsin the following way: Let = be an V-interpretationthat assigns values to a set of time points P and aset of intervals I. Let MD(=) = MD(f=(p) j p 2Pg [ f=(I�);=(I+) j I 2 Ig).In the forthcoming four propositions, let = be an ar-bitrary V-interpretation and let " = MD(=).Proposition A.6 De�ne T1(=) as follows: (1) foreach time point p let T1(=)(p) = =(p); (2) foreach time interval I let T1(=)(I�) = =(I�) + " andT1(=)(I+) = =(I+). The description of T1, fT1 isthen: fT1(b) = fbg, fT1(s) = fbg, fT1 (d) = fdg,fT1(f) = ffg and fT1 (a) = fag.Proposition A.7 De�ne T2(=) as follows: (1) foreach time point p let T2(=)(p) = =(p); (2) foreach time interval I let T2(=)(I�) = =(I�) + " andT2(=)(I+) = =(I+) � ". The description of T2, fT2is then: fT2 (b) = fbg, fT2(s) = fbg, fT2(d) = fdg,fT2(f) = fag and fT2 (a) = fag.Proposition A.8 De�ne T3(=) as follows: (1) foreach time point p let T3(=)(p) = =(p); (2) foreach time interval I let T3(=)(I�) = =(I�) � " andT3(=)(I+) = =(I+). The description of T3, fT3 isthen: fT3(b) = fbg, fT3(s) = fdg, fT3 (d) = fdg,fT3(f) = ffg and fT3 (a) = fag.Proposition A.9 De�ne T4(=) as follows: (1) foreach time point p let T4(=)(p) = =(p); (2) foreach time interval I let T4(=)(I�) = =(I�) andT4(=)(I+) = =(I+) � " The description of T4, fT4is then: fT4 (b) = fbg, fT4(s) = fsg, fT4(d) = fdg,fT4(f) = fag and fT4 (a) = fag.A.2 PROOFS OF TRACTABILITYProving tractability of V-SAT(V23) is straightforward.Proposition A.10 Deciding satis�ability of a set ofPA formulae is polynomial.Proof: See (Vilain et al., 1989). 2Lemma A.11 V-SAT(V23) is polynomial.Proof: Follows immediately from the de�nition ofV23 and the previous proposition. 2Lemma A.12 V-SAT(V20s ) is polynomial.Proof: By Corollary 2.4, it is su�cient to showthat V-SAT(v20s ) is polynomial. Let � be an arbi-trary instance of V-SAT(v20s ). De�ne the function� : v20s ! f�;=; 6=;>g as follows: �(fsg) = \=",�(fb; sg) = \�", �(fb; ag) = \6=", �(fb; s; d; ag) =\>" and �(fb; s; f; ag) = \>".

Let �0 = fxp�(R)yI j pRI 2 �g. In the sequel, yIwill be considered as the starting point of the intervalI. By Proposition A.10, it is polynomial to decide R-satis�ability of �0. We show that � is V-satis�able i��0 is R-satis�able.if: Let =0 be an R-model of �0. Let " = MD(=0)=2.We construct an V-interpretation = of � as follows:� For each variable xp in �0 let =(p) = =0(xp).� For each variable yI in �0 let =(I�) = =0(yI ) and=(I+) = =0(yI ) + "We show that = is an V-model of �. Let pRI be anarbitrary formula in �. We have �ve di�erent cases.1. R = fsg. Then =0(xp)�(fsg)=0(yI ) , =0(xp) ==0(yI) , =(p) = =(I�). Consequently, pfsgIunder =.2. R = fb; sg. Then =0(xp)�(fb; sg)=0(yI ) ,=0(xp) � =0(yI ) , =(p) � =(I�). Consequently,pfb; sgI under =.3. R = fb; ag. Then =0(xp)�(fb; ag)=0(yI ) ,=0(xp) 6= =0(yI) , =(p) 6= =(I�). If =(p) <=(I�) then pfbgI under =. If =(p) > =(I�) then=(p) > =(I+) since I+ = I� + ". In this casepfagI under = . Consequently, pfb; agI under =.4. R = fb; s; f; ag. Assume pfdgI under =. Then=(I�) < =(p) < =(I+) , =(I�) < =(p) <=(I�) + ", =0(yI ) < =0(xp) < =0(yI ) + " whichcontradicts the choice of ". Hence, pfb; s; f; agIunder =5. R = fb; s; d; ag. This case is analogous to theprevious case.only-if: Let = be an V-model of �. We construct anR-interpretation =0 of �0 as follows:� For each time point p in � let =0(xp) = =(p).� For each time interval I in � let =0(yI) = =(I�).Next, we show that =0 is an R-model of �0. Let xpRyIbe an arbitrary formula in �0. We have four di�erentcases:1. R = \=". Assume =0(xp) 6= =0(yI ). Then =(p) 6==(I�) and pfb; d; f; agI under =. But xp = yI 2�0 i� pfsgI 2 � which leads to a contradiction.Hence, xp = yI under =0.2. R = \6=". This case is analogous to the previouscase.3. R = \�". Assume =0(xp) > =0(yI ). Then =(p) >=(I�) and pfd; f; agI under =. But xp � yI 2 �0i� pfb; sgI 2 � which leads to a contradiction.Hence, xp � yI under =0.4. R = \>". This relation holds trivially in everyR-model of �0. 2



Lemma A.13 V-SAT(V20d ) is polynomial.Proof sketch: By Corollary 2.4, it is su�cient toshow that V-SAT(v20d ) is polynomial. Let � be anarbitrary instance of V-SAT(v20d ). De�ne the func-tion � : v20d ! f�;�; 6=;>g as follows: �(fb; ag) =\6=", �(fs; d; f; ag) = \�", �(fb; s; d; fg) = \�",�(fb; s; d; ag) = \>", and �(fb; d; f; ag) = \>".Let �0 = fxp�(R)yI jpRI 2 �g. By Proposition A.10,it is polynomial to decide R-satis�ability of �0. Toshow that � is V-satis�able i� �0 is R-satis�able isanalogous to the proof of Lemma A.12. 2Lemma A.14 V-SAT(V18:a) is polynomial.Proof: By Corollary 2.4, it is su�cient to showthat V-SAT(v18:a) is polynomial. Let r01 = fdg, r02 =fb; s; ag, r03 = :f, r04 = :a and r05 = :s. Notethat v18:a = S5i=1fr0ig. Furthermore, let ri = r0i fori 2 f1; 3; 4; 5g and let r2 = fb; ag. It can easily beveri�ed that rk � r0k for 1 � k � 5. Furthermore,fT1(r0k) � rk for 1 � k � 5. Hence, by Lemma A.3,the polynomiality of V-SAT(V18:a) follows. 2Lemma A.15 V-SAT(V18:d) is polynomial.Proof: By Corollary 2.4, it is su�cient to show thatV-SAT(v18:d) is polynomial. Let r01 = fdg, r02 = fb; dg,r03 = :s, r04 = :d and r05 = :f. Note that v18:d =S5i=1fr0ig. Furthermore, let ri = r0i for i 2 f1; 3; 4; 5gand let r4 = fb; ag. It can easily be veri�ed thatrk � r0k for 1 � k � 5. Furthermore, fT2(r0k) � rkfor 1 � k � 5. Consequently, by Lemma A.3, thepolynomiality of V-SAT(V18:d) follows. 2Lemma A.16 V-SAT(V17s ) is polynomial.Proof: Let � be an arbitrary instance of V-SAT(V17s ). If a formula of the form p?I is in � then� is not satis�able. Otherwise, consider the followingV-interpretation: =(p) = 0 for every time point p and=(I�) = 0 and =(I+) = 1 for every interval I. LetpRI be an arbitrary formula in �. By the de�nitionof V17s , s 2 R. Obviously, = satis�es pRI. Since itis polynomial to check whether pRI 2 � or not, thelemma follows. 2B INTRACTABILITY RESULTSThis section provides proofs for the NP-complete sub-classes of V presented in Table 3. The reductions aremostly made from di�erent subalgebras of Allen's in-terval algebra. Consequently, we begin this section byrecapitulating some results concerning Allen's algebra.

Table 3: NP-complete subclasses of V.Subclass Relations ProofD1 fdg; fsg; fb; ag Lemma B.7D2 fdg; ffg; fb; ag D2 = DV(D1)D3 fdg; fsg; fb; f; ag Lemma B.8D4 fdg; ffg; fb; s; ag D4 = DV(D3)D5 fdg; fsg; fs; ag Lemma B.9D6 fdg; ffg; fb; fg D6 = DV(D5)D7 fdg; fs; fg Lemma B.10D8 fsg; fb; fg Lemma B.11D9 ffg; fs; ag D9 = DV(D8)D10 fsg; fb; f; ag; fb;s; d; fg D8 � CV(D10)D11 ffg; fb; s; ag; fs;d; f; ag D11 = DV(D10)D12 fdg; fb; fg Lemma B.12D13 fdg; fs; ag D13 = DV(D12)D14 fd; ag; fb; fg Lemma B.13D15 fb; dg; fs; ag D15 = DV(D14)D16 fdg; fs; f; ag Lemma B.14D17 fdg; fb; s; fg D17 = DV(D16)D18 fs; fg; fb; dg Lemma B.15D19 fs; fg; fd; ag D19 = DV(D18)D20 fs; fg; fb; ag Lemma B.16D21 fd; ag; fb; s;fg Lemma B.17D22 fb; dg; fs; f;ag D22 = DV(D21)D23 fs; dg; fb; fg Lemma B.18D24 fd; fg; fs; ag D24 = DV(D23)D25 fs; d; ag;fb; fg Lemma B.19D26 fb; d; fg;fs; ag D26 = DV(D25)D27 fb; fg; fs; ag Lemma B.20D28 fs; fg; fb; d;ag Lemma B.21B.1 ALLEN'S ALGEBRAAllen's interval algebra (Allen, 1983) is based on thenotion of relations between pairs of intervals. An in-terval X is represented as an ordered pair hX�; X+iof real numbers with X� < X+, denoting the leftand right endpoints of the interval, respectively, andrelations between intervals are composed as disjunc-tions of basic interval relations. Their exact de�nitionscan be found in (Allen, 1983). Such disjunctions arerepresented as sets of basic relations. The algebra isprovided with the operations of converse, intersectionand composition on intervals. The exact de�nitions ofthese operations can be found in (Allen, 1983). Bythe fact that there are thirteen basic relations, we get213 = 8192 possible relations between intervals in thefull algebra. We denote the set of all interval relationsby A. The reasoning problem we will consider is theproblem of satis�ability (A-SAT) of a set of intervalvariables with relations between them, i.e. decidingwhether there exists an assignment of intervals on thereal line for the interval variables, such that all of therelations between the intervals hold. Such an assign-ment is said to be a A-model for the interval variablesand relations. For A, we have the following result.Theorem B.1 Let N2 be the set ff�; d^; o;m; f^g;f�; d; o;m; sg; fd^; o; o^; s^; f^gg and let �0 be



the set ff�;�g; f�; d; d^; o; o^;m;m^; s; s^; f; f^gg.A�SAT(S) is NP-complete if N2 � S (Nebel andB�urckert, 1995), or �0 � S (Golumbic and Shamir,1993).To facilitate the forthcoming proofs we will use a clo-sure operation for Allen's algebra which was de�nedin (Nebel and B�urckert, 1995).De�nition B.2 Let S � A. Then we denote byCA(S) the A-closure of S under converse, intersectionand composition, i.e. the least subalgebra containingS closed under the three operations.The key result for CA is the following. The proof ap-pears in (Nebel and B�urckert, 1995).Proposition B.3 Let S � A. Then A-SAT(S) ispolynomial i� A-SAT(CA(S)) is and A-SAT(S) is NP-complete i� A-SAT(CA(S)) is.Next, we will de�ne a number of subclasses of A andprove that A-SAT for them is NP-complete. Thesesubclasses will be used later on in the NP-completenessproofs for the subclasses in Table 3.De�nition B.4 Let s0; s1; : : : ; s7 be de�ned as fol-lows: s0 = fd; o^; fg, s1 = f�;�; d^; o;m; f^g,s2 = f�;�; s; s^g, s3 = f�;m;m^; s; s^; f; f^g,s4 = fd; o; o^; s; fg, s5 = f�; d^; o;m;m^g, s6 =f�; s; s^g and s7 = f�;�; d^; o; o^;m;m^; s^; f^g.Denote by Sij the set fsi; sjg.Proposition B.5Is0J i� J� < I� < J+;Is1J i� I� < J� _ I� > J+;Is2J i� I� = J� _ I� > J+;Is3J i� (I� = J�) _ (I� = J+) _ (I+ = J�) _(I+ = J+);Is4J i� (J� < I� < J+) _ (J� < I+ < J+);Is5J i� (I� < J�) _ (I� = J+);Is6J i� I� = J�;Is7J i� (I� < J�) _ (I� > J+) _ (I+ < J�) _(I+ > J+).Lemma B.6 A-SAT(S) is NP-complete for S 2fS01; S02; S34; S56; S37g.Proof: By Corollary B.3, we can study A-SAT(CA(S)) instead of A-SAT(S). It can be veri�edthat N2 is a subset of CA(S01), CA(S02) and CA(S56).Likewise, it can be shown that �0 is a subset of

CA(S34) and CA(S37). Hence, NP-completeness followsfrom Theorem B.1. 2In the previous lemma, CA was computed by the utilityaclose (Nebel and B�urckert, 1993).B.2 NP-COMPLETE SUBCLASSES OF VLemma B.7 V-SAT(D1) is NP-complete.Proof: Reduction from A-SAT(S01) which is NP-complete by Lemma B.6. Let � be an instance ofA-SAT(S01). We construct a set �0 as follows.1. For each formula of the type Is0J in �, intro-duce a new time point pI;J and let pI;JfsgI andpI;JfdgJ in �0;2. For each formula of the type Is1J in �, intro-duce a new time point qI;J and let qI;JfsgI andqI;Jfb; agJ in �0.Clearly �0 is an instance of the V-SAT(D1) problem.We show that � is satis�able i� �0.only-if: Assume there exists a A-model = of �. Weconstruct an V-interpretation =0 of �0 as follows:=0(I�) = =(I�), =0(I+) = =(I+), =0(pI;J ) = =(I�)and =0(qI;J ) = =(I�).By the construction of �0, three types of formulae canappear in �0. We consider them one at a time.1. pI;JfsgI and qI;JfsgI. Such formulae are triv-ially satis�ed under =0.2. pI;JfdgJ . If pI;JfdgJ 2 �0 then Is0J 2 �.Since = is a A-model of �, =(J+) < =(I�) <=(J+) by Proposition B.5. By the constructionof =0, =0(pI;J ) = =(I�), =0(J�) = =(J�) and=0(J+) = =(J+). Hence, pI;JfdgJ under =0.3. qI;Jfb; agJ . If pI;Jfb; agJ 2 �0 then Is1J 2 �.Since = is a A-model of �, =(I�) < =(J�) or=(I�) > =(J+) by Proposition B.5. By theconstruction of =0, =0(qI;J) = =(I�), =0(J�) ==(J�) and =0(J+) = =(J+). Hence, qI;Jfb; agJunder =0.As a consequence, =0 is a V-model of �0.if: Assume there exists an V-model =0 of �0. We con-struct an A-model = of � as follows: =0(I�) = =(I�)and =0(I+) = =(I+).Arbitrarily choose a formula of the form Is0J in �.Then there exists a time point pI;J in �0 such thatpI;JfsgI and pI;JfdgJ . It follows that =0(J�) <=0(I+) < =0(J+) and, by the construction of =,=(J�) < =(I+) < =(J+). Hence, Is0J under =.Arbitrarily choose a formula of the form Is1J in �.Then there exists a time point qI;J in �0 such thatqI;JfsgI and qI;Jfb; agJ . It follows that =0(I�) <



=0(J�) or =0(I�) > =0(J+). By the construction of=, =(I�) < =(J�) or =(I�) > =(J+). Hence, Is1Junder = by Proposition B.5.Consequently, = is a A-model of �. We have thusshown that � is satis�able i� �0 is satis�able. NP-completeness of V-SAT(D1) follows immediately. 2Lemma B.8 V-SAT(D3) is NP-complete.Proof: Let D3 = ffdg; fsg; fb;f; agg = fr01; r02; r03g.Observe that fT4(r01) = fdg, fT4(r02) = fsgand fT4 (r03) = fb; ag. By Lemma B.7, D1 =ffdg; fsg; fb;agg and V-SAT(D1) is NP-complete.Hence, V-SAT(D3) is NP-complete by Lemma A.4.2Lemma B.9 V-SAT(D5) is NP-complete.Proof sketch: Reduction from A-SAT(S02) whichis NP-complete by Lemma B.6. Let � be an instanceof A-SAT(S02). We construct a set �0 as follows.1. For each formula of the type Is0J in �, intro-duce a new time point pI;J and let pI;JfsgI andpI;JfdgJ in �0;2. For each formula of the type Is2J in �, introducea new time point qI;J and let let qI;JfsgI andqI;Jfs; agJ in �0.Clearly �0 is an instance of the V-SAT(D5) problem.Show that � is satis�able i� �0 is similar to the proofof Lemma B.7. 2Lemma B.10 V-SAT(D7) is NP-complete.Proof: Reduction from A-SAT(S34) which is NP-complete by Lemma B.6. Let � be an instance ofA-SAT(S34). We construct a set �0 as follows.1. For each formula of the type Is3J in �, intro-duce a new time point pI;J and let pI;Jfs; fgIand pI;Jfs; fgJ in �0;2. For each formula of the type Is3J in �, intro-duce a new time point qI;J and let qI;Jfs; fgI andqI;JfdgJ in �0.Clearly �0 is an instance of the V-SAT(D7) problem.We show that � is satis�able i� �0.Assume there exists a A-model = of �. We constructan V-interpretation =0 of �0 as follows:1. =0(I�) = =(I�);2. =0(I+) = =(I+);3. =0(pI;J ) = =(I�) if =(I�) = =(J�) or =(I�) ==(J+);4. =0(pI;J ) = =(I+) otherwise. In this case =(I+) ==(J�) or =(I+) = =(J+);

5. =0(qI;J) = =(I�) if =(J�) < =(I�) < =(J+);6. =0(qI;J) = =(I+) otherwise. In this case =(J�) <=(I+) < =(J+).By the construction of �0, four types of formulae canappear in �0. We consider them one at a time.1. pI;Jfs; fgI. If pI;Jfs; fgI 2 �0 then Is3J 2 �.By Proposition B.5, (I� = J�) or (I� = J+)or (I+ = J�) or (I+ = J+). If =(I�) ==(J�) or =(I�) = =(J�) then =0(pI;J ) = =(I�)and, consequently, pI;Jfs; fgI under =0. Other-wise, =(I+) = =(J�) or =(I+) = =(J�) and=0(pI;J ) = =(I+). Hence pI;Jfs; fgI under =0.2. pI;Jfs; fgJ . This case is analogous to the previouscase.3. qI;Jfs; fgI. If qI;Jfs; fgI 2 �0 then Is4J 2 �.By Proposition B.5, (=(J�) < =(I�) < =(J+))_(=(J�) < =(I+) < =(J+)). If =(J�) < =(I�) <=(J+ then =0(qI;J ) = =(I�) and qI;JfsgI un-der =. Otherwise, =(J�) < =(I+) < =(J+,=0(qI;J) = =(I+) and qI;JffgI under =.4. qI;JfdgJ . If qI;JfdgJ 2 �0 then Is4J 2 �. ByProposition B.5, (=(J�) < =(I�) < =(J+)) _(=(J�) < =(I+) < =(J+)). If =(J�) < =(I�) <=(J+ then =0(qI;J ) = =(I�) and qI;JfdgI un-der =. Otherwise, =(J�) < =(I+) < =(J+,=0(qI;J) = =(I+) and qI;JfdgI under =.As a consequence, =0 is a V-model of �0.Now, assume there exists a V-model =0 of �0. We con-struct an A-interpretation = of � as follows: =(I�) ==0(I�) and =(I+) = =0(I+).Arbitrarily choose a formula of the form Is3J in �.Then there exists a time point pI;J in �0 such thatpI;Jfs; fgI and pI;Jfs; fgJ under =0. This impliesthat one endpoint in I equals one endpoint in J and,by Proposition B.5, Is3J under =.Arbitrarily choose a formula of the form Is4J in �.Then there exists a time point qI;J in �0 such thatqI;Jfs; fgI and qI;JfdgJ under =0. Assume qI;JfsgIunder =0. Then =(J�) < =(I�) < =(J+). Assume tothe contrary that pI;JffgI under =0. It follows that=(J�) < =(I+) < =(J+). Hence, by Proposition B.5,Is4J under =. 2Lemma B.11 V-SAT(D8) is NP-complete.Proof sketch: Reduction from A-SAT(S56) whichis NP-complete by Lemma B.6. Let � be an instanceof A-SAT(S56). We construct a set �0 as follows.1. For each formula of the type Is5J in �, intro-duce a new time point pI;J and let pI;JfsgI andpI;Jfb; fgJ in �0;



2. For each formula of the type Is6J in �, intro-duce a new time point qI;J and let qI;JfsgI andqI;JfsgJ in �0.Clearly �0 is an instance of the V-SAT(D8) problem.It is a routine veri�cation to show that � is satis�ablei� �0 is satis�able. 2Lemma B.12 V-SAT(D12) is NP-complete.Proof: By Lemma B.9, V-SAT(D5) is NP-completeand V-SAT(D6) is NP-complete since D6 = DV(D5).Let E = ffbg; fdg; fb; fgg. It can be veri�ed thatD6 � CV(E) and, hence, V-SAT(E) is NP-complete.Let � be an arbitrary instance of the V-SAT(E) prob-lem. We show how to construct an instance �0 of theV-SAT(D12) problem that is satis�able i� � is satis�-able.We begin showing how to relate a point p1 and aninterval I1 such as p1fbgI1 by only using the rela-tions in D12. We introduce two fresh time points p2and p3 together with two fresh time intervals I2 andI3. Consider the following construction: p1fb; fgI1,p1fb; fgI2, p1fb; fgI3, p2fb; fgI1, p2fdgI2, p2fb; fgI3,p3fb; fgI1, p3fb; fgI2 and p3fdgI3.We denote this set of relations with 
. Let = be aV-model of 
. For the sake of brevity we identify thetime points and time intervals with their values wheninterpreted by =. Hence, instead of writing =(p1) <=(I�1 ), we simply write p1 < I�1 .Obviously, p1 < I�1 or p1 = I+1 . We begin by showingthat there exists a V-model of 
 such that p1 < I�1 .Let � = (I�1 �p1)=5. Consider the following assignmentof values: I�3 = p1 + �, p3 = p1 + 2�, I�2 = p1 + 3�,p2 = p1 + 4�, I+3 = p1 + 4� and I+2 = I+1 . It is nothard to see that this assignment is a V-model of 
.Next, we show that there does not exist any V-modelof 
 such that p1 = I+1 . Assume = is such a V-model.By relation (4), we can see that p2 < I�1 or p2 = I+1 .By assumption, p1 = I+1 . Hence, either p2 < I�1 orp2 = p1. If p2 = p1 then relation (2) is equivalent top2fb; fgI2 which clearly contradicts relation (5). Thus,p2 < I�1 and p2fbgI1. By analogous reasoning one cansee that p3 < I�1 and p3fbgI1.Next, observe that relations (2) and (3) implies p1 �I+2 and p1 � I+3 . Furthermore, p2 < I�1 and p3 < I�1which implies p2 < I+1 and p3 < I�1 . By our initialassumption p1 = I+1 we get p2 < I+1 = p1 � I+3 andp3 < I+1 = p1 � I+2 .Consequently, p2 < I+3 and p3 < I+2 . Observe thatp2fb; fgI3 and p3fb; fgI2 by relations (6) and (8), re-spectively. Hence, p2 < I�3 and p3 < I�2 .By relations (5) and (9), I�2 < p2 < I+2 and I�3 <p3 < I+3 . Hence, p2 < I�3 < p3 < I�2 < p2 which

is a contradiction. Consequently, every V-model of 
satis�es p1 < I�1 .We have thus shown how to express the relation fbg byonly using fdg and fb; fg. Obviously, we can take aninstance of the V-SAT(E) problem and in polynomialtime transform it into an equivalent instance of the V-SAT(D12) problem. NP-completeness of V-SAT(D12)follows immediately. 2Lemma B.13 V-SAT(D14) is NP-complete.Proof sketch: By Lemma B.9, V-SAT(D5) isNP-complete and V-SAT(D6) is NP-complete sinceD6 = DV(D5). Let E = ffbg; fd; ag;fb;fgg. It canbe veri�ed that D6 � CV(E) and, hence, V-SAT(E) isNP-complete. Let � be an arbitrary instance of theV-SAT(E) problem. We show how to construct aninstance �0 of the V-SAT(D14) problem that is satis-�able i� � is satis�able.The proof boils down to showing how to relate a pointp1 and an interval I1 such as p1fbgI1 by only usingthe relations in D14. We introduce two fresh timepoints p2 and p3 together with two fresh time in-tervals I2 and I3. Consider the following construc-tion: p1fb; fgI1, p1fb; fgI2, p1fb; fgI3, p2fb; fgI1,p2fd; agI2, p2fb; fgI3, p3fb; fgI1, p3fb; fgI2 andp3fd; agI3. It is fairly straightforward to show that p1can only be related to I1 with the relation b. Hence,we can take an instance of the V-SAT(E) problem andin polynomial time transform it into an equivalent in-stance of the V-SAT(D14) problem. NP-completenessof V-SAT(D14) follows immediately. 2Lemma B.14 V-SAT(D16) is NP-complete.Proof: Reduction from V-SAT(D13). Use the modeltransformation T4 and apply Lemma A.4. 2Lemma B.15 V-SAT(D18) is NP-complete.Proof sketch: By Lemma B.10, V-SAT(D7) is NP-complete. Let E = ffsg; fs; fg;fb;dgg. It can beveri�ed that D7 � CV(E) and, hence, V-SAT(E) isNP-complete. Let � be an arbitrary instance of theV-SAT(E) problem.We show how to relate a time point p1 and aninterval I1 with the relation s. Introduce twofresh time points p2 and p3 together with a freshtime interval I2. Consider the following construc-tion: p1fs; fgI1, p1fb; dgI2, p2fb; dgI1, p2fs; fgI2,p3fs; fgI1 and p3fs; fgI2.It is not hard to show that p1 can only be related toI1 with the relation s. Consequently, we can take aninstance of the V-SAT(E) problem and in polynomialtime transform it into an equivalent instance of the V-SAT(D18) problem. NP-completeness of V-SAT(D18)follows immediately. 2



Lemma B.16 V-SAT(D20) is NP-complete.Proof sketch: Reduction from A-SAT(S37) whichis NP-complete by Lemma B.6. Let � be an instanceof A-SAT(S37). We construct a set �0 as follows.1. For each formula of the type Is3J in �, intro-duce a new time point pI;J and let pI;Jfs; fgIand pI;Jfs; fgJ in �0;2. For each formula of the type Is3J in �, intro-duce a new time point qI;J and let qI;Jfs; fgI andqI;Jfb; agJ in �0.Clearly �0 is an instance of the V-SAT(D20) problem.Proving that � is satis�able i� �0 is similar to theproof of Lemma B.10. 2Lemma B.17 V-SAT(D21) is NP-complete.Proof: Reduction from V-SAT(D14). Use the modeltransformation T1 and apply Lemma A.4. 2Lemma B.18 V-SAT(D23) is NP-complete.Proof: Reduction from V-SAT(D12). Use the modeltransformation T3 and apply Lemma A.4. 2Lemma B.19 V-SAT(D25) is NP-complete.Proof: Reduction from V-SAT(D14). Use the modeltransformation T3 and apply Lemma A.4. 2Lemma B.20 V-SAT(D27) is NP-complete.Proof sketch: By Lemma B.10, V-SAT(D7) is NP-complete. Let E = ffbg; fb; fg;fs;agg. It can beveri�ed that D5 � CV(E) and, hence, V-SAT(E) isNP-complete. Let � be an arbitrary instance of V-SAT(E). We show how to construct an instance �0 ofV-SAT(D27) that is satis�able i� � is satis�able.We begin by showing how to relate a point p1 and aninterval I1 such as p1fbgI1 by only using the relationsin D27. We introduce two fresh time points p2 and p3together with a fresh time interval I2. Consider the fol-lowing construction: p1fb; fgI1, p1fb; fgI2, p2fb; fgI1,p2fs; agI2, p3fs; agI1 and p3fb; fgI2.It is fairly straightforward to show that p1 can only berelated to I1 with the relation b. Hence, we can take aninstance of the V-SAT(E) problem and in polynomialtime transform it into an equivalent instance of the V-SAT(D27) problem. NP-completeness of V-SAT(D27)follows immediately. 2Lemma B.21 V-SAT(D28) is NP-complete.Proof: Reduction from Graph 3-Colourability,which is NP-complete. Let G = hV;Ei be an arbitraryundirected graph.

In the proof we will make repeated use of the con-cept of a separator, a construction which forces twopoints to have distinct values in all models. Giventwo points p; q we construct a separator by introduc-ing a new interval I and adding the relations pfs; fgIand qfb; d; agI. Clearly, all models = must satisfy=(p) 6==(q).We now construct the set of relations stepwise. First,we construct a paint-box by introducing two points p1and p2, two intervals I1 and I2 plus the relationsp1fs; fgI1; p1fs; fgI2; p2fs; fgI1; p2fb; d; agI2over these. Note that the interval I2 acts as a sepa-rator for p1 and p2, which are thus forced to take ondi�erent values. Further, the intervals I1 and I2 musthave some common end-point, coinciding with p1. Weuse the constant r to denote this value. Hence, theremaining end-point of I1 must coincide with p2 andthe remaining end-point of I2 must be distinct fromboth p1 and p2. We denote the values of these tworemaining end-points g and b respectively. We canthink of the values r, g and b as colours, constitutingour palette. Of course, the actual denotations of thesethree values di�er between models, but the importantthing is only that they denote three distinct values ineach and every model.Now, for each vertex vi 2 V , we construct a selectorconsisting of three points q0i , q1i and q2i plus two inter-vals J0i and J1;2i , connected as follows. First introducea separator for q1i and q2i , using interval J1;2i , i.e. intro-duce the relations q1i fs; fgJ1;2i ; q2i fb; d; agJ1;2i : Thenconnect the points to the remaining interval by addingthe relations q0i fs; fgJ0i ; q1i fs; fgJ0i ; q2i fs; fgJ0i : Fi-nally, connect this whole gadget to the paint-box byadding the relations q1i fs; fgI1; q2i fs; fgI2: The selec-tor works as follows. The endpoints of I1 correspondto the colours r and g, so q1i is forced to have either ofthese values. Similarly, q2i must have either of the val-ues r and b. Now, q1i and q2i are separated, so togetherthey select a subpalette of two colours, assigning onecolour each to the end-points of J0i . Finally, q0i selectsone of these two colours. So far, there are no furtherconstraints, so q0i may be freely assigned any of thethree colours from our palette.Finally, for each edge fvi; vjg 2 E we introduce aseparator, consisting of the new interval Ki;j and thetwo relations q0i fs; fgKi;j; q0jfb; d; agKi;j; preventingq0i and q0j to have the same value whenever there is anedge between the vertices vi and vj .It is obvious that G is 3-colourable i� the network justconstructed is satis�able, so NP-completeness follows.2


