
Journal of Artificial Intelligence Research 51 (2014) 255-291 Submitted 03/14; published 09/14

Automaton Plans

Christer Bäckström CHRISTER.BACKSTROM@LIU.SE

Department of Computer Science

Linköping University

SE-581 83 Linköping, Sweden

Anders Jonsson ANDERS.JONSSON@UPF.EDU

Dept. Information and Communication Tecnologies

Universitat Pompeu Fabra

Roc Boronat 138

08018 Barcelona, Spain

Peter Jonsson PETER.JONSSON@LIU.SE

Department of Computer Science

Linköping University

SE-581 83 Linköping, Sweden

Abstract

Macros have long been used in planning to represent subsequences of operators. Macros can

be used in place of individual operators during search, sometimes reducing the effort required to

find a plan to the goal. Another use of macros is to compactly represent long plans. In this paper

we introduce a novel solution concept called automaton plans in which plans are represented using

hierarchies of automata. Automaton plans can be viewed as an extension of macros that enables

parameterization and branching. We provide several examples that illustrate how automaton plans

can be useful, both as a compact representation of exponentially long plans and as an alternative

to sequential solutions in benchmark domains such as LOGISTICS and GRID. We also compare

automaton plans to other compact plan representations from the literature, and find that automaton

plans are strictly more expressive than macros, but strictly less expressive than HTNs and certain

representations allowing efficient sequential access to the operators of the plan.

1. Introduction

In this paper we introduce a novel solution concept for planning that we call automaton plans.

For ease of presentation we divide the introduction into two parts. In the first part we discuss

existing concepts for plan representation from the literature. In the second part we describe the

novel representation that we propose.

1.1 Plan Representations

Following the introduction of STRIPS planning (Fikes & Nilsson, 1971), it did not take researchers

long to discover the utility of storing sequences of planning operators, or macros (Fikes, Hart, &

Nilsson, 1972). Macros were first used as a tool during plan execution and analysis. However,

macros turned out to have several other useful properties that have been exploited by researchers in

the planning community ever since.

c©2014 AI Access Foundation. All rights reserved.



BÄCKSTRÖM, JONSSON, & JONSSON

One such property is the possibility to compute cumulative preconditions and effects, effectively

making macros indistinguishable from individual operators. A planning instance can be augmented

with a set of macros, potentially speeding up the search for a solution since macros can reach further

into the state space than individual operators. In the extreme, the search space over macros can be

exponentially smaller than the search space over the original planning operators (Korf, 1987).

Moreover, if subsequences of operators are repeated, a hierarchy of macros can represent a plan

more compactly than a simple operator sequence, replacing each occurrence of a repeating subse-

quence with a single operator (i.e. a macro). In the extreme, one can represent an exponentially long

plan using polynomially many macros of polynomial length (Giménez & Jonsson, 2008; Jonsson,

2009). Sometimes it is even possible to generate such a compact macro plan in polynomial time,

in which case macros can be viewed as a tool for complexity analysis, reducing the complexity of

solving a particular class of planning instances.

Macros clearly show that there are advantages associated with plan representations that do not

simply store the plan as a sequence of actions. Apart from the obvious purpose of saving space, there

are other reasons for considering alternative representations. One important reason is to highlight

properties of a plan that might not be apparent from a sequential representation and that can be

exploited for increased planning efficiency. One prominent example is partially ordered plans that

represent plans as sets of actions with associated partial orders. Partially ordered plans have often

been used in planning to speed up search (McAllester & Rosenblitt, 1991). In general, the fact that

there exists a compact representation of a plan implies that the planning instance exhibits some form

of structure that might be possible to exploit for simpler and more efficient reasoning.

Potentially, there exist many alternative plan representations that can store plans compactly.

Such compact representations can broadly be divided into two categories. The first type of plan

representation stores a single plan, while the second type stores a set of plans. Macros are an

illustrative example of the first type, and we have already seen that macro plans can be exponentially

smaller than a sequential representation. An example of the second type is reactive plans, also

known as universal plans or reactive systems, which represent one plan for each state from which

the goal is reachable.

The usefulness of a compact representation depends of several factors.

1.1.1 COMPRESSION PROPERTIES

Clearly, one important property of a compact plan representation is its size. However, there is an

information-theoretic bound on the compressibility of plans: a representation containing n bits can

only distinguish between 2n different plans, limiting the applicability of highly compact represen-

tations. There exist STRIPS instances with n variables having 22n−1 different plans (Bäckström &

Jonsson, 2012, Construction 10), implying that at least 2n − 1 bits are needed to distinguish one

particular solution from the rest. However, it may often suffice to represent a single solution that is

not arbitrarily chosen. In the extreme, we can represent a solution compactly by storing the planning

instance together with an algorithm for solving it.

1.1.2 ACCESS PROPERTIES

Another important property of a compact plan representation is the ability to access a particular

action of the plan. Two alternative concepts have been proposed (Bäckström & Jonsson, 2012):

sequential and random access. Sequential access implies that the actions of the plan can be retrieved

256



AUTOMATON PLANS

in order, while random access implies that we can retrieve the action at any given position i of the

plan. For both forms of access, ideally we should be able to retrieve actions in polynomial time,

something that is not always possible.

1.1.3 VERIFICATION

A third property of a compact plan representation is being able to verify that the plan actually consti-

tutes a solution to a given planning instance. The complexity of plan verification is directly related

to the complexity of plan existence, i.e. determining whether or not an instance has a solution. As-

sume that the problem of plan verification for a compact plan representation R is in complexity class

C. Let X be the set of STRIPS instances p satisfying the following condition: if p is solvable there

exists a solution to p that can be represented with R using O(p(||p||)) bits, where p is a polynomial

function and ||p|| is the number of bits in the representation of p. Under these assumptions, the

problem of plan existence for X is in complexity class NPC : non-deterministically guess a compact

plan in R and verify that the plan solves p. For many choices of C, plan existence for X is bounded

away from PSPACE, i.e. easier than general STRIPS planning. We conclude that simple verification

comes at a price: decreased expressiveness of the corresponding planning instances.

It is obviously difficult to identify representations that satisfy all three properties while being

able to express reasonably complex plans. A reasonable approach is to look for balanced represen-

tations that are both expressive and computationally efficient. Let us evaluate macros according to

the three properties above. In this paper we consider grounded macros that are totally ordered and

allow nesting, i.e. a macro can involve other macros as long as this does not create cyclic depen-

dencies among macros. We know that there exist examples for which macros provide a powerful

compact representation mechanism. Macro plans have excellent access properties: both sequential

and random access can be performed in polynomial time (Bäckström & Jonsson, 2012). They are

also verifiable in polynomial time (Bäckström, Jonsson, & Jonsson, 2012b), implying that planning

instances whose solutions can be represented using polynomial-size macro plans are easier than

general STRIPS planning, but also less expressive.

1.2 Automaton Plans

In this paper we introduce a novel solution concept for planning, inspired by macros, that we call

automaton plans. An automaton plan consists of a hierarchy of automata, each endowed with the

ability to call other automata. At the bottom level of the hierarchy are the individual plan operators.

Automaton plans can be viewed as an extension of macro plans along two dimensions. First, an

automaton is parameterized, enabling it to compactly represent not just a single operator sequence

but a whole family of sequences. Second, an automaton can branch on input, making it possible to

store different subsequences of operators and distinguish between them by providing different input

to the automaton.

The main motivation for automaton plans is to express plans compactly that macro plans can-

not, while maintaining access properties and verification at a reasonable level. We present several

examples of automaton plans, and show how they can be useful in a variety of ways. In domains

such as Towers of Hanoi, automaton plans can represent exponentially long plans even more com-

pactly than macro plans. Even when plans are not necessarily very long, the ability to parameterize

plans makes it possible to store repeating families of action subsequences in common benchmark

domains.

257



BÄCKSTRÖM, JONSSON, & JONSSON

To test the usefulness of automaton plans, we formally compare automaton plans to other com-

pact plan representations from the literature along the three dimensions discussed in Section 1.1:

compression, access, and verification. Each macro plan is also an automaton plan, implying that

automaton plans are at least as compressed as macro plans. Just like macro plans, automaton plans

can be sequentially accessed in polynomial time. We also show that a subclass of automaton plans

admit polynomial-time random access, although it is still unknown whether this result generalizes

to all automaton plans. Finally, verification of automaton plans is Π
p
2-complete, causing automaton

plans to be strictly more expressive than macros.

Hierarchical Task Networks (Erol, Hendler, & Nau, 1996), or HTNs for short, can also be

viewed as a type of compact plan representation. In addition to planning operators, an HTN defines

a set of tasks, each with a set of associated methods for expanding the task. As the name suggests,

the tasks are organized in a hierarchy with planning operators at the bottom. This hierarchy may be

considerably more compact than the actual sequence of operators in a plan. In general, the plans

represented by HTNs are not unique and search may be required to find a valid plan.

Instead of comparing automaton plans to general HTNs, we only consider totally ordered HTNs

with unique plans, i.e. the methods associated with each task are mutually exclusive and specify a

totally ordered expansion. We show that each automaton plan can be efficiently translated to such

an HTN, causing HTNs to be at least as compressed as automaton plans. HTNs with unique plans

can be sequentially accessed in polynomial time, but the same is not true for random access. Finally,

plan existence for totally ordered HTNs is known to be PSPACE-hard (Erol et al., 1996), implying

that verification of HTNs is harder than for automaton plans, in turn causing HTNs to be strictly

more expressive.

Combining these results, an automaton plan appears to offer a reasonable tradeoff between

compression, access, and verification, making it an interesting candidate for the type of balanced

plan representation that we discussed earlier. Since automaton plans are strictly more expressive

than macros, we can use them to represent plans compactly for a wider range of planning instances.

However, this does not come at the expense of prohibitively expensive computational properties,

since verification is easier for automaton plans than for HTNs as well as general STRIPS planning.

Automaton plans were first introduced in a conference paper (Bäckström, Jonsson, & Jonsson,

2012a). The present paper makes the following additional contributions:

• A formalization of automaton plans using Mealy machines, providing a stronger theoretical

foundation of automaton plans in automaton theory.

• A proof that plan verification for automaton plans is Π
p
2-complete, a result that is used to

compare the expressive power of automaton plans to that of other compact plan representa-

tions.

• A reduction from automaton plans to HTNs, proving that HTNs are strictly more expressive

than automaton plans, which comes at the price of more expensive computational properties.

The rest of the paper is organized as follows. Section 2 describes notation and basic concepts, while

Section 3 introduces automaton plans. Section 4 illustrates automaton plans using several practical

examples. Section 5 compares the computational properties of automaton plans to those of other

compact plan representations from the literature. Section 6 describes related work, while Section 7

concludes with a discussion.

258



AUTOMATON PLANS

2. Notation

In this section we describe the notation used throughout the paper. We first introduce a formal

definition of STRIPS planning domains based on function symbols, and show how STRIPS planning

instances are induced by associating sets of objects with planning domains. The same idea is used

in the PDDL language to compactly express planning domains and planning instances, and our

definition can be viewed as a mathematical adaptation of PDDL.

Given a set of symbols Σ, let Σn denote the set of strings of length n composed of symbols

in Σ. Let x ∈ Σn be such a string. For each 1 ≤ k ≤ n, we use xk to denote the k-th symbol

of x. As is customary, we use ǫ to denote the empty string, which satisfies ǫx = xǫ = x. Given

a set of elements S, let S∗ and S+ denote sequences and non-empty sequences of elements of S,

respectively. Given a sequence π ∈ S∗, let |π| denote its length. For any construct X , let ||X||
denote its size, i.e. the number of bits in its representation.

2.1 Function Symbols

A planning domain is an abstract description that can be instantiated on a given set of objects Σ to

form a planning instance. In this section we introduce function symbols to facilitate the description

of planning domains. Formally, a function symbol f has fixed arity ar(f) and can be applied to any

vector of objects x ∈ Σar(f) to produce a new object f [x]. Let F be a set of function symbols and

let Σ be a set of objects. We define FΣ = {f [x] : f ∈ F, x ∈ Σar(f)} ⊆ F × Σ∗ as the set of

new objects obtained by applying each function symbol in F to each vector of objects in Σ of the

appropriate arity.

Let f and g be two function symbols in F . An argument map from f to g is a function ϕ :
Σar(f) → Σar(g) mapping arguments of f to arguments of g. Intuitively, as a result of applying ϕ
to an argument x ∈ Σar(f) of f , each argument of g is either a component of x or a constant object

in Σ independent of x. Formally, for each 1 ≤ k ≤ ar(g), either ϕk(x) = xj for a fixed index j
satisfying 1 ≤ j ≤ ar(f), or ϕk(x) = σ for a fixed object σ ∈ Σ. An argument map ϕ from f to g
enables us to map an object f [x] ∈ FΣ to an object g[ϕ(x)] ∈ FΣ.

Since argument maps have a restricted form, we can characterize an argument map ϕ from f to

g using an index string from f to g, i.e. a string ν ∈ ({1, . . . , ar(f)}∪Σ)ar(g) containing indices of

f and/or objects in Σ. An index string ν from f to g induces an argument map ϕ from f to g such

that for each 1 ≤ k ≤ ar(g), ϕk(x) = xν(k) ∈ Σ if ν(k) ∈ {1, . . . , ar(f)} and ϕk(x) = ν(k) ∈ Σ
otherwise.

To illustrate the idea, let F = {f, g} with ar(f) = ar(g) = 2 and let Σ = {σ1, σ2}. An

example index string from f to g is given by ν = 2σ1, which induces an argument map ϕ from f
to g such that on input x ∈ Σ2, the first component of ϕ(x) always equals the second component of

x, and the second component of ϕ(x) always equals σ1. Given ϕ, the object f [σ1σ2] ∈ FΣ maps to

the object g[ϕ(σ1σ2)] = g[σ2σ1] ∈ FΣ.

2.2 Planning

Let V be a set of propositional variables or fluents. A literal l is a non-negated or negated fluent,

i.e. l = v or l = v for some v ∈ V . Given a set of literals L, let L+ = {v ∈ V : v ∈ L}
and L− = {v ∈ V : v ∈ L} be the set of fluents that appear as non-negated or negated in L,

respectively. We say that a set of literals L is consistent if v /∈ L or v /∈ L for each v ∈ V , which is

259



BÄCKSTRÖM, JONSSON, & JONSSON

equivalent to L+ ∩ L− = ∅. A state s ⊆ V is a set of fluents that are currently true; all fluents not

in s are assumed to be false. A set of literals L holds in a state s if L+ ⊆ s and L− ∩ s = ∅. We

define an update operation on a state s and a set of literals L as s⊕ L = (s \ L−) ∪ L+.

In this paper we focus on STRIPS planning with negative preconditions. Formally, a STRIPS

planning domain is a tuple d = 〈P, A〉, where P is a set of function symbols called predicates and

A is a set of function symbols called actions. Each action a ∈ A has an associated precondition

pre(a) = {(p1, ϕ1, b1), . . . , (pn, ϕn, bn)} where, for each 1 ≤ k ≤ n, pk is a predicate in P ,

ϕk is an argument map from a to pk, and bk is a Boolean. To be well-defined, pre(a) should not

simultaneously contain (p, ϕ, true) and (p, ϕ, false) for some predicate p and argument map ϕ from

a to p. The postcondition post(a) of a is similarly defined.

A STRIPS planning instance is a tuple p = 〈P, A, Σ, I, G〉, where 〈P, A〉 is a planning domain,

Σ a set of objects, I an initial state, and G a goal state, i.e. a set of literals implicitly defining a set of

states in which G holds. P and Σ implicitly define a set of fluents PΣ = {p[x] : p ∈ P, x ∈ Σar(p)}
by applying each predicate to each vector of objects in Σ. Likewise, A and Σ implicitly define a

set of operators AΣ. Thus fluents correspond to grounded predicates, and operators correspond to

grounded actions, which is the reason we distinguish between “action” and “operator” in the text.

The initial state I ⊆ PΣ and goal state G ⊆ PΣ are both subsets of (non-negated) fluents.

For each action a ∈ A and each x ∈ Σar(a), the precondition of operator a[x] ∈ AΣ is given

by pre(a[x]) = {b1p1[ϕ1(x)], . . . , bnpn[ϕn(x)]}, where pre(a) = {(p1, ϕ1, b1), . . . , (pn, ϕn, bn)},
bp[y] = p[y] if b is false, and bp[y] = p[y] if b is true. In other words, pre(a[x]) is the result

of applying each argument map ϕk in the precondition of a to the argument x to obtain a fluent

pk[ϕk(x)] ∈ PΣ, which is then appropriately negated. The postcondition post(a[x]) of a[x] is

similarly defined. Note that if pre(a) and post(a) are well-defined, pre(a[x]) and post(a[x]) are

consistent sets of literals on PΣ.

An operator o ∈ AΣ is applicable in state s if and only if pre(o) holds in s, and the result of

applying o in s is s⊕ post(o). A plan for p is a sequence of operators π = 〈o1, . . . , on〉 ∈ A∗
Σ such

that pre(o1) holds in I and, for each 1 < k ≤ n, pre(ok) holds in I ⊕post(o1)⊕ · · ·⊕post(ok−1).
We say that π solves p if G holds in I ⊕ post(o1)⊕ · · · ⊕ post(on). Given two operator sequences

π and π′, let π; π′ denote their concatenation.

Note that p has
∑

p∈P |Σ|
ar(p) fluents and

∑

a∈A |Σ|
ar(a) operators, which can both be exponen-

tial in ||p||, the description length of p. To avoid errors due to discrepancies in instance description

length and actual instance size, we only consider P and A such that, for each p ∈ P and a ∈ A,

ar(p) and ar(a) are constants that are independent of ||p||. We sometimes describe planning in-

stances directly on the form p = 〈PΣ, AΣ, Σ, I, G〉 by defining predicates and actions of arity 0,

implying that each predicate is a fluent and each action an operator.

3. Automaton Plans

In this section we define the concept of automaton plans, which is similar to macro plans. Just

like a macro plan consists of a hierarchy of macros, an automaton plan consists of a hierarchy of

automata. Unlike macros, the output of an automaton depends on the input, making it possible for

a single automaton to represent a family of similar plans. We can either use an automaton plan

to represent a single plan by explicitly specifying an input string of the root automaton, or allow

parameterized plans by leaving the input string of the root automaton undefined.

260



AUTOMATON PLANS

3.1 Mealy Machines

To represent individual automata we use a variant of deterministic finite state automata called Mealy

machines (Mealy, 1955), each defined as a tuple M = 〈S, s0, Σ, Λ, T, Γ〉 where

• S is a finite set of states,

• s0 ∈ S is an initial state,

• Σ is an input alphabet,

• Λ is an output alphabet,

• T : S × Σ→ S is a transition function,

• Γ : S × Σ→ Λ is an output function.

A Mealy machine M is a transducer whose purpose it is to generate a sequence of output for

a given input string. This is in contrast to acceptors that generate binary output (accept or re-

ject). Executing a Mealy machine M on input x = x1x2 · · ·xn ∈ Σn generates the output

Γ(s0, x1)Γ(s1, x2) · · ·Γ(sn−1, xn) ∈ Λn where sk = T (sk−1, xk) for each 1 ≤ k < n.

We extend Mealy machines to allow ǫ-transitions (i.e. transitions that do not consume input

symbols in Σ). While this may in general cause Mealy machines to be non-deterministic, we include

several restrictions that preserve determinism:

• We redefine T as a partial function T : S × (Σ ∪ {ǫ}) → S such that for each s ∈ S, either

T (s, ǫ) is defined or T (s, σ) is defined for each σ ∈ Σ, but not both. This is still, in a sense, a

total function on S since there is always exactly one possible transition from each state s ∈ S,

but the transition may or may not consume an input symbol.

• We do not allow ǫ-cycles, i.e. there must not exist any subset {s1, . . . , sn} ⊆ S of states such

that T (sk−1, ǫ) = sk for each 1 < k ≤ n and T (sn, ǫ) = s1.

• We further require that ǫ-transitions must always fire, in order to make the behavior of Mealy

machines well defined also when all input symbols have been consumed.

We also allow ǫ as output, i.e. a transition may or may not generate an output symbol in Λ. To allow

for ǫ-transitions and ǫ-output we redefine Γ as a partial function Γ : S × (Σ ∪ {ǫ}) → Λ ∪ {ǫ}.
The definition of Γ should be consistent with T , i.e. for each state s ∈ S, if T (s, ǫ) is defined then

Γ(s, ǫ) is defined, else Γ(s, σ) is defined for each σ ∈ Σ. We define an extended output function

Γ∗ : S × Σ∗ → Λ∗ such that for each state s ∈ S, input symbol σ ∈ Σ and input string x ∈ Σ∗,

Γ∗(s, ǫ) =

{

Γ(s, ǫ)Γ∗(T (s, ǫ), ǫ), if T (s, ǫ) is defined,
ǫ, otherwise,

Γ∗(s, σx) =

{

Γ(s, ǫ)Γ∗(T (s, ǫ), σx), if T (s, ǫ) is defined,
Γ(s, σ)Γ∗(T (s, σ), x), otherwise.

The deterministic output of a Mealy machine M on input x is given by Γ∗(s0, x) ∈ Λ∗.

As is customary we use graphs to represent automata. The graph associated with a Mealy

machine M has one node per state in S. An edge between states s and t with label i/o, where

i ∈ (Σ ∪ {ǫ}) and o ∈ (Λ ∪ {ǫ}), implies that T (s, i) = t and Γ(s, i) = o. To simplify the graphs

we adopt the following conventions:

261



BÄCKSTRÖM, JONSSON, & JONSSON

1/c0/c

0/a

1/b

ǫ/〈a, b〉
Σ/ǫ

Figure 1: An example Mealy machine.

• An edge between states s and t with label i/〈λ1, . . . , λn〉 ∈ (Σ ∪ {ǫ})×Λn is used as short-

hand to describe a series of intermediate states s′
2, . . . , s

′
n such that T (s, i) = s′

2, T (s′
k−1, ǫ) =

s′
k for each 2 < k ≤ n, T (s′

n, ǫ) = t, Γ(s, i) = λ1, and Γ(s′
k, ǫ) = λk for each 2 ≤ k ≤ n.

• An edge between states s and t with label Σn/ǫ is used as shorthand to describe a series of

intermediate states s′
2, . . . , s

′
n such that for each σ ∈ Σ, T (s, σ) = s′

2, T (s′
k−1, σ) = s′

k for

each 2 < k ≤ n, T (s′
n, σ) = t, Γ(s, σ) = ǫ, and Γ(s′

k, σ) = ǫ for each 2 ≤ k ≤ n.

Figure 1 shows an example Mealy machine M = 〈S, s0, Σ, Λ, T, Γ〉 with |S| = 4, Σ = {0, 1}, and

Λ = {a, b, c}. The initial state s0 is identified by an incoming edge without origin. Two example

outputs are Γ∗(s0, 01) = aab and Γ∗(s0, 1011) = cccbab.

3.2 Automaton Hierarchies

In this section we explain how to construct hierarchies of automata in order to represent plans. Each

automaton hierarchy is associated with a STRIPS planning instance p = 〈P, A, Σ, I, G〉. We define

a set Au of function symbols called automata, i.e. each automaton M ∈ Au has fixed arity ar(M),
something that is unusual in automaton theory. The motivation is that the automata used to represent

plans can be viewed as abstract actions, and the input to each automaton serves a dual purpose: to

determine how to fire the transitions of the automaton in order to generate the output, and to copy

input symbols onto actions and other automata.

Each automaton M ∈ Au corresponds to a Mealy machine 〈SM , s0, Σ, ΛM , TM , ΓM 〉, where Σ
is the set of objects of the STRIPS instance p and ΛM = (A∪Au)× ({1, . . . , ar(M)} ∪Σ)∗. Each

output symbol (u, ν) ∈ ΛM is a pair consisting of an action u ∈ A or automaton u ∈ Au and an

index string ν from M to u. For each input string x ∈ Σar(M), we require the output of automaton

M on input x to be non-empty, i.e. Γ∗
M (s0, x) = 〈(u1, ν1), . . . , (un, νn)〉 ∈ Λ+

M .

Given Au, we define an expansion graph that denotes dependencies among the automata in Au:

Definition 1. Given a set Au of automata, the expansion graph GAu = 〈Au,≺〉 is a directed graph

over automata where, for each pair M, M ′ ∈ Au, M ≺ M ′ if and only if there exists a state-input

pair (s, σ) ∈ SM × Σ of M such that ΓM (s, σ) = (M ′, ν) for some index string ν.

Thus there is an edge between automata M and M ′ if and only if M ′ appears as an output of M .

We next define an automaton hierarchy as a tuple H = 〈Σ, A, Au, r〉 where

• Σ, A, and Au are defined as above,

• GAu is acyclic and weakly connected,

262



AUTOMATON PLANS

• r ∈ Au is the root automaton, and

• there exists a directed path in GAu from r to each other automaton in Au.

For each M ∈ Au, let Succ(M) = {M ′ ∈ Au : M ≺ M ′} be the set of successors of M . The

height h(M) of M is the length of the longest directed path from M to any other node in GAu, i.e.

h(M) =

{

0, if Succ(M) = ∅,
1 + maxM ′∈Succ(M) h(M ′), otherwise.

Given an automaton hierarchy H , let S = maxM∈Au |SM | be the maximum number of states of

the Mealy machine representation of each automaton, and let Ar = 1 + maxu∈A∪Au ar(u) be the

maximum arity of actions and automata, plus one.

The aim of an automaton M ∈ Au is not only to generate the output Γ∗
M (s0, x) on input x, but

to define a decomposition strategy. This requires us to process the output of M in a concrete way

described below. An alternative would have been to integrate this processing step into the automata,

but this would no longer correspond to the well-established definition of Mealy machines.

We first define a notion of grounded automata, analogous to the notion of grounded actions

(i.e. operators) of a planning instance. An automaton call M [x] is an automaton M and associated

input string x ∈ Σar(M), representing that M is called on input x. The sets Au and Σ define a set of

automaton calls AuΣ = {M [x] : M ∈ Au, x ∈ Σar(M)}, i.e. automata paired with all input strings

of the appropriate arity. We next define a function Apply that acts as a decomposition strategy:

Definition 2. Let Apply : AuΣ → (AΣ ∪ AuΣ)+ be a function such that for M [x] ∈ AuΣ,

Apply(M [x]) = 〈u1[ϕ1(x)], . . . , un[ϕn(x)]〉, where Γ∗
M (s0, x) = 〈(u1, ν1), . . . , (un, νn)〉 and,

for each 1 ≤ k ≤ n, ϕk is the argument map from M to uk induced by the index string νk.

The purpose of Apply is to replace an automaton call with a sequence of operators and other

automaton calls. Recursively applying this decomposition strategy should eventually result in a

sequence consisting exclusively of operators. We show that Apply can always be computed in

polynomial time in the size of an automaton.

Lemma 3. For each automaton call M [x] ∈ AuΣ, the complexity of computing Apply(M [x]) is

bounded by S ·Ar2.

Proof. Our definition of Mealy machines requires each cycle to consume at least one input symbol.

In the worst case, we can fire |SM | − 1 ǫ-transitions followed by a transition that consumes an input

symbol. Since the input string x has exactly ar(M) symbols, the total number of transitions is

bounded by (|SM | − 1)(1 + ar(M)) + ar(M) ≤ |SM | · (1 + ar(M)) ≤ S ·Ar.

Let 〈(u1, ν1), . . . , (un, νn)〉 be the output of M on input x. For each 1 ≤ k ≤ n, uk is

a single symbol, while νk contains at most Ar − 1 symbols. Applying the argument map ϕk

induced by νk to the input string x is linear in |νk| ≤ Ar. Thus computing Apply(M [x]) =
〈u1[ϕ1(x)], . . . , un[ϕn(x)]〉 requires at most Ar time and space for each element, and since n ≤
S ·Ar, the total complexity is bounded by S ·Ar2.

To represent the result of recursively applying the decomposition strategy, we define an expan-

sion function Exp on automaton calls and operators:

Definition 4. Let Exp be a function on (AΣ ∪AuΣ)+ defined as follows:

263



BÄCKSTRÖM, JONSSON, & JONSSON

1. Exp(a[x]) = 〈a[x]〉 if a[x] ∈ AΣ,

2. Exp(M [x]) = Exp(Apply(M [x])) if M [x] ∈ AuΣ,

3. Exp(〈u1[y1], . . . , un[yn]〉) = Exp(u1[y1]); . . . ; Exp(un[yn]).

In the following lemma we prove that the expansion of any automaton call is a sequence of operators.

Lemma 5. For each automaton call M [x] ∈ AuΣ, Exp(M [x]) ∈ A+
Σ .

Proof. We prove the lemma by induction over h(M). If h(M) = 0, Apply(M [x]) is a sequence of

operators 〈a1[x1], . . . , an[xn]〉 ∈ A+
Σ , implying

Exp(M [x]) = Exp(Apply(M [x])) = Exp(〈a1[x1], . . . , an[xn]〉) =

= Exp(a1[x1]); . . . ; Exp(an[xn]) = 〈a1[x1]〉; . . . ; 〈an[xn]〉 =

= 〈a1[x1], . . . , an[xn]〉 ∈ A+
Σ .

We next prove the inductive step h(M) > 0. In this case, Apply(M [x]) is a sequence of operators

and automaton calls 〈u1[y1], . . . , un[yn]〉 ∈ (AΣ ∪AuΣ)+, implying

Exp(M [x]) = Exp(Apply(M [x])) = Exp(〈u1[x1], . . . , un[xn]〉) =

= Exp(u1[x1]); · · · ; Exp(un[xn]).

For each 1 ≤ k ≤ n, if uk[xk] is an operator we have Exp(uk[xk]) = 〈uk[xk]〉 ∈ A+
Σ . On the

other hand, if uk[xk] is an automaton call, Exp(uk[xk]) ∈ A+
Σ by hypothesis of induction since

h(uk) < h(M). Thus Exp(M [x]) is the concatenation of several operator sequences in A+
Σ , which

is itself an operator sequence in A+
Σ .

Note that the proof depends on the fact that the expansion graph GAu is acyclic, since otherwise

the height h(M) of automaton M is ill-defined. We also prove an upper bound on the length of the

operator sequence Exp(M [x]).

Lemma 6. For each automaton call M [x] ∈ AuΣ, |Exp(M [x])| ≤ (S ·Ar)1+h(M).

Proof. By induction over h(M). If h(M) = 0, Apply(M [x]) = 〈a1[x1], . . . , an[xn]〉 is a sequence

of operators in AΣ, implying Exp(M [x]) = Apply(M [x]) = 〈a1[x1], . . . , an[xn]〉. It follows that

|Exp(M [x])| ≤ (S ·Ar)1+0 since n ≤ S ·Ar.

If h(M) > 0, Apply(M [x]) = 〈u1[x1], . . . , un[xn]〉 is a sequence of operators and automaton

calls, implying Exp(M [x]) = Exp(u1[x1]); · · · ; Exp(un[xn]). For each 1 ≤ k ≤ n, if uk ∈ A
then |Exp(uk[xk])| = 1, else |Exp(uk[xk])| ≤ (S · Ar)h(M) by hypothesis of induction since

h(uk) < h(M). It follows that |Exp(M [x])| ≤ (S ·Ar)1+h(M) since n ≤ S ·Ar.

An automaton plan is a tuple ρ = 〈Σ, A, Au, r, x〉 where 〈Σ, A, Au, r〉 is an automaton hierar-

chy and x ∈ Σar(r) is an input string to the root automaton r. While automaton hierarchies represent

families of plans, an automaton plan represents a unique plan given by π = Exp(r[x]) ∈ A+
Σ .

In subsequent sections we exploit the notion of uniform expansion, defined as follows:

Definition 7. An automaton hierarchy 〈Σ, A, Au, r〉 has uniform expansion if and only if for each

automaton M ∈ Au there exists a number ℓM such that |Exp(M [x])| = ℓM for each x ∈ Σar(M).

In other words, expanding an automaton call M [x] always results in an operator sequence of length

exactly ℓM , regardless of the input x.

264



AUTOMATON PLANS

M1[abc]

1/M2[b]0/M3[c]

0/M2[1]

1/M3[1]

Σ/ǫ

M2[a]

1/M3[1] 0/a1[0]

Σ/ǫ

M3[a]

1/a1[1] 0/a2[1]

Σ/ǫ

Figure 2: The three automata in the simple example.

4. Examples of Automaton Plans

In this section we present several examples of automaton plans. Our aim is first and foremost

to illustrate the concept of automaton plans. However, we also use the examples to illuminate

several interesting properties of automaton plans. For example, we can use small automaton plans

to represent exponentially long plans.

We begin by showing an example of a relatively simple automaton plan on two symbols, two

actions, and three automata, defined as ρ = 〈{0, 1}, {a1, a2}, {M1, M2, M3}, M1, 100〉. Actions a1

and a2 both have arity 1, and Figure 2 shows the three automata M1, M2, and M3 (with arity 3, 1,

and 1, respectively). In the figure, the edge without origin points to the initial state of the automaton,

and the label on this edge contains the name and input string of the automaton.

To simplify the description of index strings and argument maps we assign explicit names (a,

b, and c) to each symbol of the input string of an automaton. Each argument map is described

as a string of input symbol names and symbols from Σ = {0, 1}. For example, the label M2[b]
in automaton M1 corresponds to the output symbol (M2, 2), i.e. the index string from M1 to M2

assigns the second input symbol (b) of M1 to the lone input symbol of M2. Recall that the symbols

of the input string have two separate functions: to decide which edges of the automaton to transition

along, and to propagate information by copying symbols onto actions and other automata.

The plan π represented by ρ is given by

π = Exp(M1[100]) = Exp(Apply(M1[100])) = Exp(〈M2[0], M3[0], M2[1]〉) =

= Exp(M2[0]); Exp(M3[0]); Exp(M2[1]) =

= Exp(Apply(M2[0])); Exp(Apply(M3[0])); Exp(Apply(M2[1])) =

= Exp(〈a1[0]〉); Exp(〈a2[1]〉); Exp(〈M3[1]〉) = Exp(a1[0]); Exp(a2[1]); Exp(M3[1]) =

= 〈a1[0]〉; 〈a2[1]〉; Exp(Apply(M3[1])) = 〈a1[0]〉; 〈a2[1]〉; Exp(〈a1[1]〉) =

= 〈a1[0]〉; 〈a2[1]〉; Exp(a1[1]) = 〈a1[0]〉; 〈a2[1]〉; 〈a1[1]〉 = 〈a1[0], a2[1], a1[1]〉.

Selecting another root automaton call would result in a different operator sequence. For example,

the root M1[000] would result in the sequence Exp(M1[000]) = 〈a1[1]〉, and the root M1[101] would

result in Exp(M1[101]) = 〈a1[0], a1[1], a1[0]〉.
We next show that just like macro plans, automaton plans can compactly represent plans that

are exponentially long. Figure 3 shows an automaton Mn for moving n discs from peg a to peg

b via peg c in Towers of Hanoi. In the figure, An[ab] is the action for moving disc n from a to

b. For n = 1 the edge label should be ǫ/〈A1[ab]〉. It is not hard to show that the automaton plan

µ = 〈{1, 2, 3}, {A1, . . . , AN}, {M1, . . . , MN}, MN , 132〉 is a plan for the Towers of Hanoi instance

265



BÄCKSTRÖM, JONSSON, & JONSSON

Mn[abc]

ǫ/〈Mn−1[acb], An[ab], Mn−1[cba]〉
Σ/ǫ

Figure 3: The automaton Mn in the automaton plan for Towers of Hanoi.

D[liqiqtltcicttixttyazp]

li = qi/ǫ

li 6= qi/T[xliqicitip]

ǫ/A[zqfqtap] qt = lt/ǫ

qt 6= lt/T[yqtltctttp]

Σ/ǫ

T[xyzctp]

x = y/ǫ

x 6= y/DT[txyc]

ǫ/〈LT[tpy], DT[tyzc], UT[tpz]〉
Σ/ǫ

A[xyzap]

x = y/ǫ

x 6= y/FA[axy]

ǫ/〈LA[apy], FA[ayz], UA[apz]〉
Σ/ǫ

Figure 4: The automata D for delivering a package and T, A for moving a package using a

truck/airplane.

with N discs. Unlike macro solutions for Towers of Hanoi (Jonsson, 2009), the automaton plan has

a single automaton per disc, which is possible because of parameterization.

The ability to parameterize automata also makes it possible to represent other types of plans

compactly. Figure 4 shows three automata D, T, and A that can be combined to construct an

automaton plan for any instance of the LOGISTICS domain. The set of symbols Σ contains the

objects of the instance: packages, airplanes, trucks, cities, and locations. The automaton T moves a

package using a truck, and the input string xyzctp consists of three locations x, y, and z, a city c, a

truck t, and a package p. Initially, truck t is at x, package p is at y, and the destination of package p
is z. The actions DT, LT, and UT stand for DriveTruck, LoadTruck, and UnloadTruck, respectively.

Automaton T assumes that locations y and z are different, else there is nothing to be done and

the automaton outputs the empty string, violating the definition of automaton plans. On the other

hand, locations x and y may be the same, and the automaton checks whether they are equal. Only

when x and y are different is it necessary to first drive truck t from x to y. We use the notation

x = y and x 6= y as shorthand to denote that there are |L| intermediate notes, one per location, such

that the automaton transitions to a distinct intermediate node for each assignment of a location to x.

From each intermediate node there are |L| edges to the next node: |L|−1 of these edges correspond

to x 6= y and only one edge corresponds to x = y.

Once the truck is at location y, the operator sequence output by T loads package p in t, drives

t to the destination, and unloads p from t. Automaton A for moving a package using an airplane

is similarly defined on actions FA (FlyAirplane), LA (LoadAirplane), and UA (UnloadAirplane).

Automaton D delivers a package from its current location to its destination, and the input string

liqiqtltcicttixttyazp consists of the initial location li of the package, intermediate airports qi and

266



AUTOMATON PLANS

M[rk1l1d1 · · · knlndn]

ǫ/〈U[rk1l1], . . . , U[ln−1knln], D[lnk2d1], . . . , D[dn−1k2dn]〉
Σ/ǫ

U[l1l2l3]

ǫ/〈N[l1l2], pickup-and-loose[l2], N[l2l3], unlock[l3]〉
Σ/ǫ

D[l1l2l3]

ǫ/〈N[l1l2], pickup[l2], N[l2l3], putdown[l3]〉
Σ/ǫ

Figure 5: The automata in an automaton plan for the GRID domain.

qt, the target location lt, the initial and target cities ci and ct, a truck ti in city ci initially at x, a

truck tt in city ct initially at y, an airplane a initially at z, and the package p itself. Automaton D

assumes that cities ci and ct are different, else we could use automaton T to transport the package

using a truck within a city. However, locations li and qi may be equal, as well as qt and lt, and the

automaton only moves the package using a truck whenever necessary.

We also show an example automaton plan for the GRID domain, in which a robot has to deliver

keys to locations, some of which are locked. The keys are distributed at initial locations, and the

robot can only carry one key at a time. The actions are to move the robot to a neighboring location,

pick up a key (possibly loosing the key currently held), put down a key, and unlock a location.

Figure 5 shows an automaton plan for an instance of GRID. The root automaton M takes as

input the current location of the robot (r) and three locations ki, li, and di for each key, where ki

is the current location of the key, li is the associated locked location, and di is the destination. The

plan works by first unlocking all locations in a prespecified order (which must exist for the problem

to be solvable) and then delivering all keys to their destination.

The automaton U takes three locations: the location of the robot (l1), the location of the key

(l2), and the location to be unlocked (l3). The decomposition navigates to the key, picks it up,

navigates to the location, and unlocks it. Delivering a key works in a similar way. For simplicity

some parameters of actions have been omitted, and a few modifications are necessary: the first time

U is applied there is no key to loose, and the first time D is applied there is a key to loose.

The automaton N (not shown) navigates between pairs of locations l1 and l2. Since automaton

plans cannot keep track of the state, N has to include one automaton state for each possible input

(l1, l2) (alternatively we can define a separate automaton for each destination l2). Note that the

automaton M can be used to represent solutions to different instances on the same set of locations.

5. Relationship to Other Compact Plan Representations

In this section we compare and contrast automaton plans to other compact plan representations from

the literature: macro plans, HTNs (Erol et al., 1996), as well as CRARs and CSARs (Bäckström &

Jonsson, 2012). Informally, CRARs and CSARs are theoretical concepts describing any compact

representation of a plan that admits efficient random access (CRAR) or sequential access (CSAR)

to the operators of the plan. To compare plan representations we use the following subsumption

relation (Bäckström et al., 2012b):

267



BÄCKSTRÖM, JONSSON, & JONSSON

MACR CRAR CSAR

AUTRUE AUTR HTN

⊏p ⊏p

⊏p
⊏p

⊏p

⊑p

⊑p

6⊑p

Figure 6: Summary of subsumption results, with dashed edges marking previously known results.

Definition 8. Let X and Y be two plan representations. Then Y is at least as expressive as X , which

we denote X ⊑p Y , if there is a polynomial-time function g such that for each STRIPS planning

instance p and each plan π for p, if ρ is an X representation of π, g(ρ) is a Y representation of π.

Figure 6 summarizes the subsumption results for the different plan representations considered

in this paper. MACR and AUTR refer to macro plans and automaton plans, respectively, while

AUTRUE refer to automaton plans with uniform expansion. Previously known results are shown

using dashed edges; the remaining results are proven in this section. We use the notation X ⊏p Y
to indicate that X ⊑p Y and Y 6⊑p X . From the figure we see that automaton plans are strictly

more expressive than macro plans, but strictly less expressive than CSARs and HTNs. In the case

of CRARs, we only prove a partial result: that automaton plans with uniform expansion can be

translated to CRARs.

In the rest of this section, we first show that automaton plans with uniform expansion can be

efficiently transformed to CRARs. We then prove that plan verification for automaton plans is Π
p
2-

complete. We use this latter result to prove separation between macro plans and automaton plans,

and between automaton plans and CSARs/HTNs. When proving that X ⊑p Y holds for two rep-

resentations X and Y , we assume that the size of the X representation is polynomial in ||p||, the

description size of the planning instance. Trivially, automaton plans with uniform expansion are

also automaton plans, while it is unknown whether general automaton plans can be efficiently trans-

formed such that they have uniform expansion.

5.1 Automaton Plans and CRARs

In this section we show that automaton plans with uniform expansion can be efficiently translated to

CRARs, i.e. compact plan representations that admit efficient random access. We first define CRARs

and then describe an algorithm for transforming each automaton plan with uniform expansion to a

corresponding CRAR.

Definition 9. Let p be a polynomial function. Given a STRIPS planning instance p = 〈P, A, Σ, I, G〉
with associated plan π, a p-CRAR of π is a representation ρ such that ||ρ|| ≤ p(||p||) and ρ outputs

the k-th element of π in time and space p(||p||) for each 1 ≤ k ≤ |π|.

Note that for ρ to be a p-CRAR, the polynomial function p has to be independent of the planning

instance p, else we can always find a constant for each individual instance p such that the size of

any representation for p is bounded by this constant.

268



AUTOMATON PLANS

1 function Find(k, u[x])
2 if u[x] ∈ AΣ return u[x]
3 else

4 〈u1[x1], . . . , un[xn]〉 ← Apply(u[x])
5 s← 0, j ← 1
6 while s + ℓ(uj) < k do

7 s← s + ℓ(uj), j ← j + 1
8 return Find(k − s, uj [xj ])

Figure 7: Algorithm for using an automaton plan as a CRAR.

Theorem 1. AUTRUE ⊑p CRAR.

Proof. To prove the theorem we show that for each STRIPS planning instance p and each automaton

plan ρ = 〈Σ, A, Au, r, x〉 with uniform expansion representing a plan π for p, we can efficiently

construct a corresponding p-CRAR for π with p(||p||) = (Ar+(logS+log Ar)|Au|) ·S ·Ar · |Au|.
Since ρ has uniform expansion there exist numbers ℓM , M ∈ Au, such that |Exp(M [x])| = ℓM

for each x ∈ Σar(M). The numbers ℓM can be computed bottom up as follows. Traverse the

automata of the expansion graph GAu in reverse topological order. For each M ∈ Au, pick an input

string x ∈ Σar(M) at random and compute Apply(M [x]) = 〈u1[y1], . . . , un[yn]〉. The number ℓM

is given by ℓM = ℓu1
+ . . .+ ℓun where, for each 1 ≤ k ≤ n, ℓuk

= 1 if uk ∈ A and ℓuk
has already

been computed if uk ∈ Au since by definition, uk comes after M in any topological ordering.

Because of Lemma 3, the total complexity of computing Apply(M [x]) for all M ∈ Au is

S · Ar2 · |Au|. Due to Lemma 6, ℓM ≤ (S · Ar)1+h(M) ≤ (S · Ar)|Au| for each M ∈ Au. Since

(S · Ar)|Au| = 2(log S+log Ar)|Au|, we need at most (logS + log Ar)|Au| bits to represent ℓM , and

computing ℓM requires at most (logS+log Ar)·S ·Ar·|Au| operations. Repeating this computation

for each M ∈ Au gives us a complexity bound of (Ar + (logS + log Ar)|Au|) · S ·Ar · |Au|.
We prove that the recursive algorithm Find in Figure 7 has the following properties, by induction

over the number of recursive calls:

1. for each M [x] ∈ AuΣ such that Exp(M [x]) = 〈a1[x1], . . . , an[xn]〉, Find(k, M [x]) returns

operator ak[xk] for 1 ≤ k ≤ n, and

2. for each a[x] ∈ AΣ, Find(k, a[x]) returns a[x].

Basis: If Find(k, u[x]) does not call itself recursively, then u[x] must be an operator. By defini-

tion, Exp(u[x]) = u[x] since u[x] ∈ AΣ.

Induction step: Suppose the claim holds when Find makes at most m recursive calls for some

m ≥ 0. Assume Find(k, u[x]) makes m+1 recursive calls. Let 〈u1[x1], . . . , un[xn]〉 = Apply(u[x])
and, for each 1 ≤ k ≤ n, ℓ(uk) = 1 if uk[xk] ∈ AΣ and ℓ(uk) = ℓuk

if uk[xk] ∈ AuΣ. Lines 5–7

computes s and j such that either

1. j = 1, s = 0 and k ≤ ℓ(u1) or

2. j > 1, s = ℓ(u1) + . . . + ℓ(uj−1) < k ≤ ℓ(u1) + . . . + ℓ(uj).

By definition, Exp(u[x]) = Exp(u1[x1]); . . . ; Exp(un[xn]), implying that operator k in Exp(u[x])
is operator k − s in Exp(uj [xj ]). It follows from the induction hypothesis that the recursive call

Find(k − s, uj [xj ]) returns this operator.

269



BÄCKSTRÖM, JONSSON, & JONSSON

To prove the complexity of Find, note that Find calls itself recursively at most once for each

M ∈ Au since GAu is acyclic. Moreover, the complexity of computing Apply(M [x]) is bounded

by S · Ar2, and the while loop on lines 6–7 runs at most n ≤ S · Ar times, each time performing

at most (logS + log Ar)|Au| operations to update the value of s. We have thus showed that the

automaton plan ρ together with the procedure Find and the values ℓM , M ∈ Au, constitute a p-

CRAR for π with p(||p||) = (Ar + (logS + log Ar)|Au|) · S ·Ar · |Au|.

5.2 Verification of Automaton Plans

In this section we show that the problem of plan verification for automaton plans is Π
p
2-complete.

We first prove membership by reducing plan verification for automaton plans to plan verification for

CRARs, which is known to be Π
p
2-complete (Bäckström et al., 2012b). We then prove hardness by

reducing ∀∃-SAT, which is also Π
p
2-complete, to plan verification for automaton plans with uniform

expansion. The complexity result for plan verification is later used to separate automaton plans from

macro plans, CSARs, and HTNs, but we do not obtain a similar separation result between automaton

plans and CRARs since the complexity of plan verification is the same.

To prove membership we first define an alternative expansion function Exp′ that pads the origi-

nal plan with dummy operators until the expansion of each automaton has the same length for each

accepting input. Intuitively, even though the original automaton plan need not have uniform expan-

sion, the alternative expansion function Exp′ emulates an automaton plan that does. Note that this

is not sufficient to prove that we can transform any automaton plan to a p-CRAR, since operators

have different indices in the plans represented by the two expansion functions Exp and Exp′.

Let p be a planning instance, and let ρ = 〈Σ, A, Au, r, x〉 be an automaton plan representing a

solution π to p. For each automaton M ∈ Au, let IM = (S · Ar)1+h(M) be the upper bound on

|Exp(M [x])| from Lemma 6. Let δ = 〈∅,∅〉 be a parameter-free dummy operator with empty pre-

and postcondition, and add δ to AΣ. Define δk, k > 0, as a sequence containing k copies of δ. We

define an alternative expansion function Exp′ on (AΣ ∪AuΣ)+ as follows:

1. Exp′(a[x]) = 〈a[x]〉 if a[x] ∈ AΣ,

2. Exp′(M [x]) = Exp′(Apply(M [x])); δL if M [x] ∈ AuΣ, where the length of δL is L =
IM − |Exp′(Apply(M [x]))|,

3. Exp′(〈u1[y1], . . . , un[yn]〉) = Exp′(u1[y1]); . . . ; Exp′(un[yn]).

The only difference with respect to the original expansion function Exp is that the alternative expan-

sion function Exp′ appends a sequence δL of dummy operators to the result of Exp′(Apply(M [x])),
causing Exp′(M [x]) to have length exactly IM .

In the following lemma we prove that the operator sequence output by the alternative expansion

function Exp′ is equivalent to the operator sequence output by the original expansion function Exp.

Lemma 10. For each automaton call M [x] ∈ AuΣ, Exp′(M [x]) ∈ AIM
Σ , and applying Exp(M [x])

and Exp′(M [x]) to any state s either is not possible or results in the same state.

Proof. We prove the lemma by induction over |Au|. The base case is given by |Au| = 1. In this

case, since GAu is acyclic, Apply(M [x]) is a sequence of operators 〈a1[x1], . . . , an[xn]〉 ∈ A+
Σ ,

270



AUTOMATON PLANS

implying

Exp(M [x]) = 〈a1[x1], . . . , an[xn]〉,

Exp′(M [x]) = 〈a1[x1], . . . , an[xn]〉; δL,

where L = IM − n. Thus Exp′(M [x]) ∈ AIM
Σ , and applying Exp′(M [x]) in a state s has the same

effect as applying Exp(M [x]) since the dummy operator δ is always applicable and has no effect.

We next prove the inductive step |Au| > 1. In this case, Apply(M [x]) is a sequence of operators

and automaton calls 〈u1[y1], . . . , un[yn]〉 ∈ (AΣ ∪AuΣ)+, implying

Exp(M [x]) = Exp(u1[x1]); · · · ; Exp(un[xn]),

Exp′(M [x]) = Exp′(u1[x1]); · · · ; Exp′(un[xn]); δL,

where δL contains enough copies of δ to make |Exp′(M [x])| = IM . For each 1 ≤ k ≤ n, if uk[xk]
is an operator we have Exp′(uk[xk]) = Exp(uk[xk]) = 〈uk[xk]〉, which clearly has identical

effects. On the other hand, if uk[xk] is an automaton call, since GAu is acyclic we have uk[xk] ∈
(Au \ {M})Σ, implying that Exp′(uk[xk]) has the same effect as Exp(uk[xk]) by hypothesis of

induction since |Au \ {M}| < |Au|. Thus Exp′(M [x]) ∈ AIM
Σ , and applying Exp′(M [x]) in a

state s has the same effect as applying Exp(M [x]) since the dummy operator δ is always applicable

and has no effect.

We are now ready to prove membership in Π
p
2. Because of Lemma 10, instead of verifying the

plan Exp(r[x]), we can verify the plan Exp′(r[x]) given by the alternative expansion function Exp′.

Lemma 11. Plan verification for AUTR is in Π
p
2.

Proof. We prove the lemma by reducing plan verification for automaton plans to plan verification

for CRARs, which is known to be Π
p
2-complete (Bäckström et al., 2012b). Consider any automaton

plan ρ = 〈Σ, A, Au, r, x〉 associated with a STRIPS planning instance p. Instead of constructing

a p-CRAR for the operator sequence Exp(r[x]) represented by ρ, we construct a p-CRAR for the

operator sequence Exp′(r[x]). Due to Lemma 10, Exp(r[x]) is a plan for p if and only if Exp′(r[x])
is a plan for p.

A p-CRAR for Exp′(r[x]) can be constructed by modifying the algorithm Find in Figure 7.

Instead of using the numbers ℓM associated with an automaton plan with uniform expansion, we

use the upper bounds IM on the length of any operator sequence output by each automaton. The

only other modification we need to make is add a condition j ≤ n to the while loop, and if the while

loop terminates with j = n+1, we should return δ, since this means that Iu1
+ · · ·+ Iun < k ≤ Iu.

The complexity of the resulting p-CRAR is identical to that in the proof of Theorem 1 since the

numbers IM are within the bounds used in that proof, i.e. IM ≤ (S ·Ar)|Au| for each M ∈ Au.

As an example, consider the automaton plan ρ = 〈{0, 1}, {a1, a2}, {M1, M2, M3}, M1, 100〉
with M1, M2, and M3 defined in Figure 2. Applying the definitions we obtain S = 3, Ar = 4,

h(M1) = 2, h(M2) = 1, and h(M3) = 0, which yields

IM1
= (S ·Ar)1+h(M1) = 123 = 1728,

IM2
= (S ·Ar)1+h(M2) = 122 = 144,

IM3
= (S ·Ar)1+h(M3) = 121 = 12.

271



BÄCKSTRÖM, JONSSON, & JONSSON

Although IM1
= 1728 is a gross overestimate on the length of any operator sequence output by

M1, the number of bits needed to represent IM1
is polynomial in ||ρ||. Applying the alternative

expansion function Exp′ to ρ yields Exp′(M1[100]) = 〈a1[0]〉; δ143; 〈a2[1]〉; δ11; 〈a1[1]〉; δ1571.

To prove Π
p
2-completeness, it remains to show that plan verification for automaton plans is

Π
p
2-hard. The proof of the following lemma is quite lengthy, so we defer it to Appendix A.

Lemma 12. Plan verification for AUTRUE is Π
p
2-hard.

The main theorem of this section now follows immediately from Lemmas 11 and 12.

Theorem 2. Plan verification for AUTRUE and AUTR is Π
p
2-complete.

Proof. Since AUTRUE ⊑ AUTR, Lemma 11 implies that plan verification for AUTRUE is in Π
p
2,

while Lemma 12 implies that plan verification for AUTR is Π
p
2-hard. Thus plan verification for both

AUTRUE and AUTR is Π
p
2-complete.

5.3 Automaton Plans and Macro Plans

In this section we show that automaton plans are strictly more expressive than macros. To do this, we

first define macro plans and show that any macro plan can trivially be converted into an equivalent

automaton plan with uniform expansion. We then show that there are automaton plans that cannot

be efficiently translated to macro plans.

A macro plan µ = 〈M, mr〉 for a STRIPS instance p consists of a setM of macros and a root

macro mr ∈ M. Each macro m ∈ M consists of a sequence m = 〈u1, . . . , un〉 where, for each

1 ≤ k ≤ n, uk is either an operator in AΣ or another macro in M. The expansion of m is a

sequence of operators in A∗
Σ obtained by recursively replacing each macro in 〈u1, . . . , un〉 with its

expansion. This process is well-defined as long as no macro appears in its own expansion. The plan

π represented by µ is given by the expansion of the root macro mr.

Lemma 13. MACR ⊑p AUTRUE.

Proof. To prove the lemma we show that there exists a polynomial p such that for each STRIPS

planning instance p and each macro plan µ representing a solution π to p, there exists an automaton

plan ρ for π with uniform expansion such that ||ρ|| = O(p(||µ||)).
Each macro of µ is a parameter-free sequence m = 〈u1, . . . , ul〉 of operators and other macros.

We can construct an automaton plan ρ by replacing each macro m with an automaton Mm such that

ar(Mm) = 0. The automaton Mm has two states s0 and s, and two edges: one from s0 to s with

label ǫ/〈(w1, ν1), . . . , (wl, νl)〉, and one from s to itself with label Σ/ǫ. For each 1 ≤ j ≤ l, if

uj is an operator, then wj is the associated action and the index string νj ∈ Σar(uj) contains the

arguments of uj in the sequence m, which have to be explicitly stated since m is parameter-free. If

uj is a macro, then wj = Muj
and νj = ∅ since ar(Mm) = ar(Muj

) = 0. The root of ρ is given

by r = Mmr [ǫ], where mr is the root macro of µ.

We show by induction that, for each macro m = 〈u1, . . . , ul〉 of µ, Exp(Mm[ǫ]) equals the

expansion of m. The base case is given by |Au| = 1. Then m is a sequence of operators in

A+
Σ , and Apply(Mm[ǫ]) returns m, implying Exp(Mm[ǫ]) = Apply(Mm[ǫ]) = m. If |Au| > 1,

Apply(Mm[ǫ]) contains the same operators as m, but each macro uj in m, where 1 ≤ j ≤ l,
is replaced with the automaton call Muj

[ǫ]. By hypothesis of induction, Exp(Muj
[ǫ]) equals the

expansion of uj . Then Exp(Mm[ǫ]) equals the expansion of m since both are concatenations of

272



AUTOMATON PLANS

identical sequences. It is easy to see that the size of each automaton Mm is polynomial in m. We

have shown that each macro plan µ can be transformed into an equivalent automaton plan ρ whose

size is polynomial in ||µ||, implying the existence of a polynomial p such that ||ρ|| = O(p(||µ||)).
The automaton plan trivially has uniform expansion since each automaton is always called on the

empty input string.

We next show that automaton plans with uniform expansion are strictly more expressive than

macro plans.

Theorem 3. MACR ⊏p AUTRUE unless P = Π
p
2.

Proof. Due to Lemma 13 it remains to show that AUTRUE 6⊑p MACR, i.e. that we cannot efficiently

translate arbitrary automaton plans with uniform expansion to equivalent macro plans. Bäckström

et al. (2012b) showed that plan verification for macro plans is in P. Assume that there exists a

polynomial-time algorithm that translates any automaton plan with uniform expansion to an equiv-

alent macro plan. Then we could verify automaton plans with uniform expansion in polynomial

time, by first applying the given algorithm to produce an equivalent macro plan and then verifying

the macro plan in polynomial time. However, due to Theorem 2, no such algorithm can exist unless

P = Π
p
2.

5.4 Automaton Plans and CSARs

In this section we show that automaton plans are strictly less expressive than CSARs, defined as

follows:

Definition 14. Let p be a polynomial function. Given a STRIPS planning instance p = 〈P, A, Σ, I, G〉
with associated plan π, a p-CSAR of π is a representation ρ such that ||ρ|| ≤ p(||p||) and ρ outputs

the elements of π sequentially, with the time needed to output each element bounded by p(||p||).

Just as for p-CRARs, the polynomial function p of a p-CSAR has to be independent of the planning

instance p. We first show that any automaton plan can be transformed into an equivalent p-CSAR

in polynomial time. We then show that there are p-CSARs that cannot be efficiently translated to

automaton plans.

Lemma 15. AUTR ⊑p CSAR.

Proof. To prove the lemma we show that for each STRIPS planning instance p and each automaton

plan ρ representing a solution π to p, we can efficiently construct a corresponding p-CSAR for π
with p(||p||) = S ·Ar2 · |Au|. We claim that the algorithm Next in Figure 8 always outputs the next

operator of π in polynomial time. The algorithm maintains the following global variables:

• A call stack S = [M1[x1], . . . , Mk[xk]] where M1[x1] = r[x] is the root of ρ and, for each

1 < i ≤ k, Mi[xi] is an automaton call that appears in Apply(Mi−1[xi−1]).

• An integer k representing the current number of elements in S.

• For each 1 ≤ i ≤ k, a sequence θi that stores the result of Apply(Mi[xi]).

• For each 1 ≤ i ≤ k, an integer zi which is an index of θi.

273



BÄCKSTRÖM, JONSSON, & JONSSON

1 function Next()

2 while zk = |θk| do

3 if k = 1 return ⊥
4 else

5 pop Mk[xk] from S
6 k ← k − 1
7 repeat

8 zk ← zk + 1
9 u[x]← θk[zk]
10 if u[x] ∈ AΣ return u[x]
11 else

12 push u[x] onto S
13 k ← k + 1
14 θk ← Apply(u[x])
15 zk ← 0

Figure 8: Algorithm for finding the next operator of an automaton plan.

Prior to the first call to Next, the global variables are initialized to S = [r[x]], k = 1, θ1 =
Apply(r[x]), and z1 = 0.

The algorithm Next works as follows. As long as there are no more elements in Apply(Mk[xk]),
the automaton call Mk[xk] is popped from the stack S and k is decremented. If, as a result, k = 1
and Apply(M1[x1]) contains no more elements, Next returns ⊥, correctly indicating that the plan

π has no further operators.

Once we have found an automaton call Mk[xk] on the stack such that Apply(Mk[xk]) contains

more elements, we increment zk and retrieve the element u[x] at index zk of θk. If u[x] ∈ AΣ, u[x]
is the next operator of the plan and is therefore returned by Next. Otherwise u[x] is pushed onto the

stack S, k is incremented, θk is set to Apply(u[x]), zk is initialized to 0, and the process is repeated

for the new automaton call Mk[xk] = u[x].

Since the expansion graph GAu is acyclic, the number of elements k on the stack is bounded by

|Au|. Thus the complexity of the while loop is bounded by |Au| since all operations in the loop have

constant complexity. Since Exp(M1[x1]) = Exp(r[x]) ∈ A+
Σ , the repeat loop is guaranteed to find

k and zk such that u[x] = θk[zk] is an operator, proving the correctness of the algorithm. The only

operation in the repeat loop that does not have constant complexity is Apply(u[x]); from Lemma 3

we know that this complexity is bounded by S · Ar2, and we might have to repeat this operation

at most |Au| times. The space required to store the global variables is bounded by Ar · |Au|. We

have shown that the global variables together with the algorithm Next constitute a p-CSAR with

p(||p||) = O(S ·Ar2 · |Au|).

We next show that automaton plans are strictly less expressive than p-CSARs. Let P≤1 be the

subclass of STRIPS planning instances such that at most one operator is applicable in each reachable

state. The following lemma is due to Bylander (1994):

Lemma 16. Plan existence for P≤1 is PSPACE-hard.

274



AUTOMATON PLANS

Proof. Bylander presented a polynomial-time reduction from polynomial-space deterministic Tur-

ing machine (DTM) acceptance, a PSPACE-complete problem, to STRIPS plan existence. Given

any DTM, the planning instance p constructed by Bylander belongs to P≤1 and has a solution if

and only if the DTM accepts.

Theorem 4. AUTR ⊏p CSAR unless PSPACE = Σ
p
3.

Proof. Due to Lemma 15 it remains to show that CSAR 6⊑p AUTR. We first show that plan verifi-

cation for CSARs is PSPACE-hard. Given a planning instance p in P≤1, let π be the unique plan

obtained by always selecting the only applicable operator, starting from the initial state. Without

loss of generality, we assume that no operators are applicable in the goal state. Hence π either solves

p, terminates in a dead-end state, or enters a cycle. It is trivial to construct a p-CSAR ρ for π: in each

state, loop through all operators and select the one whose precondition is satisfied. Critically, the

construction of ρ is independent of π. Due to Lemma 16, it is PSPACE-hard to determine whether

p has a solution, i.e. whether the plan represented by ρ solves p.

On the other hand, assume that there exists an automaton plan ρ for π such that ||ρ|| = O(p(||p||))

for some fixed polynomial p. Then we can solve plan existence for p in NPΠ
p
2 = Σ

p
3 by non-

deterministically guessing an automaton plan and verifying that it represents a solution to p. This

implies that PSPACE = Σ
p
3.

5.5 Automaton Plans and HTNs

In this section we show that automaton plans are strictly less expressive than HTNs. We begin

by defining the class of HTNs that we compare to automaton plans. We then show that we can

efficiently transform automaton plans to HTNs, but not the other way around.

Just like planning instances, an HTN involves a set of fluents, a set of operators, and an initial

state. Unlike planning instances, however, in which the aim is to reach a goal state, the aim of

an HTN is to produce a sequence of operators that perform a given set of tasks. Each task has

one or more associated methods that specify how to decompose the task into subtasks, which can

either be operators or other tasks. Planning proceeds by recursively decomposing each task using

an associated method until only primitive operators remain. While planning, an HTN has to keep

track of the current state, and operators and methods are only applicable if their preconditions are

satisfied in the current state.

In general, the solution to an HTN is not unique: there may be more than one applicable method

for decomposing a task, and each method may allow the subtasks in the decomposition to appear in

different order. In contrast, our subsumption relation⊑p is only defined for compact representations

of unique solutions. For this reason, we consider a restricted class of HTNs in which the methods

associated with a task are mutually exclusive and the subtasks in the decomposition of each method

are totally ordered. This class of HTNs does indeed have unique solutions, since each task can only

be decomposed in one way. Since this class of HTNs is a strict subclass of that of HTNs in general,

our results hold for general HTNs if we remove the requirement on the uniqueness of the solution.

Our definition of HTNs is largely based on SHOP2 (Nau, Ilghami, Kuter, Murdock, Wu, &

Yaman, 2003), the state-of-the-art algorithm for solving HTNs. We formally define an HTN do-

main as a tuple H = 〈P, A, T, Θ〉 where 〈P, A〉 is a planning domain, T a set of function sym-

bols called tasks, and Θ a set of function symbols called methods. Each method θ ∈ Θ is of

the form 〈t, pre(θ), Λ〉, where t ∈ T is the associated task, pre(θ) is a precondition, and Λ =

275



BÄCKSTRÖM, JONSSON, & JONSSON

〈(t1, ϕ1), . . . , (tk, ϕk)〉 is a task list where, for each 1 ≤ i ≤ k, ti ∈ A ∪ T is an action or a task

and ϕi is an argument map from θ to ti. The arity of θ satisfies ar(θ) ≥ ar(t), and the arguments

of t are always copied onto θ. If ar(θ) > ar(t), the arguments with indices ar(t) + 1, . . . , ar(θ)
are free parameters of θ that can take on any value. The precondition pre(θ) has the same form

as the precondition of an action in A, i.e. pre(θ) = {(p1, ϕ1, b1), . . . , (pl, ϕl, bl)} where, for each

1 ≤ j ≤ l, pl ∈ P is a predicate, ϕl is an argument map from θ to pl, and bl is a Boolean. Each task

t may have multiple associated methods.

An HTN instance is a tuple h = 〈P, A, T, Θ, Σ, I, L〉 where 〈P, A, T, Θ〉 is an HTN domain, Σ
a set of objects, I ⊆ PΣ an initial state, and L a task list. An HTN instance implicitly defines a set

of grounded tasks TΣ and a set of grounded methods ΘΣ, and the task list L ∈ T+
Σ is a sequence

of grounded tasks. The precondition pre(θ[xy]) of a grounded method θ[xy] ∈ ΘΣ, where x is the

parameters copied from t and y is an assignment to the free parameters of θ, is derived from pre(θ)
in the same way as the precondition pre(a[x]) of an operator a[x] is derived from pre(a).

Unlike STRIPS planning, the aim of an HTN instance is to recursively expand each grounded

task t[x] ∈ TΣ in L by applying an associated grounded method θ[xy] until only primitive operators

remain. The grounded method θ[xy] is applicable if the precondition pre(θ[xy]) is satisfied, and

applying θ[xy] replaces task t[x] with the sequence of grounded operators or tasks obtained by

applying the sequence of argument maps in Λ to θ[xy]. The problem of plan existence for HTNs is

to determine if such an expansion is possible.

Lemma 17. AUTR ⊑p HTN.

The proof of Lemma 17 appears in Appendix B. Intuitively, the idea is to construct an HTN in

which tasks are associated with states in the graphs of the automata, and methods with the edges

of these graphs. The HTN emulates an execution model for ρ: each grounded task corresponds to

an automaton M , a current state s in the graph of M , an input string x ∈ Σar(M), and an index k
of x. The associated grounded methods indicate the possible ways to transition from s to another

state. Given an edge with label σ/u, the corresponding method is only applicable if xk = σ, and

applying the method recursively applies all operators and tasks in the sequence u, followed by the

task associated with the next state, incrementing k if necessary.

Theorem 5. AUTR ⊏p HTN unless PSPACE = Σ
p
3.

Proof. Due to Lemma 17 it remains to show that HTN 6⊑p AUTR. Erol et al. (1996) showed that the

problem of plan existence for propositional HTNs with totally ordered task lists is PSPACE-hard.

Their proof is by reduction from propositional STRIPS planning, and the number of applicable

methods for each task equals the number of applicable STRIPS operators in the original planning

instance, which can in general be larger than one. However, due to Lemma 16, we can instead

reduce from the class P≤1, resulting in HTNs with at most one applicable method for each task.

If there exists a polynomial-time algorithm that translates HTNs to equivalent automaton plans,

we can solve plan existence for HTNs in NPΠ
p
2 = Σ

p
3 by non-deterministically guessing an automa-

ton plan and verifying that the automaton plan is a solution. This implies that PSPACE = Σ
p
3.

The reasoning used in the proof of Theorem 5 can also be used to show that HTN 6⊑p CRAR,

implying that random access is bounded away from polynomial for HTNs. However, it is unknown

whether CRARs can be efficiently translated to HTNs.

276



AUTOMATON PLANS

1 function Lowest(〈P, A, Σ, I, G〉)
2 s← I
3 while G 6⊆ s do

4 O ← {oi ∈ AΣ : oi is applicable in s}
5 m← mini oi ∈ O
6 s← (s \ pre(om)−) ∪ pre(om)+

Figure 9: Algorithm that always selects the applicable operator with lowest index.

One important difference between automaton plans and HTNs is that the latter keeps track

of the state. We conjecture that such state-based compact representations are hard to verify in

general. Consider the algorithm in Figure 9 that always selects the applicable operator in AΣ with

lowest index. This algorithm is a compact representation of a well-defined operator sequence. Plan

verification for this compact representation is PSPACE-hard due to Lemma 16, since for planning

instances in P≤1, the algorithm will always choose the only applicable operator. Arguably, our

algorithm is the simplest state-based compact representation one can think of, but plan verification

is still harder than for automaton plans.

6. Related Work

The three main sources of inspiration for automaton plans are macro planning, finite-state automata,

and string compression. Below, we briefly discuss these three topics and their connections with

automaton plans.

6.1 Macro Planning

The connection between macros and automaton plans should be clear at this point: the basic mech-

anism in automaton plans for recursively defining plans is a direct generalization of macros. In the

context of automated planning, macros were first proposed by Fikes et al. (1972) as a tool for plan

execution and analysis. The idea did not immediately become widespread and even though it was

used in some planners, it was mainly viewed as an interesting idea with few obvious applications.

Despite this, advantageous ways of exploiting macros were identified by, for instance, Minton and

Korf: Minton (1985) proposed storing useful macros and adding them to the set of operators in order

to speed up search while Korf (1987) showed that the search space over macros can be exponentially

smaller than the search space over the original planning operators.

During the last decade, the popularity of macros has increased significantly. This is, for ex-

ample, witnessed by the fact that several planners that exploit macros have participated in the In-

ternational Planning Competition. MARVIN (Coles & Smith, 2007) generates macros online that

escape search plateaus, and offline from a reduced version of the planning instance. MACRO-FF

(Botea, Enzenberger, Müller, & Schaeffer, 2005) extracts macros from the domain description as

well as solutions to previous instances solved. WIZARD (Newton, Levine, Fox, & Long, 2007) uses

a genetic algorithm to generate macros. Researchers have also studied how macros influence the

computational complexity of solving different classes of planning instances. Giménez and Jonsson

(2008) showed that plan generation is provably polynomial for the class 3S of planning instances

if the solution can be expressed using macros. Jonsson (2009) presented a similar algorithm for

277



BÄCKSTRÖM, JONSSON, & JONSSON

optimally solving a subclass of planning instances with tree-reducible causal graphs. In both cases,

planning instances in the respective class can have exponentially long optimal solutions, making it

impossible to generate a solution in polynomial time without the use of macros.

6.2 Finite State Automata

When we started working on new plan representations, it soon become evident that automata are a

convenient way of organizing the computations needed “inside” a compactly represented plan. This

thought was not particularly original since automata and automaton-like representations are quite

common in planning. In order to avoid confusion, we want to emphasize that our automaton hierar-

chies are not equivalent to the concept of hierarchical automata. The term hierarchical automata is

used in the literature as a somewhat loose collective term for a large number of different approaches

to automaton-based hierarchical modelling of systems; notable examples can be found in control

theory (Zhong & Wonham, 1990) and model checking (Alur & Yannakakis, 1998).

There are many examples where solutions to planning problems are represented by automata but

these examples are, unlike automaton plans, typically in the context of non-deterministic planning.

Cimatti, Roveri, and Traverso (1998) presented an algorithm that, when successful, returns strong

cyclic solutions to non-deterministic planning instances. Winner and Veloso (2003) used examples

to learn generalized plans. Bonet, Palacios, and Geffner (2010) used a transformation to classical

planning to generate finite-state controllers for non-deterministic planning. Finally, Hu and De

Giacomo (2013) presented a general algorithm for synthesizing finite state controllers based on a

behavior specification of the domain.

Automata have also been used for representing other objects in planning. Hickmott, Rintanen,

Thiébaux, and White (2007) and LaValle (2006) used automata to represent the entire planning in-

stance. In contrast, Toropila and Barták (2010) used automata to represent the domains of individual

variables of the instance. Baier and McIlraith (2006) showed how to convert an LTL representation

of temporally extended goals, i.e. conditions that must hold over the intermediate states of a plan,

into a non-deterministic finite automaton.

6.3 String Compression

The ideas behind automaton plans and macro plans are closely related to string compression. Most

algorithms for string compression are variants of the pioneering work by Lempel and Ziv (1976).

Normally, the compressed representation of a string is a straight line program (SLP) which is a

context free grammar that can only generate one single string. One might say that this is precisely

what a hierarchical macro plan is. Although not widely used, there have also been attempts to

use automaton representations of strings in order to achieve more compact representations (cf., see

Zipstein, 1992). One might say that such approaches generalize SLPs in a way that is very similar

to the way automaton plans generalize macro plans. It is important to note that string compression

algorithms per se have limited interest when it comes to representing plans. The basic reason is that

a complete plan first needs to be generated and then compressed by the compression algorithm, and

this excludes the utilization of compact plans in the planning process. For instance, the previously

mentioned polynomial-time macro planning algorithms (Giménez & Jonsson, 2008; Jonsson, 2009)

cannot be replaced (with preserved computational properties) by a planner combined with a string

compression algorithm since the planner may need to produce an exponentially long plan.

278



AUTOMATON PLANS

String compression usually makes no assumptions at all about the content of the string to repre-

sent. This makes the methods very general although often not optimal for a particular application.

There are examples, though, of more specialised representations. For instance, Subramanian and

Shankar (2005) present a method for compressing XML documents by using automata that are

based on the XML syntax. Our automaton plans, just like macro plans, do not make any particular

assumptions either about the sequence (or string) to be represented. However, it should be evident

from our examples that we primarily intend the automata of a plan representation to have some

functional correspondence to the plan structure.

7. Discussion

We have introduced the novel concept of automaton plans, i.e. plans represented by hierarchies

of finite state automata. Automaton plans extend macro plans by allowing parameterization and

branching, and can be used to represent solutions to a variety of planning instances. We have showed

that automaton plans are strictly more expressive than macro plans, but strictly less expressive than

HTNs and CSARs, i.e. compact representations allowing polynomial-time sequential access. The

precise relationship between automaton plans and CRARs is still an open question, but we have

presented a partial result: that automaton plans with uniform expansion can be transformed into

CRARs.

In our definition of automaton plans we have restricted ourselves to STRIPS planning, and a

possible extension would be to consider more general planning formalisms. Below we describe how

such an extension would affect the complexity results in Section 5. Most of our transformations

are valid for any string, and hence independent of the planning formalism. In particular, macro

plans can always be translated to automaton plans with uniform expansion, the latter can always be

transformed to CRARs, and automaton plans can always be transformed to CSARs. However, we

are not aware of any HTN formalism that extends the action definition to allow for more complex

actions. Hence our transformation from automaton plans to HTNs involve actions with STRIPS-

style preconditions and effects. All separation results for STRIPS also carry over to more general

planning formalisms since there cannot exist a polynomial function for translating all instances.

Although we have mainly studied the computational properties of automaton plans in the context

of compact plan representation, we believe that automaton plans may find other uses. Probably the

most interesting question from a practical perspective is how to construct automaton plans. We do

not have a definite answer to this question, but there are at least two ideas that we believe are worth

exploring. One possible way to generate automaton plans is to first construct an HTN for a given

domain, and then use the HTN to solve instances of the domain. Instead of flattening the solution

as is typically done, the idea would be to keep its hierarchical structure and transform it into an

automaton plan. It does not matter which HTN representation we consider as long as we can verify

whether a solution to an instance is valid; once the solution has been verified the transformation to

an automaton plan might become tractable, at least in practical cases. This approach would likely

require more sophisticated techniques for generating HTNs than those currently available, unless

the HTN is already provided.

Another interesting extension of automaton plans is to allow recursive automata that include

calls to themselves. Consider the automaton Mn from Section 4 for moving n discs in Towers of

Hanoi. If we introduced symbols j1, . . . , jN representing the number of discs, we could define a

single recursive automaton M that includes a fourth parameter jn representing the number of discs

279



BÄCKSTRÖM, JONSSON, & JONSSON

→ ↓ ← ↓

↑ G ↑ ↓

↑ ← ↑ ↓

↑ ↑ ← ←

Figure 10: An example contingent planning instance.

to be moved. The recursive calls to M on input jn would include the symbol jn−1, effectively

decrementing the number of discs. For the recursive mechanism to work there would need to exist

a base case for which no more recursive calls are made (in the case of Towers of Hanoi, the base

case typically consists in moving 0 or 1 discs). We remark that the computational properties of

automaton plans from this paper would no longer apply since the expansion graph would no longer

be acyclic.

Finally, modified automaton plans could be used to represent contingent plans compactly. So-

lutions to contingent planning instances are typically in the form of directed graphs in which each

node is a belief state, i.e. a subset of states. Edges correspond to actions that are applicable in each

belief state, as well as observations about the current state. The outcome of an observation is a sin-

gle bit indicating whether the current value of a given fluent is true or false. Since the outcome of an

observation is uncertain, each observation splits a belief state into one belief state containing states

for which the fluent is true, and one containing states for which the fluent is false. The solution

represents a policy, indicating which action should be applied in each belief state.

Figure 10 shows an example of a contingent planning instance. Each location is described by

an (x, y)-coordinate. At each location there is an arrow indicating which way to go, and a flag

indicating whether we have reached the target destination G. Two fluents are sufficient to represent

the direction in which the arrow is pointing:

00: up

01: down

10: left

11: right

There are four actions U, D, L, and R for moving up, down, left, and right, respectively. The (x, y)-
coordinate is not observable, and the initial state is unknown. In each state we can only observe

whether or not we have reached the destination and in which direction the arrow is pointing.

Figure 11 shows an automaton that represents a solution to the example contingent planning

instance. The set of symbols is Σ = {0, 1}, i.e. symbols are outcomes of observations and are

used to branch on edges of the automaton. In each state we make three consecutive observations:

whether or not we have reached the goal (0 or 1), and in which direction the arrow is pointing (two

bits). If we reach the goal we move to a state where we simply consume the remaining observations

(if any). If not, we use the direction of the arrow to decide which action to apply next.

The automaton solution is independent of the size of the contingent planning instance as long as

the arrows point in the right direction. In contrast, the number of belief states is doubly exponential

in the number of fluents, i.e. 22|PΣ|
. If we add locations to the example contingent planning problem,

the number of belief states increases exponentially, and so does the size of a solution in the form

280



AUTOMATON PLANS

0/ǫ

0/ǫ 1/ǫ

1/D

0/U 1/R

0/L

1/ǫ
Σ/ǫ

Figure 11: An automaton representing a contingent plan.

of a directed graph. Although the example automaton plan is not hierarchical, it is not difficult to

imagine that navigation is a subtask of a larger problem, in which case we could call the automaton

from other automata.

Although the semantics of contingent planning is different from that of classical planning, the

automata in Figure 11 can be used to construct a perfectly valid automaton plan. However, our

definition imposes two restrictions on contingent plans. First, since automata in automaton plans

have fixed arity, we can only represent contingent plans with a constant number of observations.

Second, the entire sequence of observations has to be passed as input to the automaton beforehand.

It may therefore make sense to consider a relaxation of the definition: allowing input to be passed

to an automaton online, thus allowing the arity of an automaton to vary.

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments and sugges-

tions.

Appendix A. Proof of Lemma 12.

In this section we prove Lemma 12, which states that plan verification for automaton plans with

uniform expansion is Π
p
2-hard. We prove the lemma by reduction from ∀∃-SAT to plan verification

for automaton plans with uniform expansion. Our proof proceeds in three steps. We first show

how to construct a STRIPS planning instance pF for any given ∀∃-SAT formula F . We then prove

that there exists an operator sequence πF such that pF has unique solution πF if and only if F is

satisfiable. Finally, we construct an automaton plan ρF with uniform expansion that represents the

sequence πF , i.e. ρF represents a valid plan for pF if and only if F is satisfiable.

Construction 18. Let F = ∀x1 · · · ∀xm∃y1 · · · ∃yn · φ be a ∀∃-SAT formula where φ is a 3SAT

formula, and let LF = {ℓ1, . . . , ℓ2(m+n)} be a set of literals, where ℓ2i−1 = xi and ℓ2i = xi for

each 1 ≤ i ≤ m and ℓ2(m+j)−1 = yj and ℓ2(m+j) = yj for each 1 ≤ j ≤ n. Also define a

total order < on LF such that ℓi < ℓj if and only if i < j. The formula φ = (c1 ∧ · · · ∧ ch) is a

conjunction of 3-literal clauses ck = ℓ1
k ∨ ℓ2

k ∨ ℓ3
k such that ℓ1

k, ℓ
2
k, ℓ

3
k ∈ LF . Assume without loss of

generality that ℓ1
k ≤ ℓ2

k ≤ ℓ3
k.

Given the formula F , construct a STRIPS planning instance pF = 〈PΣF
, AΣF

, ΣF , IF , GF 〉
where PΣF

= {fx, fy, fs, sat, x1, . . . , xm, y1, . . . , yn, v0, . . . , vh}, ΣF = {0, 1}, IF = ∅, GF =

281



BÄCKSTRÖM, JONSSON, & JONSSON

{fx, sat, x1, . . . , xm}, and AΣF
contains the following operators, each described on the form

pre(a)⇒ post(a):

os : {fx, fy, v0} ⇒ {v0, fs}
ol1k : {vk−1, vk, ℓ

1
k} ⇒ {vk}

ol2k : {vk−1, vk, ℓ
1
k, ℓ

2
k} ⇒ {vk}

ol3k : {vk−1, vk, ℓ
1
k, ℓ

2
k, ℓ

3
k} ⇒ {vk}

onk : {vk−1, vk, ℓ
1
k, ℓ

2
k, ℓ

3
k} ⇒ {vk, fs}

ot : {vh, fs} ⇒ {fy, v0, . . . , vh, sat}

of : {vh, fs} ⇒ {fy, v0, . . . , vh}

oyj : {fy, yj , yj+1, . . . , yn} ⇒ {fy, yj , yj+1, . . . , yn}

od : {fy, y1, . . . , yn} ⇒ {fx, fy, y1, . . . , yn}

oxi : {fx, sat, xi, xi+1, . . . , xm} ⇒ {fx, sat, xi, xi+1, . . . , xm}

We explain the intuition behind the planning instance pF . First note that all predicates and actions

are parameter-free, so the set of fluents equals the set of predicates and the set of operators equals

the set of actions. No function map is thus necessary to describe the pre- or postcondition of an

operator. The indices used for operators are in the ranges 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ h.

A plan for pF takes the form of three nested loops. The outer loop uses operators of type

oxi to iterate over all assignments to x1, . . . , xm, the universal variables of the formula F . The

middle loop uses operators of type oyj to iterate over all assignments to y1, . . . , yn, the existential

variables of F . The inner loop uses operators of type ol1k, ol
2
k, ol

3
k, onk to iterate over all clauses of

the 3SAT formula φ, at the same time verifying whether φ is satisfied given the current assignment

to x1, . . . , xm, y1, . . . , yn. The remaining fluents have the following functions:

fx: control the applicability of the operators oxi used to iterate over all assignments to x1, . . . , xm.

fy: control the applicability of the operators oyj used to iterate over all assignments to y1, . . . , yn.

v0: control the applicability of the operators ol1k, ol
2
k, ol

3
k, onk used to iterate over all clauses.

fs: remember whether φ is satisfied for the current assignment to x1, . . . , xm, y1, . . . , yn.

sat: remember whether ∃y1, . . . , ynφ is satisfied for the current assignment to x1, . . . , xm.

During each inner loop, we first have to apply operator os to add fluent v0. For each clause ck, we

then have to apply one of the operators ol1k, ol
2
k, ol

3
k, onk to add vk. Finally, we have to apply one of

ot and of to delete v0, . . . , vh. During this process, fluent fs is added by os and deleted only if onk

is applied for some clause ck.

Operators ot and of also add fy, causing an operator of type oyj to become applicable. If fs is

true, operator ot also adds sat. Applying an operator of type oyj has the effect of moving to the next

assignment to y1, . . . , yn. When y1, . . . , yn are all true, operator od is applicable instead, adding

fluent fx and resetting y1, . . . , yn to false. When fx is true, we can apply an operator of type oxi

to move to the next assignment to x1, . . . , xm. These operators all require sat as a precondition.

When x1, . . . , xm are all true, the goal state GF ensures that we iterate one last time over the middle

loop to make fx and sat true.

282



AUTOMATON PLANS

Lemma 19. The ∀∃-SAT formula F is satisfiable if and only if the planning instance pF has a

unique solution πF of the form

πF = E0, ox, E1, ox, . . . , ox, E2m−1,

Ei = V 0
i , oy, V 1

i , oy, . . . , oy, V 2n−1
i , od,

V j
i = os, oz1, oz2, . . . , ozh, ow,

where each ox is an operator among ox1, . . . , oxm, each oy is an operator among oy1, . . . , oyn,

each ozk, for 1 ≤ k ≤ h, is an operator among ol1k, ol2k, ol3k, onk, and ow is an operator among ot,
of .

Proof. We prove the lemma by showing the following:

1. In each state reachable from the initial state IF , at most one operator is applicable.

2. Repeatedly selecting the only applicable operator results in the sequence πF given above.

3. The sequence πF is applicable in the initial state IF and the goal state GF holds in the result-

ing state if and only if F is satisfiable.

We first show that in each reachable state, there exists 0 ≤ k ≤ h + 1 such that a) when k = 0, all

variables among v0, . . . , vh are false; b) when 1 ≤ k ≤ h, v0, . . . , vk−1 are true and vk, . . . , vh are

false; and c) when k = h + 1 all variables among v0, . . . , vh are true. While doing so we ignore

operators oyj , od, and oxi since they have no effect on v0, . . . , vh. In the initial state all fluents are

false so the statement holds for k = 0. If k = 0, the only applicable operator is os which sets v0

to true, effectively incrementing the current value of k. If 1 ≤ k ≤ h, the possible operators are

ol1k, ol
2
k, ol

3
k, onk. However, the preconditions of these operators are mutually exclusive such that

exactly one of them is applicable. Each of these operators sets vk to true, incrementing the value of

k. Finally, if k = h + 1, the possible operators are ot and of . The preconditions of these operators

are also mutually exclusive, and both operators set v0, . . . , vh to false, effectively resetting the value

of k to 0.

The only operators affecting fluents y1, . . . , yn are oy1, . . . , oyn. Each of these requires fy as a

precondition and sets fy to false. The only operators setting fy to true are ot and of , which both

reset k to 0. This implies that each time we want to apply an operator of type oyj , fluents v0, . . . , vh

need to go through a complete cycle from k = 0 to k = h + 1 and finish with ot or of . This cycle

corresponds exactly to the sequence V j
i of the lemma.

We next show that y1, . . . , yn act as a binary counter from 0 to 2n − 1, enumerating all assign-

ments to the existential variables of the formula F . Note that the preconditions of oy1, . . . , oyn are

mutually exclusive, since oyn requires yn, oyn−1 requires yn−1, yn, and so on. Specifically, the only

applicable operator is oyj , where 1 ≤ j ≤ n is the largest index such that yj is false. Repeatedly

283



BÄCKSTRÖM, JONSSON, & JONSSON

applying the only available operator results in the following series of values for y1, . . . , yn:

0 · · · 000

0 · · · 001

0 · · · 010

0 · · · 011

0 · · · 100

0 · · · 101
...

If y1, . . . , yn are all true, there exists no applicable operator of type oyj , but operator od is applicable

instead.

The only operators affecting fluents x1, . . . , xm are ox1, . . . , oxm. Each of these requires fx
as a precondition and sets fx to false. The only operator setting fx to true is od, which also resets

y1, . . . , yn to false. This implies that each time we want to apply an operator of type oxi, fluents

y1, . . . , yn need to go through a complete cycle from 0 to 2n − 1 and finish with od. This cycle

corresponds exactly to the sequence Ei of the lemma.

Since the operators ox1, . . . , oxm have the same form as oy1, . . . , oyn, at most one of them

is applicable, and repeatedly applying the only available operator among ox1, . . . , oxm causes the

fluents x1, . . . , xm to act as a binary counter from 0 to 2m − 1, enumerating all assignments to the

universal variables of the formula F . The precondition {fx, fy} of operator os ensures that os is

not applicable whenever we are about to apply an operator of type oyj or oxi. To achieve the goal

state GF = {fx, sat, x1, . . . , xm}, the fluents x1, . . . , xm have to complete a full cycle from 0 to

2m − 1, and to set fx to true the fluents y1, . . . , yn have to complete one last cycle after setting

x1, . . . , xm to true. This corresponds exactly to the sequence πF of the lemma.

Finally, we need to show that the sequence πF is applicable in the initial state IF and that the

goal state GF holds in the resulting state if and only if the formula F is satisfiable. In the initial

state IF and after using an operator of type oxi to iterate over x1, . . . , xm, the fluent sat is false.

Each time we apply os, fluent fs is added. While iterating over the clauses, fs is deleted if and only

if we apply an operator of type onk, i.e. there exists a clause ck that is not satisfied by the current

assignment to x1, . . . , xm, y1, . . . , yn. If fs is true at the end of this loop, operator ot adds sat.

If the formula F is not satisfied, there exists an assignment to x1, . . . , xm such that φ is unsat-

isfied for each assignment to y1, . . . , yn. Consequently, sat is false when applying the operator od
making fx true for that assignment to x1, . . . , xm. Then either no operator of type oxi is applicable

(if at least one fluent among x1, . . . , xm is false) or the goal state GF does not hold in the resulting

state (if x1, . . . , xm are all true). Conversely, if F is satisfied, sat is always true when applying od,

causing πF to be applicable and GF to hold in the resulting state.

We now proceed to construct an automaton plan that represents the operator sequence πF de-

scribed in Lemma 19.

Construction 20. Let pF = 〈PΣF
, AΣF

, ΣF , IF , GF 〉 be the planning instance defined in Construc-

tion 18. Construct an automaton plan ρF = 〈ΣF , AΣF
, AuF , r, x〉 with the following properties:

• AuF = {X1, . . . , Xm, Y1, . . . , Yn, S1, . . . , Sh+1, U1, . . . , Uh+1},

284



AUTOMATON PLANS

Xi[x] ǫ/〈Xi+1[x0], oxi, Xi+1[x1]〉
Σ/ǫ

Xm[x] ǫ/〈Y1[x0], od, oxm, Y1[x1], od〉
Σ/ǫ

Yj [x] ǫ/〈Yj+1[x0], oyj , Yj+1[x1]〉
Σ/ǫ

Yn[x] ǫ/〈os, S1[x0], oyn, os, S1[x1]〉
Σ/ǫ

Sk[x] Σa/ǫ

ℓ1
k/ol1k

ℓ1
k/ǫ Σb/ǫ ℓ2

k/ǫ

ℓ2
k/ol2k

Σc/ǫ

ℓ3
k/ol3k

ℓ3
k/〈onk, Uk+1[x]〉

ǫ/Sk+1[x]

Σ/ǫ

Uk[x] Σa/ǫ

ℓ1
k/ol1k

ℓ1
k/ǫ Σb/ǫ ℓ2

k/ǫ

ℓ2
k/ol2k

Σc/ǫ

ℓ3
k/ol3k

ℓ3
k/〈onk, Uk+1[x]〉

ǫ/Uk+1[x]

Σ/ǫ

Sh+1[x] ǫ/〈ot〉
Σ/ǫ

Uh+1[x] ǫ/〈of〉
Σ/ǫ

Figure 12: Graphs of the automata defined in Construction 20.

285



BÄCKSTRÖM, JONSSON, & JONSSON

• for each 1 ≤ i ≤ m, ar(Xi) = i− 1,

• for each 1 ≤ j ≤ n, ar(Yj) = m + j − 1,

• for each 1 ≤ k ≤ h + 1, ar(Sk) = ar(Uk) = m + n,

• r = X1 and x = ǫ.

The graphs associated with the automata in Aun are shown in Figure 12. The indices used to

describe automata are in the ranges 1 ≤ i < m, 1 ≤ j < n, and 1 ≤ k ≤ h. For each automaton

M [x], the argument maps are described as u[x], u[x0], or u[x1], indicating that the input string x
of M [x] is copied onto u, possibly appending 0 or 1 at the end.

Intuitively, the input string x of automata Sk and Uk represents an assignment to the fluents

x1, . . . , xm, y1, . . . , yn. The edge with label Σa consumes a input symbols, where a is the number

of variables that precede the variable corresponding to the literal ℓ1
k. Likewise, b is the number of

variables between ℓ1
k and ℓ2

k, and c is the number of variables between ℓ2
k and ℓ3

k. The assignment to

ℓ1
k determines whether to output operator ol1k or continue checking whether ck is satisfied.

Note that all automata defined in Construction 20 have uniform expansion. For each 1 ≤ k ≤ h
and x ∈ Σm+n, Apply(Sk[x]) contains exactly one operator among ol1k, ol

2
k, ol

3
k, onk, followed by

either Sk+1[x] or Uk+1[x]. The same is true for Uk. We show that the automaton plan ρF defined in

Construction 20 indeed represents the operator sequence πF from Lemma 19.

Lemma 21. The automaton plan ρF represents the operator sequence πF .

Proof. For each 1 ≤ i ≤ m, the input string x to the automaton Xi represents an assignment of

values to the fluents x1, . . . , xi−1 of the planning instance pF . For each 1 ≤ j ≤ n, the input string

to Yj represents an assignment of values to x1, . . . , xm, y1, . . . , yj−1, and for each 1 ≤ k ≤ h + 1,

the input string to Sk and Uk represents a complete assignment of values to x1, . . . , xm, y1, . . . , yn.

Consequently, the symbol that Xi appends to x represents the current value of xi, and the symbol

that Yj appends represents the current value of yj .

Since each automaton Xi first sets xi to 0 and then to 1, the series of assignments to x1, . . . , xm

becomes

0 · · · 000

0 · · · 001

0 · · · 010

0 · · · 011

0 · · · 100

0 · · · 101
...

which is identical to the binary counter on x1, . . . , xm induced by the plan πF . Likewise, for each

assignment to x1, . . . , xm, the assignments to y1, . . . , yn describe the same binary counter as πF .

Before changing the value of fluent xi from 0 to 1, the automaton Xi inserts operator oxi.

The last assignment to xi+1, . . . , xm before appending oxi is 1, . . . , 1, and the first assignment to

xi+1, . . . , xm after appending oxi is 0, . . . , 0. Consequently, the automata perfectly emulate the

286



AUTOMATON PLANS

pre- and postcondition of oxi. The same is true of the operator oyj inserted by Yj . Automaton Xm

inserts operator od after each cycle of assignments to y1, . . . , yn, and automaton Yn inserts operator

os at the beginning of each iteration over the fluents v0, . . . , vh.

For each 1 ≤ k ≤ h, the purpose of automata Sk and Uk is to decide which operator to append

among ol1k, ol
2
k, ol

3
k, onk. To do this, they first access the value of the variable associated with the

literal ℓ1
k. If ℓ1

k is satisfied, operator ol1k is appended, else literal ℓ2
k is checked, then ℓ3

k if necessary.

Only if all three literals are unsatisfied by the current variable assignment is operator onk appended.

The only difference between automata Sk and Uk is that Sh+1 appends operator ot, while Uh+1

appends of . Being in automaton Sk indicates that the first k−1 clauses of the current 3SAT instance

are satisfied by the current variable assignment. Only if clause ck is unsatisfied does Sk call Uk+1,

in which case all subsequent calls will be to automata of type U. In other words, another purpose

of automata Sk and Uk is to remember the current value of the variable fs. This way, the correct

operator among ot and of is appended at the end of each iteration over fluents v0, . . . , vh, which

concludes the proof.

To show that plan verification is Π
p
2-hard for automaton plans with uniform expansion, given

any ∀∃-SAT formula F , construct (in polynomial time) the planning instance pF in Construction

18 and the automaton plan ρF in Construction 20. Lemma 21 states that ρF represents the operator

sequence πF defined in Lemma 19. Due to Lemma 19, πF is a plan for pF if and only if F is

satisfiable. We have thus reduced ∀∃-satisfiability (a Π
p
2-complete problem) to plan verification for

automaton plans with uniform expansion.

Appendix B. Proof of Lemma 17

In this section we prove Lemma 17, which states that any automaton plan ρ can be efficiently

transformed to an equivalent HTN instance h. Let p = 〈P, A, Σ, I, G〉 be a STRIPS instance and let

ρ = 〈Σ, A, Au, r〉 be an automaton plan representing a solution π to p. We define an HTN instance

h = 〈P ′, A′, T, Θ, Σ′, I ′, L〉 as follows:

• P ′ = P ∪ {consec} ∪ {precedes} ∪ {isset-M}M∈Au with ar(consec) = ar(precedes) =
ar(isset-M) = 2 for each M ∈ Au,

• A′ = A ∪ {set-M, unset-M}M∈Au with ar(set-M) = ar(unset-M) = 2 for each M ∈ Au,

• Σ′ = Σ ∪ J , where J = {j0, . . . , jK} is a set of indices and K = maxM∈Au ar(M),

• I ′ = I ∪ {consec[ji−1ji] : 1 ≤ i ≤ K} ∪ {precedes[jijk] : 0 ≤ i < k ≤ K}.

In the induced set of fluents P ′
Σ′ , the static fluent consec[jk] is true if and only if j and k are con-

secutive indices in J , and precedes[jk] is true if and only if j precedes k in J . For each automaton

M ∈ Au, each symbol σ ∈ Σ, and each index 1 ≤ i ≤ ar(M), the fluent isset-M [σji] indicates

whether the i-th symbol of the input string x ∈ Σar(M) of M equals σ. In the induced set of opera-

tors A′
Σ′ , the operators set-M [σj] and unset-M [σj] add and delete fluent isset-M [σj], respectively.

For each automaton M ∈ Au, we also add the following tasks and methods to the sets T and Θ:

• A task setall-M with arity ar(M),

• A method dosetall-M with arity ar(M) and associated task setall-M ,

287



BÄCKSTRÖM, JONSSON, & JONSSON

• For each state s ∈ S of M , a task visit-M -s with arity ar(M) + 1,

• For each edge (s, t) with label ǫ/u, a method traverse-M -s-t with arity ar(M) + 1 and

associated task visit-M -s,

• For each edge (s, t) with label σ/u, σ ∈ Σ, a method consume-M -s-t with arity ar(M) + 2
and associated task visit-M -s,

• For each state s ∈ S with |Σ| outgoing edges, a method finish-M -s with arity ar(M)+1 and

associated task visit-M -s.

Formally, the precondition and task list of each method θ ∈ Θ should contain pairs (u, ϕ) of an

action or task u and an associated argument map ϕ from θ to u. However, to simplify notation we

instead describe grounded preconditions and task lists of grounded methods θ[xy]. In the induced

set of grounded tasks TΣ′ , the grounded task setall-M [x] sets the current input string of M to x. The

lone associated grounded method dosetall-M [x] ∈ ΘΣ′ has empty precondition and the following

task list:

Λ = 〈unset-M [σ1j1], . . . , unset-M [σnj1], set-M [x1j1],

...

unset-M [σ1jar(M)], . . . , unset-M [σnjar(M)], set-M [xar(M)jar(M)]〉,

where σ1, . . . , σn are the symbols in the set Σ. In other words, dosetall-M [x] first unsets all symbols

at each index of the input string, then sets the symbol according to x.

The grounded task visit-M -s[xjk] indicates that we are currently at state s of automaton M ,

that the input string is x and that the current index of x is k. If s has a single outgoing edge

(s, t) with label ǫ/(u, ν), the only associated grounded method is traverse-M -s-t[xjk] with empty

precondition. Let u[ϕ(x)] be the result of applying the argument map ϕ induced by the index

string ν to the input string x of M . If u ∈ A, the grounded task list Λ of traverse-M -s-t[xjk]
equals Λ = 〈u[ϕ(x)], visit-M -t[xjk]〉, effectively applying operator u[ϕ(x)]. On the other hand,

if u ∈ Au, the task list is Λ = 〈setall-u[ϕ(x)], visit-u-s0[ϕ(x)j0], visit-M -t[xjk]〉, first setting the

input string of u to ϕ(x) and then visiting the initial state s0 of u with index j0. In either case,

the grounded task visit-M -t[xjk] at the end of Λ ensures that we next visit state t of M without

incrementing k.

If, instead, s has multiple outgoing edges, then for each outgoing edge (s, t) with label σ/(u, ν)
for some σ ∈ Σ, there is an associated grounded method consume-M -s-t[xjkjk+1] with precon-

dition {consec[jkjk+1], precedes[jkjar(M)], isset-M [σjk+1]}. The index jk+1 is a free parameter

of consume-M -s-t, but the precondition consec[jkjk+1] ensures that jk and jk+1 are consecutive

indices in J . The precondition precedes[jkjar(M)] ensures that k < ar(M), i.e. that there are input

symbols left in x to process. Note that indices start at j0, so it is the symbol at index jk+1 of the

input string x that should be set to σ. The task list is identical to that of traverse-M -s-t[xjk], except

that the last task visit-M -t[xjk+1] is associated with the next index jk+1, indicating that we have

consumed a symbol of the input string.

For each s ∈ S with |Σ| outgoing edges, the grounded method finish-M -s[xjk] has precondition

jk = jar(M), i.e. the method is only applicable if we have consumed all symbols of the input string.

We assume that jk = jar(M) can be checked without introducing an additional predicate in P ′. The

288



AUTOMATON PLANS

task list Λ is empty, indicating that we have finished traversing the states of M . The method is not

applicable for states with a single outgoing edge since we should fire all applicable ǫ-transitions

before terminating.

The task list of the HTN instance h is given by L = 〈setall-r[x], visit-r-s0[xj0]〉 where r[x] is

the root of the automaton plan ρ. Because of the way tasks and methods are defined, expanding

visit-r-s0[xj0] corresponds exactly to executing the automaton r with input string x starting from

s0. Thus the expansion of L corresponds exactly to the solution π of p represented by ρ if we

remove all instances of operators set-M and unset-M . Since π is a solution to p, each operator in

the sequence is guaranteed to be applicable.

The only type of task with multiple associated methods is visit-M -s. The methods consume-

M -s-t associated with visit-M -s are mutually exclusive since at any moment, isset-M [σjk] is true

for at most one symbol σ ∈ Σ at each index 1 ≤ k ≤ ar(M) of the input string x of M . If

jk = jar(M), the method finish-M -s is applicable instead. The task list of each method is totally

ordered, implying that the instance h belongs to our restricted class of HTNs with mutually exclusive

methods and totally ordered task lists.

References

Alur, R., & Yannakakis, M. (1998). Model Checking of Hierarchical State Machines. In Proceed-

ings of the ACM SIGSOFT International Symposium on Foundations of Software Engineering,

pp. 175–188.

Bäckström, C., Jonsson, A., & Jonsson, P. (2012a). From Macro Plans to Automata Plans. In

Proceedings of the 20th European Conference on Artificial Intelligence (ECAI), pp. 91–96.

Bäckström, C., Jonsson, A., & Jonsson, P. (2012b). Macros, Reactive Plans and Compact Represen-

tations. In Proceedings of the 20th European Conference on Artificial Intelligence (ECAI),

pp. 85–90.

Bäckström, C., & Jonsson, P. (2012). Algorithms and Limits for Compact Plan Representation.

Journal of Artificial Intelligence Research, 44, 141–177.

Baier, J., & McIlraith, S. (2006). Planning with Temporally Extended Goals Using Heuristic Search.

In Proceedings of the 16th International Conference on Automated Planning and Scheduling

(ICAPS), pp. 342–345.

Bonet, B., Palacios, H., & Geffner, H. (2010). Automatic Derivation of Finite-State Machines for

Behavior Control. In Proceedings of the 24th National Conference on Artificial Intelligence

(AAAI).

Botea, A., Enzenberger, M., Müller, M., & Schaeffer, J. (2005). Macro-FF: Improving AI Planning

with Automatically Learned Macro-Operators. Journal of Artificial Intelligence Research,

24, 581–621.

Bylander, T. (1994). The Computational Complexity of Propositional STRIPS Planning. Artificial

Intelligence, 69, 165–204.

Cimatti, A., Roveri, M., & Traverso, P. (1998). Automatic OBDD-based Generation of Universal

Plans in Non-Deterministic Domains. In Proceedings of the 15th National Conference on

Artificial Intelligence (AAAI), pp. 875–881.

289



BÄCKSTRÖM, JONSSON, & JONSSON

Coles, A., & Smith, A. (2007). MARVIN: A Heuristic Search Planner with Online Macro-Action

Learning. Journal of Artificial Intelligence Research, 28, 119–156.

Erol, K., Hendler, J., & Nau, D. (1996). Complexity Results for HTN Planning. Annals of Mathe-

matics and Artificial Intelligence, 18, 69–93.

Fikes, R., Hart, P., & Nilsson, N. (1972). Learning and executing generalized robot plans. Artificial

Intelligence, 3(4), 251–288.

Fikes, R., & Nilsson, N. (1971). STRIPS: A New Approach to the Application of Theorem Proving

to Problem Solving. Artificial Intelligence, 2(3/4), 189–208.

Giménez, O., & Jonsson, A. (2008). The Complexity of Planning Problems With Simple Causal

Graphs. Journal of Artificial Intelligence Research, 31, 319–351.

Hickmott, S., Rintanen, J., Thiébaux, S., & White, L. (2007). Planning via Petri Net Unfolding. In

Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), pp.

1904–1911.

Hu, Y., & De Giacomo, G. (2013). A Generic Technique for Synthesizing Bounded Finite-State

Controllers. In Proceedings of the 23rd International Conference on Automated Planning

and Scheduling (ICAPS).

Jonsson, A. (2009). The Role of Macros in Tractable Planning. Journal of Artificial Intelligence

Research, 36, 471–511.

Korf, R. (1987). Planning as Search: A Quantitative Approach. Artificial Intelligence, 33(1), 65–88.

LaValle, S. (2006). Planning Algorithms. Cambridge Press.

Lempel, A., & Ziv, J. (1976). On the Complexity of Finite Sequences. IEEE Transactions on

Information Theory, 22(1), 75–81.

McAllester, D., & Rosenblitt, D. (1991). Systematic Nonlinear Planning. In Proceedings of the 9th

National Conference on Artificial Intelligence (AAAI), pp. 634–639.

Mealy, G. (1955). A Method to Synthesizing Sequential Circuits. Bell System Technical Journal,

34, 1045–1079.

Minton, S. (1985). Selectively Generalizing Plans for Problem-Solving. In Proceedings of the 9th

International Joint Conference on Artificial Intelligence (IJCAI), pp. 596–599.

Nau, D., Ilghami, O., Kuter, U., Murdock, J., Wu, D., & Yaman, F. (2003). SHOP2: An HTN

Planning System. Journal of Artificial Intelligence Research, 20, 379–404.

Newton, M., Levine, J., Fox, M., & Long, D. (2007). Learning Macro-Actions for Arbitrary Planners

and Domains. In Proceedings of the 17th International Conference on Automated Planning

and Scheduling (ICAPS), pp. 256–263.

Subramanian, H., & Shankar, P. (2005). Compressing XML Documents Using Recursive Finite

State Automata. In Proceedings of the 10th International Conference on Implementation and

Application of Automata (CIAA), pp. 282–293.

Toropila, D., & Barták, R. (2010). Using Finite-State Automata to Model and Solve Planning

Problems. In Proceedings of the 11th Italian AI Symposium on Artificial Intelligence (AI*IA),

pp. 183–189.

290



AUTOMATON PLANS

Winner, E., & Veloso, M. (2003). DISTILL: Towards Learning Domain-Specific Planners by Ex-

ample. In Proceedings of the 20th International Conference on Machine Learning (ICML),

pp. 800–807.

Zhong, H., & Wonham, M. (1990). On the Consistency of Hierarchical Supervision in Discrete-

Event Systems. IEEE Transactions on Automatic Control, 35(10), 1125–1134.

Zipstein, M. (1992). Data Compression with Factor Automata. Theoretical Computer Science,

92(1), 213–221.

291


