
Planning with Abstraction Hierarchies can beExponentially Less E�cient�To appear in proc. 14th International Joint Conference on Arti�cial Intelligence (IJCAI'95),Montr�eal, PQ, Canada, Aug. 1995Christer B�ackstr�om and Peter JonssonDepartment of Computer and Information ScienceLink�oping University, S-581 83 Link�oping, Swedenemail: fcba,petejg@ida.liu.seAbstractIt is well-known that state abstraction can speedup planning exponentially, under ideal condi-tions. We add to the knowledge|showing thatstate abstraction may likewise slow down plan-ning exponentially, and even result in generat-ing an exponentially longer solution than nec-essary. This phenomenon can occur for ab-straction hierarchies which are generated au-tomatically by the Alpine and Highpoint al-gorithms. We further show that there is littlehope of any drastic improvement upon thesealgorithms|it is computationally di�cult togenerate abstraction hierarchies which allow�nding good approximations of optimal plans.1 IntroductionOne common approach to improving the e�ciency ofplanning is to use a hierarchical planner based on stateabstraction|ignoring certain literals, either in the op-erator preconditions [Sacerdoti, 1974] or in the wholelanguage [Knoblock, 1991, 1994]. First an abstractedversion of the problem instance is solved, thus not tak-ing all details into account and resulting in a plan whichis correct at this abstraction level. This plan is thenused as a skeleton plan to be �lled in with more detail atthe next lower level|a process referred to as re�nement.Repeated re�nement results in a solution to the original,non-abstract problem.Although state abstraction cannot avoid exponentialsearch spaces in the general case, it is usually considereda powerful method for reducing the search e�ort. Themethod has been demonstrated to speed up planningconsiderably for certain test examples [Knoblock, 1994;Bacchus and Yang, 1994]. This is augmented with the-oretical results [Knoblock, 1991] showing that state ab-straction can reduce the size of the search space from ex-ponential to linear under certain ideal conditions. Theseconditions are very strong, however, and are not likelyto be met in (m)any real applications. One of the condi-tions is that the hierarchy satis�es the downward re�ne-�This research was sponsored by the Swedish ResearchCouncil for Engineering Sciences (TFR) under grantsDnr 92-143 and Dnr 93-270.

ment property (DRP) [Bacchus and Yang, 1994], whichguarantees that no backtracking occurs between abstrac-tion levels. Bacchus and Yang [1994] analysed the ex-pected search complexity when this particular conditiondoes not hold|more precisely, as a function of the prob-ability that a plan at some abstraction level can be re-�ned into a plan at the next lower level. They found thatthe search complexity is linear both when this probabil-ity is close to 1 and when it is close to 0. However,there is a phase-transition e�ect increasing the searchcomplexity considerably, when the probability is neitherlow nor high. Bacchus and Yang even reported that theexpected search e�ort may be somewhat higher with ab-straction than without in this middle region, namely ifmost search has to be redone at the ground level. How-ever, the literature seems to tacitly assume that stateabstraction will never do any big harm. Contrary tothis, we show that just as state abstraction can speedup planning exponentially, it can also slow down plan-ning exponentially, and even force the hierarchical plan-ner to produce an exponentially longer solution than anon-hierarchical planner!Knoblock [1994] has further presented an algorithm,Alpine, for generating abstraction hierarchies that areordered monotonic|a property guaranteeing that no re-�nement of an abstract plan can undo any e�ects of theabstract plan. Bacchus and Yang [1994] have presenteda modi�cation of this algorithm, Highpoint, whose hi-erarchies are ordered monotonic and expected to satisfythe DRP more closely. While these algorithms producegood hierarchies in many cases, they are not guaranteedto be harmless. In fact, we show that both algorithmsmay produce the type of abstraction hierarchy that leadsto exponentially longer solutions. Furthermore, we showthat using the same underlying principle as in Alpineand Highpoint, it is computationally di�cult to gen-erate an abstraction hierarchy that allows a hierarchicalplanner to generate a solution with length within a con-stant factor of the optimal plan length (we actually provean even stronger approximation bound|a logarithmicfactor in the size of the instance).2 Basic FormalismWe �rst de�ne some basic concepts.



De�nition 2.1 Given a set S, we let Seqs(S) denotethe set of all sequences formed by members of S. Wefurther use the symbol \;" to denote sequence concate-nation. Given a set P = fp1; : : : ; png of proposi-tional atoms, LP denotes the corresponding set of lit-erals, ie. LP = fp;:p j p 2 Pg. A set S � LP ofliterals is consistent i� there is no atom p such thatfp;:pg � S. For S � LP we further de�ne Gen(S) =fp j p 2 S or :p 2 Sg, ie. the set of atoms generatingthe literals in S.Since we will only prove hardness results, we needonly consider a propositional formalism, and the resultswill carry over automatically to more expressive for-malisms. More precisely, we will use the ground versionof the TWEAK formalism [Chapman, 1987], which isknown [B�ackstr�om, 1995] to be expressively equivalent,under polynomial reduction, to most other common vari-ants of propositional STRIPS.De�nition 2.2 A planning problem instance is aquadruple � = hP;O; I;Gi where� P is a �nite set of atoms;� O is a �nite set of operators of the form hpre; postiwhere pre; post � LP are consistent and denote thepre- and post-condition respectively;� I;G � LP are consistent and denote the initial andgoal state respectively.For o = hpre; posti � O, pre(o) and post(o) to denotepre and post respectively. A sequence ho1; : : : ; oni 2Seqs(O) of operators is called a plan over �. The func-tion Result is de�ned for all consistent states S � LPand plans ho1; : : : ; oni 2 Seqs(O) asResult(hi; S) = SResult(ho1; : : : ; oni; S) =Result(ho2; : : : ; oni; S [ post(o) � fp j :p 2 post(o)g)We say that a plan ho1; : : : ; oni 2 Seqs(O) is a solutionto an instance � = hP;O; I;Gi i�1. pre(o1) � I;2. G � Result(ho1; : : : ; oni; I) and3. pre(oi) � Result(ho1; : : : ; oi � 1i; I) for all 1 < i �n.3 State AbstractionThere are two common ways of doing state abstraction:the relaxed method and the reduced method. The re-laxed method was pioneered for planning in the Ab-Strips planner [Sacerdoti, 1974]. Criticality values areassigned to the literals and at each abstraction level i,all literals with criticality value < i are omitted from theoperator preconditions. The reduced method [Knoblock,1991, 1994] goes even further by restricting the wholelanguage at level i to only those literals having criti-cality value � i. We will base our theorems on thereduced model, but they trivially hold also under therelaxed model.De�nition 3.1 Given a set of of atoms P, an abstrac-tion of P is a set of atoms P0 � P. An n-level ab-straction hierarchy on P is a chain Pn � : : : � P1 �

P0 where Pn = ? and P0 = P. We will mostlywrite the abstraction hierarchy as an ordered partition-ing hDn�1; : : : ;D0i of P where Di = Pi � Pi+1 for alli. The mapping of a state S � LP onto the abstractlevel i, for some 1 � i � n, is denoted Si and is de-�ned as Si = S \ LPi . Similarly, the mapping of aground operator o = hpre; posti onto the abstract leveli is denoted oi and de�ned as oi = hprei; postii. Themapping of an operator set to level i is consequently de-�ned as Oi = foi j o 2 Og and the mapping of a plan-ning instance � = hP;O; I;Gi to level i is de�ned as�i = hPi;Oi; Ii;Gii. We refer to level 0 as the groundlevel.The general method for planning with abstraction hi-erarchies can be cast as an algorithm, Hplan (see Fig-ure 1). This planner relies on a non-hierarchical plannerPlan for solving subproblems within abstraction levels.Plan can be any planner for the language at hand, butit must be sound and complete to guarantee soundnessand completeness of Hplan. We will further assumethat Plan generates shortest plans.When solving an instance � = hP;O; I;Gi under anabstraction hierarchy hDn�1; : : : ;D0i, Hplan �rst usesPlan to solve the most abstract version, �n�1, of thisinstance. This results in a plan hon�11 ; : : : ; on�1k i overthe abstract operator set On�1. This plan is used as askeleton for solving the instance �n�2, with initial andgoal states In�2 and Gn�2 respectively. In addition, theintermediate states S1 = Result(on�11 ; In�1); : : : ; Sk =Result(on�1k ; Sk�1) on level n � 1 are used as new sub-goals on level n�2. In this way we get k+1 subproblemsto solve on level n � 2, each one hopefully easier thansolving �n�2 from scratch. Each of these subproblemsis solved using Plan, and these solutions are concate-nated into a solution for �n�2. This process is thenrepeated until we reach the ground level, which resultsin a solution for �0 = �.1 procedure Hplan(O; I;G; hDn�1; : : : ;D0i)2 !  Plan (On�1; In�1;Gn�1)3 if no such plan then fail4 for i from n� 1 to 1 do5 !  Refine(!; i)6 return !1 procedure Refine(!; i)2 Assume ! = hoi1; : : : ; oiki3 S0  Ii; T0  Ii�14 for j from 1 to k do5 Sj  Result(oij ; Sj�1)6 for j from 1 to k do7 !j  Plan (Oi�1; Tj�1; Sj)8 if no such plan then fail9 Tj  Result(!j; Tj�1)10 !k+1  Plan (Oi�1; Tk;Gi�1)11 return !1;: : : ;!k+1Figure 1: The hierarchical planning algorithm (searchcontrol omitted).



The process of using a plan on one abstraction level asa skeleton for producing a plan at the next lower level iscalled re�ning the plan. In the general case, for abstrac-tion hierarchies not satisfying the DRP, Hplan mustalso use backtracking and try re�ning another skeletonplan on some level whenever a subproblem cannot besolved. However, to simplifymatters we omit backtrack-ing in this paper since we will only use Hplan for hier-archies satisfying the DRP.4 Exponential Slow-downKnoblock [1991] has shown that, under certain ideal con-ditions, the size of the search space can be reduced fromexponential to linear by usingHplan and an abstractionhierarchy instead of an ordinary non-hierarchical plan-ner. Most of these conditions are expressed in termsinvolving properties of the actual planning process andproperties of the �nal solution, and are thus di�cult tocast in terms involving only properties of the instance.One of the conditions is the DRP, ie., there is no back-tracking between abstraction levels.This section presents some complementary results:state abstraction can also cause an exponential blow-upof the search space, causing an exponential slow-down,under certain conditions|even for hierarchies satisfyingthe DRP. Furthermore, this exponential slow-down is ac-companied by the even worse result that the generatedsolution is exponentially longer than the shortest one!Consider the following generic planning instance, �n,and the two possible abstraction hierarchies H1 and H2.De�nition 4.1 For all even n > 0 we de�ne �n =hfp0; : : : ; pn�1g;On;?; fpn�2; pn�1gi, where On con-tains the 2n operators s0; r0; : : : ; sn�1; rn�1 as de�ned inTable 1. We further de�ne the following two abstractionhierarchies for �n,H1 = hfp0g; fp1g; fp2g; fp3g; : : : ; fpn�2g; fpn�1gi;H2 = hfp1g; fp0g; fp3g; fp2g; : : : ; fpn�1g; fpn�2gi:Both H1 and H2 obviously satisfy the DRP and are or-dered.We can now prove that there is an exponential dif-ference in the sizes of the solutions and search spacesdepending on the choice of abstraction hierarchy.Theorem 4.2 Hplan will produce a solution of lengthn for �n under H1.Proof: Let Ln be the length of the shortest planHplan can produce under H1. We prove by inductionoperator pre posts2i fp2i�1; p2i�2g fp2igr2i fp2i�1; p2i�2g f:p2igs2i+1 f:p2i�1;:p2i�2g fp2i+1gr2i+1 f:p2i�1;:p2i�2g f:p2i+1gTable 1: Operators for the planning instance �n, where0 � 2i < n and with the exception that the operatorss0; r0; s1 and r1 have empty preconditions.

over n that for even n > 0,Ln = � 2; for n = 2;2 + Ln�2; for n > 2:Base step: For n = 2 all operators have empty pre-conditions, so the behaviour of Hplan will correspondto the two uppermost levels of Figure 2. The resultingplan is hs1; s0i, which clearly must be a shortest plan.Hence, L2 = 2.Induction step: Assume the claim holds for all evenk < n for some even n > 2. Planning on the four mostabstract levels will proceed as shown in Figure 2. Theinitial state will be empty on all abstraction levels andorderedness of the abstraction hierarchy guarantees thatthe last three states on level n � 4 will be re�ned intostates subsuming these states. Hence, the operators sn�4n�1and sn�4n�2 will be re�ned into the single-operator planshsin�1i and hsin�2i respectively at each level i < n�4. Itremains to analyse the subplan hsn�4n�3; sn�4n�4i. Ordered-ness guarantees that the atom pn�1 cannot be a�ectedand will not be required for any re�nement of this sub-plan. Hence, this atom can be ignored for the expansion.Substituting indices n� 1 and n� 2 for n� 3 and n� 4respectively then shows that the subplan hsn�4n�3; sn�4n�4i isisomorphic to the plan hsn�2n�1; sn�2n�2i on level n � 2, andsimilarly for the adjacent states. That is, by ignoringthe atom pn�1 we see that the subplan hsn�4n�3; sn�4n�4i isthe solution at level n � 4 for the instance �n�2, so itfollows from the induction hypothesis that it will be re-�ned into a ground solution of length Ln�2. It followsthat Ln = 2 + Ln�2 for even n > 4, which proves theclaim and ends the induction.The solution to the recursive equation is Ln = n,which proves the theorem. 2Theorem 4.3 The shortest solution Hplan can gener-ate for �n under H2 is of size 
(2n2 ).Proof: Let Ln be the length of the shortest planHplan can produce under H2. We prove by inductionover n that for even n > 0,Ln = � 2; for n = 2;2 + 2Ln�2 for n > 2:goal operatorempty subplangoal re�nementresult/initialsn�2n�2 sn�3n�2 sn�4n�2
sn�1n�1sn�2n�1sn�3n�1sn�4n�1 sn�3n�3sn�4n�3 sn�4n�4

pn�1pn�1pn�1pn�1 pn�1pn�2pn�1pn�3pn�1pn�3 pn�1pn�2pn�3pn�1pn�3pn�4 pn�1pn�2pn�3pn�1pn�2pn�3pn�4 pn�1pn�2pn�3pn�4
I1 G1 G2I2I3 G3I4 G4Figure 2: Applying Hplan to �n under H1.



Base step: For n = 2 all operators have empty pre-conditions, so the behaviour of Hplan will correspondto the two uppermost levels of Figure 3. The resultingplan is hs0; s1i, which clearly must be a ahortest plan.Hence, L2 = 2.Induction step: Assume the claim holds for all evenk < n for some even n > 2. For n � 4, planning onthe four most abstract levels will proceed as shown inFigure 3. Analogous to the previous proof we see that theoperators sn�4n�1 and sn�4n�2 will be re�ned into the single-operator plans hsin�1i and hsin�2i respectively at eachlevel i < n � 4. Also by analog reasoning, the atomspn�1 and pn�2 can be ignored wrt. the expansions ofthe subplans hsn�4n�3; sn�4n�4i and hrn�4n�3; rn�4n�4i. The �rstof these is clearly the solution at level n � 4 for �n�2and it, thus, follows from the induction hypothesis thatit expands into a ground subplan of length Ln�2. Sincethe operators rn�3 and rn�4 have the same preconditionsas sn�3 and sn�4 respectively, it is immediate that thetwo subplans will have isomorphic re�nements. Hence,also the second subplan expands into a ground subplanof length Ln�2. It follows that Ln = 2+ 2Ln�2 for evenn > 4, which proves the claim and ends the induction.The solution to the recursive equation is Ln = 2n2+1�2so Ln 2 
(2n2 ), which proves the theorem. 2These results mean that if we happen to make a for-tuitous choice of abstraction hierarchy, then Hplan willgenerate a linear-size solution, using only a linear-sizesearch space. On the other hand, if we are less fortunate,then Hplan is forced to explore an exponential numberof nodes generating an exponentially longer solution.Obviously, an unfortunate choice of abstraction hier-archy can force Hplan to take exponential time, pro-ducing an exponentially suboptimal solution. It is thusinteresting to compare this to the performance of a non-hierarchical planner. Such a planner may also have toexplore an exponential-size search space. However, al-lowing the planner to search the whole, exponential-sizesearch space would at least guarantee generating a short-est, ie.linear-size, solution. Furthermore, a standardplanner using a domain-independent standard heuristiccan guarantee �nding a solution exploring only a linearnumber of nodes in this case.Theorem 4.4 SNLP [McAllester and Rosenblitt, 1991]sn�1n�2sn�2n�2sn�3n�2sn�4n�2sn�3n�4sn�4n�3 rn�3n�4rn�4n�4sn�2n�1 sn�3n�1rn�4n�3 sn�4n�1sn�4n�4pn�4 pn�4pn�4pn�3
pn�2pn�2pn�2pn�4pn�4pn�2pn�3 pn�1pn�2pn�2pn�2pn�3 pn�1pn�2pn�2 pn�1pn�2pn�1pn�2 pn�1pn�2G4I4 I1 G1I2 G2I3 G3Figure 3: Applying Hplan to �n under H2.

solves �n in polynomial time if equipped with a heuris-tic which prefers existing actions to new ones for goalestablishment.5 Building Abstraction HierarchiesKnoblock [1994] has suggested de�ning a preorder v inthe set of atoms and then use this order to de�ne anabstraction hierarchy satisfying the following restriction.Restriction 5.1 De�ne v on P s.t. for all p; p0 2 Pand every o 2 O,1. if p; p02Gen(post(o)) and p 6= p0, then p v p0 andp0 v p;2. if p2Gen(pre(o)) and p02Gen(post(o)), then p v p0.For all atoms p 2 Pi; p0 2 Pj , if p v p0, then i � j.The intention is that if p v p0, then p must not occurhigher up in the abstraction hierarchy than p0. Restric-tion 5.1 is known [Knoblock, 1994] to be a su�cient,though not necessary, condition for an abstraction hier-archy to be ordered monotonic.Knoblock [1994] has further presented an algorithm,Alpine, for generating maximally deep abstraction hi-erarchies satisfying Restriction 5.1, thus generating or-dered abstraction hierarchies. The basic Alpine algo-rithm appears in Figure 4.1 The actual Alpine algo-rithm [Knoblock, 1994] is somewhat more advanced andalso comes equipped with certain heuristics. Further, ithandles a �rst-order language, while our version is in-tended only for a propositional language. These di�er-ences do not a�ect the results to be proven in the fol-lowing section, however|a topic which will be furtherdiscussed later in this paper.Alpine builds a directed graph, G, corresponding tothe preorder v and then collapses all strong componentsin G, resulting in a set C of equivalence classes over P.The �nal line of the algorithm sorts the partially orderedset C topologically, but does not specify any preferencefor a particular topological sort. Hence, Alpine cannotalways distinguish between good and bad abstraction hi-erarchies, like H1 and H2.Theorem 5.1 Given the planning instance �n, Alpinearbitrarily generates any of a number of possible abstrac-tion hierarchies including H1 and H2.Proof: The �rst step ofAlpine will produce the graphG in Figure 5 (corresponding to the preorder v). Sincethere are no strong components of size > 1, step 2 will1Note that, contrary to Knoblock, we direct the arcs inthe standard way.1 procedure Alpine(P;O)2 G hP;?i3 for all p; p0 2 P do4 if p v p0 then insert arc hp; p0i in G5 Collapse the strong components in G and letG0 = hC;Ai be the reduced graph6 return any topological sorting of AFigure 4: The Alpine algorithm.



6 6HHHY���*6 6HHHY���*6.... 6.... 666... 666...7. . . . .o .....p2 pn�3pn�2p0 p1p3pn�4 pn�1G pn�1pn�2p1p0 p1p0pn�1pn�2T1 T2Figure 5: The preorder on P induced by the �rst step ofthe Alpine algorithmand two of the possible topologicalsortings of the reduced graph.produce an isomorphic graph, with each element beinga singleton component, inducing a partial order on theatoms. Finally, step 3 may produce any topological sort-ing of this partial order, which clearly include the totalorders reected by the graphs T1 and T2 in Figure 5. Ob-viously, T1 correspond to H1 and T2 to H2, which provesthe theorem. 2What, then, are the chances of improving Alpine bymaking a more informed choice in line 6? The imple-mented version comes equipped with certain heuristics[Knoblock, 1994, pp. 272{273], of which only one (num-ber 3) applies to the propositional case. This heuristicspeci�es that adjacent levels not containing any goal lit-erals should be merged into one single level. Applyingthis heuristic would cause the atoms p0; : : : ; pn�3 to endup on the same level.2A modi�ed version of the algorithm,Highpoint [Bac-chus and Yang, 1994], uses a sampling method to deter-mine for each pair of components ci; cj 2 C that couldbe ordered the expected probability that a plan at leveli can be re�ned at level j if ordering i above j. Theseprobabilities are then used to further collapse some com-ponents and to guide the topological sorting of the re-maining components. However, for �n, Highpoint willalways �nd that the probability of re�nement is 1, so itis provided no extra information to guide the topologicalsorting. Hence, Highpoint is bound to su�er from thesame problem as Alpine, ie., not being able to preferH1 to H2.This is hardly surprising, however, since it is possibleto show that no modi�cation or heuristic can improve thetopological sorting to always allow Hplan to produceshortest plans.De�nition 5.2 The search problem Alpgenmin is de-�ned as follows:Instance: A planning instance � = hP;O; I;Gi.Problem: When executing the Alpine algorithm on �,�nd a topological sorting in the �nal step that results inan abstraction hierarchy which allows Hplan to �nd ashortest solution.Theorem 5.3 Alpgenmin is NP-hard.2Knoblock [personal comm., 1995] argues that this is theright behaviour in this case. However, our Theorems 4.2 and4.3 would hold also under heuristic 3 if setting G = P in �n.

Proof: Proof by reduction from Minimum Cover[Garey and Johnson, 1979, p. 222], which is NP-complete. Let X = fx1; : : : ; xmg be a set, let C =fC1; : : : ; Cng be a set of subsets ofX and let K be an in-teger. W.l.o.g. we restrict the problem to having coversof even size only, by requiring thatm is even and that theatoms x2i and x2i+1 always appear together in membersof C. De�ne a planning instance � = hP;O;?; fpgiwhere P is partitioned into the three sets Ptop = fpg,PMC = X [ frg, and Pfix = fq0; : : : ; qK+1g. The setof operators is similarly partitioned into three sets Otop,OMC and Ofix, s.t. the operators in Otop change onlyatoms in Ptop etc. The set OMC contains one operatoroi for each member Ci of C, having no precondition andCi[frg as its e�ect. The set Ofix contains one operatoroi for each atom qi 2 Pfix, having no precondition andfq0; qig as its e�ect. Finally, Otop consists of the twooperators oMC and ofix, both having the e�ect p andhaving the preconditions PMC and Pfix respectively.When applying Alpine to �, it will �nd the threemaximal strong components Ptop, PMC and Pfix, the�rst being ordered above the two latter, which are mu-tually unordered. Hence, there are two possible ab-straction hierarchies: HMC = hPtop;Pfix;PMCi andHfix = hPtop;PMC;Pfixi. Obviously, under hierarchyHMC it is possible to �nd a plan of lenght K�+1, whereK� is the size of the minimum cover for X. Hfix, onthe other hand, will force the planner to generate a planof length K + 2, which is optimal i� K� > K (remem-ber that K� must be even). Now, if we could choosein polynomial time the hierarchy allowing us to �nd anoptimal plan, then we could also solveMinimum Coverin polynomial time. Hence, Alpgenmin is NP-hard. 2Note that the theorem is not about whether Hplanwill generate a shortest plan, but only about whetherthe abstraction hierarchy prevents it from doing so ornot. This is a disappointing result since one of the condi-tions guaranteeing a linear-size search space forHplan isthat Hplan generates a shortest plan [Knoblock, 1991].Knoblock mentions, however, that this condition canbe relaxed; it is su�cient that Hplan �nds a plan oflength within a constant factor longer than the short-est one. Unfortunately, Alpgenmin cannot be approxi-mated within any constant factor, unless P=NP. In fact,an even stronger approximation limit can be proven.Theorem 5.4 Alpgenmin cannot be asymptoticallyapproximated within a factor c log2 jPj2 for any c < 18unless NP � DTIME(nlog logn).Proof sketch: Suppose the theorem were not true.Then it would follow from the construction in the proofof Theorem 5.3 that we could approximate MinimumCover within c log2 jXj for some c < 18 . However, thisis impossible unless NP � DTIME (nlog logn) [Bellare etal., 1993], contradicting the assumption. 2We have previously required that the algorithmPlanunderlying Hplan always generates optimal plans. Un-fortunately, generating an optimal plan at an abstractlevel does not guarantee that we �nd an optimal plan atthe ground level. This does not a�ect Theorems 5.3 and5.4, however, since it is obvious from their proofs that



neither theorem depends on the assumption that Plangenerates an optimal plan.6 DiscussionIt is well-known [Knoblock, 1991] that state abstractioncan speed up planning exponentially. Under certain idealconditions, plans can be generated in linear time in thelength of the solution for some planning problems, eg.the Towers-of-Hanoi problem. However, the value ofthis demonstration is questionable since the problem isunrealistic in the sense that it has exponentially sizedminimal solutions.3 One of these ideal conditions is thedownward re�nement property (DRP), which guaranteesthat no backtracking occurs between abstraction levels.We have added to previous analyses of state abstrac-tion by showing that not only can state abstraction giveexponential speed-up in some cases; it can also cause ex-ponential slow-down in other cases|even for hierarchiessatisfying the DRP. More precisely, there exist probleminstances such that the ideal choice of abstraction hier-archy leads to the generation of a linear-size plan, whilea more unfortunate choice forces the generation of anexponential-size plan, taking exponentially longer timeto generate. This may even happen in cases where astandard non-hierarchical planner equipped with a sim-ple, domain-independent heuristic produces a shortest,ie. linear-size, solution in polynomial time. Instances ofthis kind seem no less realistic than, for instance, Towers-of-Hanoi.We have further shown that the Alpine [Knoblock,1994] and Highpoint [Bacchus and Yang, 1994] algo-rithms for generating abstraction hierarchies are not ableto distinguish between such good and bad hierarchies asmentioned above. Furthermore, we have also shown thatit is even impossible to design an algorithm based on thesame underlying principle as Alpine and Highpointthat always produces hierarchies allowing a hierarchicalplanner to generate plans of length within a constantfactor of the shortest length (actually, not even within alogarithmic factor in the size of the instance). We havechoosen in this paper to concentrate on state abstractionas de�ned and used by Knoblock [1994], ie. using a total-order hierarchical planner. We are currently investigat-ing the consequences of using a partial-order hierarchicalplanner like AbTweak [Yang and Tenenberg, 1990] in-stead. Although AbTweak seems to handle correctlythe particular example we have used to demonstrate theexponential slow-down e�ect, we do not believe there isany fundamental di�erence in general. In fact, the ap-proximation result mentioned above should be valid alsofor partial-order planners like AbTweak.The message of this paper is not that state abstrac-tion and the use of algorithms like Alpine and High-point should be abandoned; in many cases, these canstill be powerful tools for tackling the search complexityin planning. However, the results tell us that we mustbe very careful; state abstraction is a powerful tool, buta tool that may occasionally turn its power against us,3See B�ackstr�om and Nebel [1993] or [Garey and Johnson,1979, pp. 11{12] for a discussion of this topic.

making things exponentially worse. Even if good ab-straction hierarchies exist in many domains, the task of�nding these is non-trivial and seems to remain a highlydomain-dependent heuristic endeavour. We believe thatmore research is needed in order to understand whenstate abstraction works and how to exploit the inher-ent structure of problems for building good abstractionhierarchies.AcknowledgementsWe would like to thank Craig Knoblock, Jalal Maleki,Qiang Yang and the anonymous referees for commentswhich helped improving this paper.References[AAAI, 1991] Proc. 9th (US) Nat'l Conf. on Artif. In-tell. (AAAI-91), Anaheim, CA, USA, 1991.[Bacchus and Yang, 1994] Fahiem Bacchus and QiangYang. Downward re�nement and the e�ciency of hi-erarchical problem solving. Artif. Intell., 71:43{100,1994.[B�ackstr�om and Nebel, 1993] Christer B�ackstr�om andBernhard Nebel. Complexity results for SAS+ plan-ning. In Proc 13th Int'l Joint Conf. on Artif. Intell.(IJCAI-93), Chamber�y, France, 1993.[B�ackstr�om, 1995] Christer B�ackstr�om. Expressiveequivalence of planning formalisms. Artif. Intell., Spe-cial Issue on Planning and Scheduling, 1995. To ap-pear.[Bellare et al., 1993] M. Bellare, S. Goldwasser, C.Lund, and A. Russel. E�cient probabilistically check-able proofs and applications to approximation. In 25thACM Symp. Theory Comput. (STOC-93), pages 294{304. ACM, 1993.[Chapman, 1987] David Chapman. Planning for con-junctive goals. Artif. Intell., 32:333{377, 1987.[Garey and Johnson, 1979] Michael Garey and DavidJohnson. Computers and Intractability: A Guide tothe Theory of NP-Completeness. Freeman, New York,1979.[Knoblock, 1991] Craig A Knoblock. Search reduction inhierarchical problem solving. In AAAI [1991], pages686{691.[Knoblock, 1994] Craig A. Knoblock. Automaticallygenerating abstractions for planning. Artif. Intell.,68:243{302, 1994.[McAllester and Rosenblitt, 1991] David McAllesterand David Rosenblitt. Systematic nonlinear planning.In AAAI [1991], pages 634{639.[Sacerdoti, 1974] Earl D Sacerdoti. Planning in a hier-archy of abstraction spaces. Artif. Intell., 5:115{135,1974.[Yang and Tenenberg, 1990] Qiang Yang and Josh DTenenberg. ABTWEAK: Abstracting a nonlinear,least commitment planner. In Proc. 8th (US) Nat'lConf. on Artif. Intell. (AAAI-90), pages 204{209,Boston, MA, USA, 1990.


