
Bridging the Gap Between Refinement and Heuristics in Abstraction

Christer Bäckström and Peter Jonsson
Department of Computer Science, Linköping University

SE-581 83 Linköping, Sweden
christer.backstrom@liu.se peter.jonsson@liu.se

Abstract
There are two major uses of abstraction in planning
and search: refinement (where abstract solutions
are extended into concrete solutions) and heuris-
tics (where abstract solutions are used to compute
heuristics for the original search space). These two
approaches are usually viewed as unrelated in the
literature. It is reasonable to believe, though, that
they are related, since they are both intrinsically
based on the structure of abstract search spaces.
We take the first steps towards formally investi-
gating their relationships, employing our recently
introduced framework for analysing and compar-
ing abstraction methods. By adding some mecha-
nisms for expressing metric properties, we can cap-
ture concepts like admissibility and consistency of
heuristics. We present an extensive study of how
such metric properties relate to the properties in
the original framework, revealing a number of con-
nections between the refinement and heuristic ap-
proaches. This also provides new insights into, for
example, Valtorta’s theorem and spurious states.

1 Introduction
One of the most widespread and important forms of abstrac-
tion in search and planning is state abstraction. In very gen-
eral terms, this means that one forms an abstract state space
from the original state space. The purpose of the abstract
space is that it may help us to solve the original problem
faster. Two dominating methods exist for exploiting state ab-
straction for this purpose: refinement and heuristics.

Refinement planning was pioneered in the ABSTRIPS plan-
ner [Sacerdoti, 1974], but the idea was used already in
GPS [Newell et al., 1959]. Refinement first finds a plan in
the abstract version of the problem instance and then uses this
plan as a skeleton for a plan for the original instance. If one
is lucky, then it is sufficient to add more actions between the
ones in this skeleton plan to obtain a valid plan. Otherwise,
one has to backtrack and find a new skeleton plan. The ab-
straction heuristic method instead performs heuristic search
in the original search space, using the abstract space to com-
pute the heuristic. The heuristic search approach has proven
very successful both in classical planning and in search, and

a number of interesting and well-performing heuristics have
been invented (see Helmert and Domshlak [2009] for a com-
prehensive survey and comparison).

Refinement used to be the dominating abstraction method
in planning, but has largely been replaced with abstraction
heuristics, although there are signs of a potential renaissance
for refinements [Gregory et al., 2011; Seipp and Helmert,
2013]. Refinement has continued to be used, though, in
other areas such as path planning [Sturtevant and Buro, 2005]
and model checking [Clarke et al., 2003]. The refinement
and heuristic approaches are usually considered as quite dif-
ferent and unrelated. That is a very superficial analysis,
though: both approaches are firmly based on properties of
the solutions in the abstract space, so some connections are
bound to exist. Yet, the literature is almost void of at-
tempts to investigate these connections. A notable exception
is Helmert [2006] who made a pragmatic attempt at combin-
ing refinement and heuristics in his FD planner. A formal ex-
ample is the DPP criterion [Zilles and Holte, 2010], intended
to avoid certain bad types of abstractions in heuristic search,
but also related to the backtracking issue.

The purpose of this paper is twofold. One is to extend our
own previous abstract framework for modelling abstractions
[Bäckström and Jonsson, 2012a; 2012b] by adding metric
properties in addition to the previous qualitative ones. The
other purpose is to use this extended framework to provide
the first formal analysis on an abstract method-independent
level of how refinement and heuristics are related. This pa-
per should not be viewed as a solitary one, but be read in the
context of our previous publication on this framework.

The rest of the paper is structured as follows. Sections 2
and 3 recapitulate the abstraction framework that we use, and
Section 4 discusses the three different refinement concepts
previously studied within this framework. Our main results
appear in Section 5, where we add new metric properties to
the framework in order to express concepts like admissibility
and consistency of heuristics. We further make an extensive
investigation of how these metric properties relate to the pre-
viously proposed properties. An immediate consequence of
this is that we identify several connections between refine-
ment and heuristics. Section 6 gives further examples of us-
ing the extended framework to study various concepts in a
different and more revealing way, eg. Valtorta’s theorem and
the DPP criterion. The paper ends with a discussion section.

2 STGs and STG Transformations
We here briefly present the framework for studying abstrac-
tions and refer to our previous papers [Bäckström and Jons-
son, 2012a; 2012b] for further details and explanations.

Let X be a set. Then |X| denotes its cardinality. A par-
tition of X is a set P of non-empty subsets of X s.t. (1)
∪p∈P p = X and (2) for all p, q ∈ P , if p 6= q, then
p ∩ q = ∅. Let f : X → Y be a function, then Rng(f) =
{f(x) | x ∈ X} is the range of f . When the elements of Y
are sets we define f(Z) = ∪x∈Zf(x) for all Z ⊆ X .

Definition 1. A state transition graph (STG) over a set L of
labels is a tuple G = 〈S,E〉 where S is a set of vertices and
E ⊆ S × S ×L is a set of labelled arcs. Also define L(G) =
{` | 〈s, t, `〉 ∈ E}. A sequence s0, s1, . . . , sk of states in S is
a path in G if either (1) k = 0 or (2) 〈si−1, si, `i〉 ∈ E for
1 ≤ i ≤ k and some labels `1, . . . , `k.

The set S is called a state space and its members states.
We allow multiple arcs between two states if they differ in
direction or labels. Labels provide a means to identify sets of
arcs, eg. the arcs induced by a particular action, but they are
not of much relevance in this paper. The STG collapses to an
ordinary directed graph if all arcs have the same label.

Definition 2. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be two
STGs. A total function f : S1 → 2S2 is a transformation
function from G1 to G2 if Rng(f) is a partition of S2. The
corresponding reverse transformation function f : S2 → 2S1

is defined as f(t) = {s ∈ S1 | t ∈ f(s)}. A label relation
from G1 to G2 is a binary relation R ⊆ L(G1) × L(G2).
The reverse label relation R ⊆ L(G2)× L(G1) is defined as
R(`2, `1) iff R(`1, `2). A transformation from G1 to G2 is
a pair τ = 〈f,R〉 where f is a transformation function from
G1 to G2 and R is a label relation from G1 to G2.

Intuitively, f specifies how τ maps states in G1 to sets of
states in G2, whileR relates subsets ofE1 with subsets ofE2.
Transformation functions are extended to sequences of states
such that f(s1, . . . , sk) = f(s1), . . . , f(sk). Furthermore, if
τ = 〈f,R〉 is a transformation, then: (1) s ∈ f(t) if and only
if t ∈ f(s), (2) f is a transformation function from G2 to
G1 and (3) 〈f,R〉 is a transformation from G2 to G1. As a
convention, we will often not specify the STGs in definitions
and theorems, tacitly assuming transformations to be from
an STG G1 = 〈S1, E1〉 to an STG G2 = 〈S2, E2〉 unless
otherwise specified. We also sometimes refer to G1 as the
ground graph and G2 as the abstract graph.

3 Method Properties
We have earlier defined a number of properties that transfor-
mations can have, dividing these into method propeties and
instance properties [Bäckström and Jonsson, 2012a]. In brief,
method properties are inherent for a particular transformation
method and the actual STGs do not matter, while instance
properties may hold only for particular pairs of STGs.

Definition 3. A transformation τ = 〈f,R〉 can have the fol-
lowing method properties:

M↑: |f(s)| = 1 for all s ∈ S1.

M↓: |f(s)| = 1 for all s ∈ S2.

R↑: If 〈s1, t1, `1〉 ∈ E1, then there is some 〈s2, t2, `2〉 ∈ E2

such that R(`1, `2).

R↓: If 〈s2, t2, `2〉 ∈ E2, then there is some 〈s1, t1, `1〉 ∈ E1

such that R(`1, `2).

C↑: If R(`1, `2) and 〈s1, t1, `1〉 ∈ E1, then there is some
〈s2, t2, `2〉 ∈ E2 such that s2 ∈ f(s1) and t2 ∈ f(t1).

C↓: If R(`1, `2) and 〈s2, t2, `2〉 ∈ E2, then there is some
〈s1, t1, `1〉 ∈ E1 such that s1 ∈ f(s2) and t1 ∈ f(t2).

We refer the reader to the original papers for further expla-
nations of these properties. However, we provide a new al-
ternative way to understand the properties, in terms of graph
morphisms. We define the latter in the usual way for directed
labelled graphs, ignoring the labels.

Definition 4. An M↑ transformation function f from G1 to
G2 is (1) a homomorphism if for all s, t ∈ S1, 〈s, t〉 ∈ E1

implies 〈f(s), f(t)〉 ∈ E2; (2) a strong homomorphism if it
is a homomorphism and for every 〈s, t〉 ∈ E2, there is some
〈s′, t′〉 ∈ E1 s.t. f(s′) = s and f(t′) = t; (3) an embedding
if f is a bijection that is a homomorphism ; (4) a retraction if
it is an embedding from G2 to G1.

These concepts have been extensively used as abstraction
functions in search and planning. It turns out that the method
properties suffice to capture and distinguish between these
different concepts, which strongly indicates that the method
properties are not arbitrary but express something essential.

Theorem 5. If f is a transformation function then there is a
label relation R s.t. the transformation τ = 〈f,R〉 is:

1) M↑R↑C↑ if and only if f is a homomorphism.
2) M↑RlCl if and only if f is a strong homomorphism.
3) MlR↑C↑ if and only if f is an embedding.
4) MlR↓C↓ if and only if f is a retraction.

Proof sketch. (1-2) Follows from Theorem 9 in Bäckström
and Jonsson [2012a] since part 1 of the proof corresponds
to homomorphism and part 2 to the additional criterion for
strong homomorphisms. (3) Immediate from 1 plus defini-
tions. (4) Immediate from 3.

We write X ⇒ Y to denote that every transformation that
has property X also must have property Y, and we write
X 6⇒ Y when this is not the case.

4 Path Refinement
It is often useful to consider an abstraction of a graph in terms
of soundness and completeness. Loosely speaking, it is sound
if every abstract path somehow correspond to a ground path
and it is complete if every ground path somehow correspond
to an abstract path. One way to formalize these concepts is to
consider them in terms of state refinement. While it is com-
mon in planning to refine an abstract plan by using the corre-
sponding ground actions as a skeleton plan, it is also possible
to just use the ground states corresponding to the states along
the abstract plan. In fact, this is the common way to do re-
finement in search, and Holte et al. [1996a] suggest that this
is indeed a better way to do refinement.

G1:
s11

s12

s41

s42

G2: t1 t2 t3 t4

f

Trivial refinement

G1:
s11

s12

s21

s22

s31

s32

s41

s42

G2: t1 t2 t3 t4

f

Weak refinement

G1:
s11

s12

s21

s22

s31

s32

s41

s42

G2: t1 t2 t3 t4

f

Strong refinement

Figure 1: Downward path refinement.

We have previously defined three different types of state
refinement, corresponding to different degrees of avoid-
ing backtracking between levels [Bäckström and Jonsson,
2012a]. Very briefly, all three refinements avoid backtrack-
ing to the abstract level but correspond to different amounts
of backtracking on the ground level.
Definition 6. Let f be a transformation function and let
σ = t0, t1, . . . , tk be an arbitrary path in G2. Then: 1) σ
is trivially downward state refinable if there are two states
s0 ∈ f(t0) and s` ∈ f(tk) s.t. there is a path in G1 from
s0 to s`. 2) σ is weakly downward state refinable if there is
a sequence s0, s1, . . . , sk of states in S1 such that si ∈ f(ti)
for all i s.t. 0 ≤ i ≤ k and there is a path from si−1 to si
in G1 for all i (1 ≤ i ≤ k). 3) σ is strongly downward state
refinable if for every i s.t. 1 ≤ i ≤ k, there is a path from
si−1 to si in G1 for all si−1 ∈ f(ti−1) and all si ∈ f(ti).

These concepts are illustrated in Figure 1. All three cases
consider the same abstraction and the same path σ = t1t2t3t4
in the abstract graph, but different ground graphs. Curly ar-
rows denote paths, i.e. they may consist of several arcs and
pass through states not shown in the figure. Trivial refine-
ment only requires that there is a path corresponding to σ
in the ground graph. In this case it requires that there is a
path from some state in f(t1) = {s11, s12} to some state in
f(t4) = {s41, s42}, which is satisfied by the path from s11
to s42. Weak refinement additionally requires that we use all
states along σ and also pass through some state in each of
f(t2) and f(t3). This is satisfied, for instance, by the path
s11s22s31s41. Finally, strong refinement requires that there is
a path for any choice of states in f(t1), . . . , f(t4), which is
satsified in the last example in the figure.

To continue, we must define reachability in graphs. Let
G = 〈S,E〉 be an STG. Then for all s ∈ S, the set
R(s) of reachable states from s is defined as R(s) =
{t ∈ S | there is a path from s to t in G}. We extend this
s.t. for all T ⊆ S, R(T) = ∪s∈TR(s). Using R1(·) for
reachability in G1 and R2(·) for reachability in G2, instance
properties are defined as follows.
Definition 7. A transformation function f can have the fol-
lowing instance properties:
Pk↓: For every path t0, . . . , tk in S2, there are s0, . . . , sk ∈

S1 s.t. si ∈ f(ti) for all i (0 ≤ i ≤ k) and si ∈
R1(si−1) for all i (1 ≤ i ≤ k).

Pk↑: For every path s0, . . . , sk in S1, there are t0, . . . , tk ∈
S2 s.t. ti ∈ f(si) for all i (0 ≤ i ≤ k) and ti ∈ R2(ti−1)
for all i (1 ≤ i ≤ k).

PT↓: P1↓ holds.
PT↑: P1↑ holds.
PW↓: Pk↓ holds for all k > 0.
PW↑: Pk↑ holds for all k > 0.

P↓: If t ∈ R2(f(s)), then f(t) ∩R1(s) 6= ∅.
P↑: If t ∈ R1(s), then f(t) ∩R2(f(s)) 6= ∅.

PS↓: If t ∈ R2(f(s)), then f(t) ⊆ R1(s).
PS↑: If t ∈ R1(s), then f(t) ⊆ R2(f(s)).
The following relationships are known to hold.

PS↓ ⇒ P↓ ⇒ PW↓ ⇒ PT↓ PT↓ 6⇒ PW↓ 6⇒ P↓ 6⇒ PS↓
The instance properties capture refinement as follows.
Theorem 8. (Bäckström and Jonsson, 2012a, Th. 15)
For a transformation τ = 〈f,R〉, every path in G2 is
trivially/weakly/strongly downward state refinable iff τ is
PT↓/ PW↓/ PS↓.

5 Metrics and Heuristics
In this section we will augment our framework with a few
metric properties, in addition to the previous qualitative ones,
and investigate how these properties relate to each other. In
particular, we will analyse on an abstract method-independent
level how refinement and heuristics relate to each other. The
results we will prove in this section are summarized in Fig-
ure 2, where the arrows denote the ⇒ and 6⇒ relationships
between the properties (the figure contains the new proper-
ties that are yet to be defined).

PS↓PW↓PT↓

R↑C↑

PT↑∆C↓ ∆↓ ∆C↓

PT↑AC↓ A↓ AC↓

PS↑ PT↑

Figure 2: Relationships for M↑ transformations.

5.1 Metric Properties
Heuristic search attempts to find an optimal solution faster
than blind search by using a heuristic function that approx-
imates the true cost to guide the search. It is desirable that

this function is admissible, i.e. that it never overestimates the
true cost. For instance, the A∗ algorithm is optimal under this
condition [Dechter and Pearl, 1985]. It is often useful to view
both the original and abstract search spaces as graphs and to
define the abstraction such that the length of paths in the ab-
stract graph is an admissible heuristic for the length or cost
of the corresponding paths in the ground graph [Holte et al.,
1996a]. That is, abstraction is viewed as a graph transforma-
tion. It is also common to preprocess the abstract graph and
store the path lengths in a pattern database [Culberson and
Schaeffer, 1998], or to compute a heuristic from several such
databases [Haslum et al., 2007].

Define N∞ = N ∪ {∞} and extend =, < and + to N∞ in
the obvious way. Let G = 〈S,E〉 be an STG. A cost function
for G is a function c : S2 → N∞, with the restriction that
for all s, t ∈ S, c(s, t) = ∞ if and only if there is no path
from s to t in G. A heuristic function h for a cost function
c is itself a cost function. As usual, h is admissible for c if
0 ≤ h(s, t) ≤ c(s, t), for all s, t ∈ S and consistent for c
if h(s, t) ≤ c(s, u) + h(u, t) for all s, t, u ∈ S. While s
and t are sometimes assumed to be the initial and goal states,
respectively, our definition is more general and is also com-
mon, cf. Yang et al. [2008]. It is better suited for our purpose
of comparing refinement with heuristics, and it is a reason-
able assumption for domain-independent heuristics. While
truly arbitrary cost functions are sometimes considered, this
is usually not the case in planning and many other contexts.
We follow common practice and define cost functions as fol-
lows. First define a function w : E → N that assigns a weight
to each arc in G. Then extend the cost function to paths such
that c(s0, . . . , sk) =

∑k
i=1 w(si−1, si). The cost c(s, t) be-

tween two states is then defined as the minimum of c(σ) over
all paths σ from s to t, or ∞ when there is no path at all,
ie. c(s, t) is the cost of the cheapest path from s to t. We
also implicitly define the specific weight function d which as-
signs weight 1 to all arcs, which is known as the unit cost
assumption. When considering two STGs G1 and G2 simul-
taneously we index their corresponding c, d and w functions
analogously, for instance, w1 is the weight function for G1.

We extend transformations with metric information, writ-
ing τ = 〈f,R,w1, w2〉 where 〈f,R〉 is a transformation from
G1 to G2 and w1 and w2 are the weight functions for G1 and
G2, respectively. The cost functions c1 and c2 are implicitly
defined by w1 and w2. For instance, the common practice of
using the path length in the abstract graph as a heuristic esti-
mate for the path length in the ground graph correspdonds
to an 〈f,R, d1, d2〉 transformation, while an 〈f,R,w1, d2〉
transformation estimates path costs in the ground graph with
path lengths in the abstract graph. In order to take advantage
of cost functions we will introduce some new metric proper-
ties. In this section, we only consider such properties for M↑
transformation functions, since abstraction heuristics usually
assume that f is an ordinary function.
Definition 9. An M↑ transformation τ = 〈f,R,w1, w2〉 can
have the following metric properties:
A↓: c2(f(s), f(t)) ≤ c1(s, t) for all s, t ∈ S1.
AC↓: c2(f(s), f(t)) ≤ c1(s, t) or c2(f(s), f(t)) =∞

for all s, t ∈ S1.

∆↓: c2(f(s), f(t)) ≤ c1(s, u) + c2(f(u), f(t))
for all s, t, u ∈ S1.

∆C↓: c2(f(s), f(t)) ≤ c1(s, u) + c2(f(u), f(t)) or
c2(f(s), f(t)) =∞ for all s, t, u ∈ S1.

Properties A↓ and ∆↓ correspond to admissibility and con-
sistency, respectively. Properties AC↓ and ∆C↓ are condi-
tional variants of A↓ and ∆↓ for transformations that are in-
complete; they are only required to hold in the cases where
there actually is a path in G2. More precisely, we have:
Theorem 10. Let τ = 〈f,R,w1, w2〉 be an M↑ transforma-
tion. Then: 1) τ is A↓ iff c2 is an admissible heuristic for c1.
2) τ is ∆↓ iff c2 is a consistent heuristic for c1.

Property A↓ is a weaker criterion than ∆↓, while AC↓ and
∆C↓ are weaker variants of A↓ and ∆↓. The relationships
between the metric properties can be summarized as follows.
Theorem 11. Let τ be an M↑ transformation. Then:
1) A↓ ⇒ AC↓, 2) ∆↓ ⇒∆C↓, 3) AC↓ 6⇒ A↓, 4) ∆C↓ 6⇒∆↓,
5) ∆↓⇒ A↓, 6) ∆C↓ ⇒ AC↓, 7) A↓ 6⇒∆↓, 8) AC↓ 6⇒∆C↓.

The results in the remainder of this section will fill in the
rest of the arrows in Figure 2.

5.2 Metric Properties and Upward Refinement
The following theorem formalizes that admissibility implies
completeness, but the opposite is false; not even the strongest
form of completeness, PS↑, guarantees admissibility.
Theorem 12. Let τ be an M↑ transformation. Then:

1) A↓ ⇒ PS↑ 2) ∆↓ ⇒ PS↑ 3) PS↑ 6⇒ A↓
4) PS↑ 6⇒ ∆↓ 5) AC↓ 6⇒ PT↑ 6) ∆C↓ 6⇒ PT↑

Proof. Let τ = 〈f,R,w1, w2〉 be an M↑ transformation.
1-2) Suppose τ is A↓. Let s, t ∈ S1 arbitrary such that t ∈

R1(s). Then c1(s, t) < ∞ and, thus, c2(f(s), f(t)) < ∞,
since τ is A↓. Hence, f(t) ⊆ R2(f(s)) so τ is PS↑ since s
and t were chosen arbitrarily. (2) Follows since ∆↓ ⇒ A↓.

3) Let S1 = S2 = {s1, s2, s3}, E1 = {〈s1, s2, `〉,
〈s1, s3, `〉, 〈s2, s3, `〉} and E2 = {〈s1, s2, `〉, 〈s2, s3, `〉}.
Let f be the identity function, R = {〈`, `〉}, w1 = d1
and w2 = d2. Then, τ is PS↑. However, it is not A↓
since c1(s1, s3) = d1(s1, s3) = 1 but c2(f(s1), f(s3)) =
d2(f(s1), f(s2)) + d2(f(s2), f(s3)) = 2. (4) Follows since
∆↓ ⇒ A↓.

5,6) Let E1 6= ∅ and E2 = ∅. Then τ is vacuously AC↓
and ∆C↓ but not PT↑.

Figure 3 is an example of a PS↑ transformation. However,
there is a one-arc path s12, s32 in G1 but the shortest path
from f(s12) to f(s32) in G2 is of length 2. If we apply unit
cost to both graphs, then the transformation cannot be A↓.

Property A↓ captures admissibility, which is complete,
while AC↓ is a conditional variant that does not require com-
pleteness but only that the abstraction does not overestimate
the cost of a ground path whenever there is a correspond-
ing abstract path. It is, however, sufficient to combine condi-
tional admissibility with the weakest form of completeness to
get full admissibility, as the following theorem demonstrates.
The analogous case holds for consistency.
Theorem 13. Let τ be an M↑ transformation. Then:

1) PT↑AC↓⇔ A↓ 2) PT↑∆C↓ ⇔∆↓

5.3 Metric Properties and Downward Refinement
Admissibility enforces completeness but not soundness; that
is, there can be an abstract path with no corresponding ground
path. In fact, admissibility and downward refinement are
largely orthogonal and incomparable concepts.

Theorem 14. Let τ be an M↑ transformation. Then:
1) PS↓ 6⇒ AC↓ 2) PS↓ 6⇒ ∆C↓ 3) A↓ 6⇒ PT↓
4) ∆↓ 6⇒ PT↓ 5) PT↓A↓ 6⇒ PW↓ 6) PT↓∆↓ 6⇒ PW↓

Proof. 1-2) Let S1 = S2 = {s1, s2, s3}, E1 = {〈s1, s2, `〉,
〈s1, s3, `〉, 〈s2, s3, `〉} and E2 = {〈s1, s2, `〉, 〈s2, s3, `〉}.
Also let f be the identity function, R = {〈`, `〉} and
τ = 〈f,R, d1, d2〉. Then τ is PS↓. However, c1(s1, s3) =
d1(s1, s3) = 1 but c2(f(s1), f(s3)) = d2(f(s1), f(s2)) +
d2(f(s2), f(s3)) = 2, so τ is not AC↓. Hence, τ is not ∆C↓
since ∆C↓⇒AC↓.

3-4) Let S1 = S2 = {s1, s2, s3}, E1 = ∅ and E2 =
{〈s1, s2, `〉, 〈s2, s3, `〉}. Also let f be the identity function,
R = {〈`, `〉} and τ = 〈f,R, d1, d2〉. Then τ is A↓ and ∆↓
but it is not PT↓ since E1 = ∅.

5-6) Let S1 = {sij | 1 ≤ i ≤ 4, 1 ≤ j ≤ 2}, S2 =
{s1, s2, s3, s4}, let E1 = {〈s11, s21, `〉, 〈s11, s31, `〉,
〈s31, s41, `〉, 〈s22, s42, `〉} and let E2 = {〈s1, s2, `〉,
〈s2, s4, `〉, 〈s1, s3, `〉, 〈s3, s4, `〉}. Also let f(sij) = si for all
sij ∈ S1, let R = {〈`, `〉} and let τ = 〈f,R, d1, d2〉. Then τ
is obviously PT↓, A↓ and ∆↓. However, the path s1, s2, s4 in
G2 is not weakly refinable, so τ is not PW↓.

The major reason for these results is that refinement is de-
fined without any metrics; even if we have a guarantee that an
abstract plan can be refined into a ground plan, we have no
guarantee that there is no shorter ground plan.

5.4 Relating Metric and Method Properties
Also method properties have metric connections.

Theorem 15. Let τ = 〈f,R,w1, w2〉 be an M↑R↑C↑ trans-
formation. Then: 1) If w2(f(s), f(t)) ≤ w1(s, t) for all
〈s, t〉 ∈ E1 such that 〈f(s), f(t)〉 ∈ E2, then τ is A↓∆↓.
2) Otherwise, τ need not be neither A↓ nor ∆↓.

Proof. 1) It follows from Theorem 5 that f is a homomor-
phism since τ is M↑R↑C↑. Hence, for every path σ in G1

also f(σ) is a path in G2. Let s, t ∈ S1 be arbitrary states.
If there is no path from s to t in G1, then c1(s, t) = ∞
so c2(f(s), f(t)) ≤ c1(s, t) holds trivially. Otherwise, let

G1:
s11

s12

s21

s22

s31

s32

`

`
`

`

`

`

G2: t1 t2 t3
` `

f

Figure 3: PS↑ but not A↓.

σ = s0, . . . , sk, where s0 = s and sk = t, be the cheap-
est path from s to t. Then c1(s, t) =

∑k
i=1 w1(si−1, si).

Since also f(σ) must be a path in G2 we get c2(f(s), f(t)) ≤∑k
i=1 w2(f(si−1), f(si)). It follows that c2(f(s), f(t)) ≤

c1(s, t) since w2(f(u), f(v)) ≤ w1(u, v) for all u, v ∈ S1.
Hence, τ is A↓ since s and t were chosen arbitrarily.

Let s, t, u ∈ S1 be three arbitrary states. We first note that
c2(f(s), f(t)) ≤ c2(f(s), f(u)) + c2(f(u), f(t)) by the def-
inition of cost functions. We also note that c2(f(s), f(u)) ≤
c1(s, u) since τ is A↓. Hence, c2(f(s), f(t)) ≤
c2(f(s), f(u)) + c2(f(u), f(t)) ≤ c1(s, u) + c2(f(u), f(t)),
that is, τ is ∆↓ since s, t and u were chosen arbitrarily.

2) Let S1 = S2 = {s1, s2}, let E1 = E2 = {〈s1, s2, `〉},
let f(s) = {s} for all s ∈ S1 and let R = {〈`, `〉}. Also set
w1(s1, s2) = 1 and w2(s1, s2) = 2. Then τ is M↑R↑C↑ but
neither A↓ nor ∆↓ for this instance.

6 Examples
In this section we give examples of how the extended frame-
work can be used to express new things or express old things
in new ways. The examples are deliberately quite different
from each other in order to demonstrate the breadth of appli-
cability of an abstract framework of this kind.

Admissibility and Homomorphisms
Homomorphisms, i.e. M↑R↑C↑ transformations, are known
to be very suitable as abstraction functions in heuristic search,
cf. Holte et al. [1996a], Helmert et al. [2007] and Zilles and
Holte [2010]. One reason for this is that they are admissi-
ble. The following result shows that also the opposite holds,
admissibility implies that the abstraction function is a homo-
morphism, if all arcs in both graphs have unit cost. Without
unit costs, this relationship breaks down. This is a most rele-
vant observation in the context of using the path length in the
abstract graph as the heuristic estimate for the path length or
path cost in the ground graph. Zero cost arcs are typically not
considered in this context.

Theorem 16. Let τ = 〈f,R,w1, d2〉 be an M↑A↓ transfor-
mation s.t. d1(s, t) ≤ w1(s, t) for all edges 〈s, t〉 ∈ E1.
Then: 1) f is a homomorphism if w1 = d1. 2) Otherwise f
need not be a homomorphism.

Proof. We ignore labels since they are irrelevant.
1) Suppose τ is M↑A↓ and w1 = d1 but f is not a homo-

morphism. Then there is some 〈s, t〉 ∈ E1 s.t. 〈f(s), f(t)〉 6∈
E2. That is, c1(s, t) = d1(s, t) = 1, but if there is a path
from f(s) to f(t), then it must be of length 2 or more. Hence,
c2(f(s), f(t)) ≥ 2 so τ cannot be A↓. This contradicts the
assumption, so f must be a homomorphism.

2) Let S1 = S2 = {s1, s2, s3}, E1 = {〈s1, s3〉}, E2 =
{〈s1, s2〉, 〈s2, s3〉}. Let f(s) = s for all s ∈ S1 and let
w1(s1, s3) = 2. Clearly, τ is A↓ for this example. How-
ever, f is not a homomorphism since 〈s1, s3〉 ∈ E1 but
〈f(s1), f(s3)〉 6∈ E2.

Spurious States
The downward path preserving (DPP) property [Zilles and
Holte, 2010] guarantees that the abstract search space does

not contain any spurious states (abstract goals states not cor-
responding to ground goal states). We have earlier proved that
DPP is equivalent to Pl [Bäckström and Jonsson, 2012a].
However, A↓ ⇒ PS↑ and PS↑ ⇒ P↑, so P↓A↓ ⇒ DPP. Al-
though P↓A↓ is a stronger criterion than DPP, it means that
we need not verify independently that P↑ holds if we already
know that the heuristic is admissible, which is typically the
case when considering DPP.

Globally Admissible Heuristics
Karpas and Domshlak [2012] considered optimal solutions
with non-admissible heuristics. One example is so called
globally admissible heuristics, which need only be admissi-
ble for the states along some optimal plan. Let G = 〈S,E〉 be
an STG, c a cost function for G and h a heuristic for c. Then,
for arbitrary s, t ∈ S, h is globally admissible for c from s
to t if there is an optimal path s0, . . . , sn such that s0 = s,
sn = t and h(si, t) ≤ c(si, t) for all i, 0 ≤ i ≤ n. This
concept can be alternatively characterized as follows.
Theorem 17. Let τ = 〈f,R,w1, w2〉 be an M↑AC↓ trans-
formation. Then, if there is an optimal path σ from s to t
in G1 such that f(σ) is a path in G2, then c2 is a globally
admissible heuristic for c1 from s to t.

This makes use of properties M↑ and AC↓ and a type of
completeness property that is even weaker than PT↑.

Valtorta’s Theorem
Valtorta [1984] proved that when using embeddings as ab-
straction functions, it is not possible to explore fewer nodes
in total, counting both ground and abstract nodes, when using
A∗ search with path length in the abstract graph as heuristic
estimate. This was later generalized to abstraction functions
in general, by Holte et al. [1996b], known as the generalized
version of Valtorta’s theorem.
Theorem 18. [Generalized Valtorta’s theorem, [Holte et al.,
1996b]] Assume τ = 〈f,R,w1, d2〉 is an M↑ transformation
and d1(s, t) ≤ w1(s, t) for all 〈s, t〉 ∈ E1. Let u be any
state in G1 that is necessarily expanded when the instance
〈s, t〉 is solved by BFS in G1 and let the heuristic function h
be h(u, t) = d2(f(u), f(t)), computed by BFS in G2. If A∗
solves this instance, then either u or f(u) will be expanded
during the search.

Holte et. al. noted that this does not rule out that some
abstractions might explore fewer nodes in total. (The theo-
rem is somewhat weak, though, since it only tells us that u or
f(u) is expanded, allowing the possibility that both are ex-
panded). It is well known that this requires that there are ab-
stract nodes corresponding to two or more ground nodes; the
expansion of an abstract node can then result in a heuristic
estimate that prevents A∗ from exploring the corresponding
ground nodes. An alternative characterization of this is that f
is not M↓. While this is hardly an interesting new result itself,
it demonstrates that the framework defined so far is sufficient
to express this important criterion for A∗ search.

We may also step outside the M↑ assumption. Suppose we
have some concept of expanding f(u) for a state u when f is
not M↑. We need not have a precise definition of this concept
to see that Theorem 18 still holds, and that f must still not be
M↓ to have any chance of exploring fewer nodes.

7 Discussion
We previously used our framework to model a number of
abstraction methods in planning, derive their transformation
properties and draw conclusions from that regarding sound-
ness and completeness [Bäckström and Jonsson, 2012a]. We
will very briefly sketch how these results together with the
new results of this paper can sometimes be used to also say
about the metric properties of these abstraction methods.

Method ABII (ABSTRIPS in the version where non-critical
atoms are removed everywhere, cf. Knoblock [1994]) is
known to be an M↑R↑C↑ transformation, i.e. a homomor-
phism. Hence, it is also an A↓∆↓ transformation, i.e. it can
be used as an admissible and consistent heuristic. Although
this is already known, it is interesting that the result can be de-
duced in this way, using only abstract transformation proper-
ties. Methods RRAa and RRAb are two extreme cases of the
concept of removing redundant actions [Haslum and Jonsson,
2000]. It is not hard to see that RRAa is M↑R↑C↑ and, con-
sequently, A↓∆↓ while RRAb is neither A↓ nor ∆↓. Method
IDL is the common abstraction method of ignoring delete
lists of actions, and it is MlRl but not C↑ or C↓. Hence,
it is not admissible, which might seem to contradict known
results. It does not, however, since Bäckström and Jonsson
allowed negative preconditions, which is usually not consid-
ered when ignoring delete lists. This indicates that the equiv-
alence between STRIPS with and without negative precon-
ditions [Bäckström, 1995] must be taken with care in some
cases, like delete relaxation.

Let us finally discuss some future research directions. Our
results make no particular assumptions about the function f
and the relation R in the transformations. Looking also at
restricted cases would be interesting, since the abstraction
methods used in the literature impose various restrictions on
f and R. The preceeding paragraph gives some ideas about
what kind of results could be achieved this way.

The results in Section 5 clearly demonstrate that the lack of
metrics in usual refinement concepts makes it hard to prove
further positive results on the connections between refine-
ment and heuristics. The obvious way forward would be to
somehow add metric aspects also to refinements. The proper-
ties Pk↑ and Pk↓ actully do so, but not in a sufficient way. For
instance, one might consider a property Pm

k↓ that is like Pk↓
but additionally requires that each arc along the path can be
refined into a path of length m at most. This might allow for
finding tighter relationships between refinement and heuris-
tics, perhaps relating Pm

k↓ to approximate heuristic search (eg.
using weighted A∗). However, it could also provide a deeper
insight into refinement itself; it is well known that purely
qualitative criteria can cause anomalous behaviour in refine-
ment [Bäckström and Jonsson, 1995].

Another future direction is to study abstractions and heuris-
tics for non-M↑ functions. We note that the literature on this
topic is very scarce, and defining such heuristics is much less
straightforward. For instance, we can no longer exploit ordi-
nary homomorphisms. One interesting exception is Pang and
Holte [2012] who introduce so-called multimapping abstrac-
tions as a method for aggregating multiple heuristics.

References
[Bäckström and Jonsson, 1995] Christer Bäckström and Pe-

ter Jonsson. Planning with abstraction hierarchies can be
exponentially less efficient. In Proc. 14th Int’l Joint Conf.
Artif. Intell. (IJCAI’95), Montreal, Canada, pages 1599–
1605, 1995.

[Bäckström and Jonsson, 2012a] Christer Bäckström and
Peter Jonsson. Abstracting abstraction in search with
applications to planning. In Proc. 13th Int’l Conf.
Knowledge Repr. Reasoning (KR’12), Rome Italy, pages
446–456, 2012.

[Bäckström and Jonsson, 2012b] Christer Bäckström and
Peter Jonsson. Abstracting abstraction in search II: Com-
plexity analysis. In Proc. 5th Ann. Symp. Combinatorial
Search (SoCS’12), Niagara Falls, ON, Canada, pages 10–
17, 2012.

[Bäckström, 1995] Christer Bäckström. Expressive equiva-
lence of planning formalisms. Artif. Intell., 76(1-2):17–34,
1995.

[Clarke et al., 2003] Edmund M. Clarke, Orna Grum-
berg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for sym-
bolic model checking. J. ACM, 50(5):752–794, 2003.

[Culberson and Schaeffer, 1998] Joseph C. Culberson and
Jonathan Schaeffer. Pattern databases. Computational In-
telligence, 14(3):318–334, 1998.

[Dechter and Pearl, 1985] Rina Dechter and Judea Pearl.
Generalized best-first search strategies and the optimality
of A∗. J. ACM, 32(3):505–536, 1985.

[Gregory et al., 2011] Peter Gregory, Derek Long, Craig
McNulty, and Susan M. Murphy. Exploiting path refine-
ment abstraction in domain transition graphs. In Proc. 25th
AAAI Conf. Artif. Intell. (AAAI’11), San Francisco, CA,
USA, pages 971–976, 2011.

[Haslum and Jonsson, 2000] Patrik Haslum and Peter Jons-
son. Planning with reduced operator sets. In Proc. 5th
Int’l Conf. on Artif. Intell. Planning Systems (AIPS’00),
Breckenridge, CO, USA, pages 150–158, 2000.

[Haslum et al., 2007] Patrik Haslum, Adi Botea, Malte
Helmert, Blai Bonet, and Sven Koenig. Domain-
independent construction of pattern database heuristics for
cost-optimal planning. In Proc. 17th Int’l Conf. Auto-
mated Planning and Scheduling (ICAPS’07), Providence,
RI, USA, pages 1007–1012, 2007.

[Helmert and Domshlak, 2009] Malte Helmert and Carmel
Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Proc. 19th Int’l Conf.
Automated Planning and Scheduling (ICAPS’09), Thessa-
loniki, Greece, pages 162–169, 2009.

[Helmert et al., 2007] Malte Helmert, Patrik Haslum, and
Jörg Hoffmann. Flexible abstraction heuristics for opti-
mal sequential planning. In Proc. 17th Int’l Conf. Auto-
mated Planning and Scheduling (ICAPS’07), Providence,
RI, USA, pages 176–183, 2007.

[Helmert, 2006] Malte Helmert. The fast downward plan-
ning system. J. Artif. Intell. Res., 26:191–246, 2006.

[Holte et al., 1996a] Robert C. Holte, T. Mkadmi, Robert M.
Zimmer, and Alan J. MacDonald. Speeding up problem
solving by abstraction: A graph oriented approach. Artif.
Intell., 85(1-2):321–361, 1996.

[Holte et al., 1996b] Robert C. Holte, M. B. Perez,
Robert M. Zimmer, and Alan J. MacDonald. Hier-
archical A∗: Searching abstraction hierarchies efficiently.
In Proc. 13th Nat’l Conf. Artif. Intell. (AAAI’96), Portland,
OR, USA, Vol. 1., pages 530–535, 1996.

[Karpas and Domshlak, 2012] Erez Karpas and Carmel
Domshlak. Optimal search with inadmissible heuristics.
In Proc. 22nd Int’l Conf. Automated Planning and
Scheduling (ICAPS’12), Atibaia, São Paulo, Brazil, pages
92–100, 2012.

[Knoblock, 1994] Craig A. Knoblock. Automatically gener-
ating abstractions for planning. Artif. Intell., 68(2):243–
302, 1994.

[Newell et al., 1959] Allen Newell, J. C. Shaw, and Her-
bert A. Simon. Report on a general problem-solving pro-
gram. In IFIP Congress, Paris, France, pages 256–264.
UNESCO, 1959.

[Pang and Holte, 2012] B. Pang and R. Holte. Multimapping
abstractions and hierarchical heuristic search. In Proc.
5th Ann. Symp. Combinatorial Search (SoCS’12), Niagara
Falls, ON, Canada, pages 72–79, 2012.

[Sacerdoti, 1974] Earl D. Sacerdoti. Planning in a hierarchy
of abstraction spaces. Artif. Intell., 5(2):115–135, 1974.

[Seipp and Helmert, 2013] Jendrik Seipp and Malte
Helmert. Counterexample-guided cartesian abstrac-
tion refinement. In Proc. 23rd Int’l Conf. Automated
Planning and Scheduling, (ICAPS’13), Rome, Italy, 2013.

[Sturtevant and Buro, 2005] Nathan R. Sturtevant and
Michael Buro. Partial pathfinding using map abstraction
and refinement. In Proc. 20th Nat’l Conf. Artif. Intell.
(AAAI’05), Pittsburgh, PA, USA, pages 1392–1397, 2005.

[Valtorta, 1984] Marco Valtorta. A result on the computa-
tional complexity of heuristic estimates for the A∗ algo-
rithm. Inf. Sci., 34(1):47–59, 1984.

[Yang et al., 2008] Fan Yang, Joseph C. Culberson, Robert
Holte, Uzi Zahavi, and Ariel Felner. A general theory
of additive state space abstractions. J. Artif. Intell. Res.
(JAIR), 32:631–662, 2008.

[Zilles and Holte, 2010] Sandra Zilles and Robert C. Holte.
The computational complexity of avoiding spurious states
in state space abstraction. Artif. Intell., 174(14):1072–
1092, 2010.

