
A Multi-parameter Complexity Analysis of Cost-optimal and Net-benefit Planning

Meysam Aghighi and Christer Bäckström
Department of Computer and Information Science
Linköping University, 581 83 Linköping, Sweden

meysam.aghighi@liu.se christer.backstrom@liu.se

Abstract

Aghighi and Bäckström have previously studied cost-optimal
planning (COP) and net-benefit planning (NBP) for three
action cost domains: the positive integers (Z+), the non-
negative integers (Z0) and the positive rationals (Q+). These
were indistinguishable under standard complexity analysis
for both problems, but separated for COP using parameterised
complexity analysis. With the plan cost, k, as parameter, COP
was W[2]-complete for Z+, but para-NP-hard for both Z0

and Q+, i.e. presumably much harder. NBP was para-NP-
hard for all three domains, thus remaining unseparable. We
continue by considering combinations with several additional
parameters and also the non-negative rationals (Q0). Exam-
ples of new parameters are the plan length, `, and the largest
denominator of the action costs, d. Our findings include:
(1) COP remains W[2]-hard for all domains, even if com-
bining all parameters; (2) COP for Z0 is in W[2] for the com-
bined parameter {k, `}; (3) COP for Q+ is in W[2] for {k, d}
and (4) COP for Q0 is in W[2] for {k, d, `}. For NBP we
consider further additional parameters, where the most cru-
cial one for reducing complexity is the sum of variable util-
ities. Our results help to understand the previous results, eg.
the separation between Z+ and Q+ for COP, and to refine the
previous connections with empirical findings.

1 Introduction
Length-optimal planning (LOP) is often successfully solved
in practice by modern planners. It is also well studied the-
oretically, it is PSPACE-complete in the general case both
for STRIPS (Bylander 1994) and for SAS+ (Bäckström
and Nebel 1995). Using parameterised complexity analy-
sis, LOP is also W[2]-complete when parameterised with
plan length (Bäckström et al. 2015). Cost-optimal planning
(COP) has proven more difficult to solve in practice than
LOP. Actions with zero cost may result in very long plans
with very low cost which are very expensive to find in
practice (Richter and Westphal 2010; Benton et al. 2010).
Also rational action costs and big differences in action
costs seem to cause similar problems, even without zero-
cost actions (Cushing, Benton, and Kambhampati 2010;
Wilt and Ruml 2011). These are observations from the view-
point of actual algorithms. Aghighi and Bäckström (2015)

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

provided a complementary problem analysis of COP for
three different cost domains: the positive integers (Z+), the
non-negative integers (Z0) and the positive rationals (Q+),
the latter two being the situations observed to cause prob-
lems in practice. They first found that standard complex-
ity analysis is not sufficient for explaining these observa-
tions; COP is PSPACE-complete for all three cost domains.
However, using parameterised complexity analysis with the
plan cost (k) as parameter, they demonstrated a separation
in complexity: COP for Z+ is W[2]-complete, i.e. no harder
than LOP, while COP for Z0 and Q+ is para-NP-hard, i.e.
presumably much harder. Their results thus suggest that the
observed problems are inherent in COP and not artifacts of
the actual algorithms used. This begs for a better understand-
ing of these problems, in particular since the problems can
arise in practical applications; for instance, big differences
in action cost can arise in robotics (Likhachev and Ferguson
2009) and zero-cost actions are even artificially introduced
in some cases (Cooper, de Roquemaurel, and Régnier 2011).

While the results of Aghighi and Bäckström (2015) were
consistent with the observations about search algorithms in
the literature, they did not provide much understanding or
any additional knowledge. By using combinations of many
parameters, instead of one, and using more complex tech-
niques, we give a more fine-grained picture that does help to
explain, and even refine, the previous observations. Exam-
ples of parameters are plan length (`), maximum number of
zero-cost actions in a plan (z), inverse minimum action cost
1

cmin
and the maximum denominator for rational costs (d). We

also use parameters like the number of different actions costs
(#c), since the ’number of numbers’ has proven a useful
parameter in some cases (Fellows, Gaspers, and Rosamond
2012). We further add two cost domains, the non-negative
rationals (Q0) and the rationals greater than or equal to one
(Q1). We provide an almost complete complexity map for all
combinations of parameters and cost domains. Some of our
major results are the following: (1) COP remains W[2]-hard
for all cost domains even when combining all parameters;
(2) COP for Z0 is in W[2] for the parameter combinations
{k, `} and {k, z}; (3) COP for Q+ is in W[P] for the pa-
rameter combination {k, 1

cmin
} and in W[2] for {k, d}, i.e.

parameter d seems more relevant than 1
cmin

and (4) COP for
Q0 is in W[2] for the parameter combinations {k, `, d} and

{k, z, d}. These results provide a deeper understanding of
the previously mentioned problems. In particular, (3) pro-
vides a better characterization of the problem observed by
Cushing, Benton, and Kambhampati (2010).

We also consider the net-benefit planning (NBP) prob-
lem which assigns utility values to the goals and asks for
a plan that maximises the net benefit, i.e. the utility of the
plan minus its cost. This problem is also PSPACE-complete
(van den Briel et al. 2004) in the general case, although
simpler subclasses exist (Aghighi and Jonsson 2014). It is,
however, known to be harder than COP in the sense that
it is para-NP-hard for all three cost domains considered
by Aghighi and Bäckström (2015). Hence, we analyse this
problem for combinations of the parameters we use for COP
plus some additional parameters, where the most relevant
additional parameter is the sum of all goal utilities, t.

The remainder of the paper is organized as follows. Sec-
tions 2 and 3 contain overviews of parameterised complexity
theory and SAS+ planning. Section 4 discusses parameter-
isation of COP, introduces our parameters and summarizes
our complexity results for COP. The actual complexity re-
sults appear in Section 5, which also includes some explicit
upper and lower bounds as an example of how to interpret
the complexity results. We continue by analysing NBP in
Section 6. The paper ends by a discussion section.

2 Parameterised Complexity
Parameterised complexity theory allows for more fine-
grained complexity analyses than traditional complexity the-
ory, and it was invented with the purpose of delivering com-
plexity results that conform better with practical experience.
We briefly recall the most important details and refer the
reader to the literature, cf. Downey and Fellows (1999) or
Flum and Grohe (2006), for an in-depth treatment.

A parameterised problem is a language L ⊆ Σ∗ × Σ∗

over some finite alphabet Σ. The instances of L are tuples
〈I, k〉, where k is called the parameter. The parameter is
often a non-negative integer, but it can be anything, e.g. a
rational number, three integers or a graph. For simplicity,
we first assume the parameter is a non-negative integer, i.e.
L ⊆ Σ∗ × Z0. A parameterised problem is fixed-parameter
tractable (fpt) if there exists an algorithm that solves every
instance 〈I, k〉 of size n = ||I|| in time f(k) · nc where f
is an arbitrary computable function and c is a constant in-
dependent of both n and k. FPT is the class of all fixed-
parameter tractable decision problems. In contrast to classi-
cal tractability, some exponentiality is allowed, but confined
to the parameter only, thus better reflecting reality.

There is a hierarchy of parameterised complexity classes

FPT ⊆W[1] ⊆W[2] ⊆W[3] ⊆ · · · ⊆W[P],

known as the W hierarchy, which can be used for hardness
results. The W[i] classes are defined by the WEIGHTED
SATISFIABILITY PROBLEM for certain restricted circuits,
where W[P] is the case of arbitrary circuits. Hardness for
parameterised classes is proven in the usual way, but using
fpt reductions instead of ordinary polynomial-time reduc-
tions. An fpt reduction from a parameterised language L ⊆
Σ∗×Z0 to another parameterised language L′ ⊆ Σ∗×Z0 is

a mappingR : Σ∗×Z0 → Σ∗×Z0 such that: (1) 〈I, k〉 ∈ L
if and only if 〈I′, k′〉 = R(I, k) ∈ L′; (2) there is a com-
putable function f and a constant c such that R can be com-
puted in time f(k) · nc, where n = ||I||; and (3) there is
a computable function g such that k′ ≤ g(k). It is known
that P ⊆ FPT, but otherwise the parameterised complex-
ity classes are mainly orthogonal to the classical ones. For
instance, there are NP-complete problems that are W[P]-
complete and there are PSPACE-complete problems that are
in FPT. We will also consider the class para-NP, which con-
sists of all parameterised problems that can be solved in non-
deterministic time f(k) · nc, where f is an arbitrary com-
putable function and c is a constant independent of both n
and k. It is known that W[P] ⊆ para-NP,

Using more than one parameter is usually straightfor-
ward, since the general definition allows the parameter to
be any string. Consider a problem with two parameters, k1
and k2. This problem is fixed-parameter tractable if it can be
solved in time f(k1, k2) · nc for some computable function
f and some constant c. It is equivalent to say that it is fixed-
parameter tractable if it can be solved in time f(k1 +k2) ·nc
for some computable function f and some constant c. The
same principle works for fpt reductions.

If all parameters of a parameterised language L are set
to constants, the result is a slice of L, which is an ordinary
non-parameterised language. It follows from Thm. 2.14 in
Flum and Grohe (2006) that if a slice of L is NP-hard, then
L is para-NP-hard, i.e. one can prove that L is para-NP-hard
by polynomial reduction from some NP-hard language to a
slice of L, which we will tacitly use in some proofs.

3 SAS+ Planning
We assume the reader is familiar with the SAS+ planning
framework (Bäckström and Nebel 1995), and only briefly
recapitulate it. A SAS+ planning instance is a tuple P =
〈V,A, I,G〉, where V is a set of variables, A is set of ac-
tions, I is the initial state and G is the partial goal state.
Each variable v ∈ V has a finite domain D(v), and each
action a ∈ A has a precondition pre(a) and an effect eff(a).
A plan (i.e. a solution) for P is a sequence of actions from
A that transforms I into a state that satisfies G. We write
a : P ⇒ E to define an action a with precondition P
and effect E. The set of variables with a defined value in
a state s is denoted vars(s) and s[v] is the value of v in
s. The following unparameterised problems are commonly
studied. The PLAN SATISFIABILITY problem

(
PSAT

)
takes

a SAS+ instance P as input and ask if P has a plan or not.
The LENGTH-OPTIMAL PLANNING problem

(
LOP

)
takes a

SAS+ instance P and a non-negative integer ` as input, and
asks if P has a plan ω of length |ω| ≤ `?

In cost-optimal planning we additionaly specify a cost
c(a) for each action a and ask for the minimum cost for
a plan. The cost of a plan ω = a1, . . . , an is c(ω) =∑n

i=1 c(ai). We also specify a domain D for the costs.

COST-OPTIMAL PLANNING
(
COP(D)

)
Instance: A tuple P = 〈V,A, I,G, c〉, where
〈V,A, I,G〉 is a SAS+ instance and c : A → D is a

cost function. A value k ∈ D.
Question: Does P have a plan ω of cost c(ω) ≤ k?

The numeric domains we consider for D are: The positive
integers (Z+), the non-negative integers (Z0), the positive
rationals (Q+), the non-negative rationals (Q0) and the set
Q1 = {x ∈ Q | x ≥ 1}. The reason for including Q1 is to
see if a complexity result for Q+ depends on values smaller
than 1 or only on the values being rational.

4 Parameterised Cost-optimal Planning
For parameterised planning problems, we add a list of pa-
rameters, i.e. we write the parameterised versions of prob-
lems LOP and COP(D) as LOP(π) and COP(D, π), where
π is a set of parameters. We will consider the following pa-
rameters (where only ` is relevant for LOP):
k: Max. plan cost.
`: Max. plan length.
z: Max. number of zero-cost actions in the plan.
cmin: Min. positive action cost in instance.
cmax: Max. action cost in instance.
d: Max. denominator of positive action costs in instance.
#c: Max. number of different action costs in instance.
#d: Max. number of different denominators in instance.

Parameter z is only relevant for domains Z0 and Q0, since
it has value zero otherwise. Similarily, parameters d and #d
are only relevant for Q+, Q1 and Q0, since they have value
one otherwise. We will use cmin in its inverted form 1

cmin
,

which gives the same correlation between parameter value
and running time as for the other parameters.

We refer to parameters k, ` and z as solution parameters,
since they refer to properties of the solutions, and we refer
to the other parameters as instance parameters, since they
refer to properties of the instance. Instance parameters can
be checked in advance and only influence the time complex-
ity, not the solutions, e.g. problem COP(D, {k, cmax}) asks
for a plan of cost k or less, where we guarantee that no ac-
tion has a higher cost than cmax. While parameter k restricts
the set of solutions, parameter cmax only matters for the time
complexity, which is measured in the combined parameter
{k, cmax} (or equivalently k + cmax). That is, COP(D, {k})
and COP(D, {k, cmax}) have the same solutions, but the sec-
ond problem could have a lower complexity.

We usually cannot know the value of solution parameters
in advance, so they are typically constraints. This is straight-
forward for one parameter, e.g. Bäckström et al. (2015)
study the complexity of LOP({`}) and Aghighi and
Bäckström (2015) study the complexity of COP(D, {k}).
Kronegger, Pfandler, and Pichler (2013) study two solution
parameters for LOP, but never simultaneously.

We will consider also combinations of solution parame-
ters, e.g. problem COP(D, {k, `}). We then have a choice
whether to treat both parameters k and ` as optimised or not.
If we optimise both, then we ask for a plan ω that satisfies
both that c(ω) ≤ k and that |ω| ≤ `. If we instead optimise
k+ `, then we ask for a plan ω such that c(ω) + |ω| ≤ k+ `.
These problems are not necessarily equivalent; there may be
a plan that satisfies the latter criterion, but not the former.
Hence, we loose precision compared to optimising both pa-

rameters. We may also treat only one of the parameters as
optimised, which is yet another problem; there may be two
different plans ω1 and ω2 such that c(ω1) ≤ k and |ω2| ≤ `,
but no plan that satisfies both criteria simultaneously. This
is a problematic approach for planning though. Suppose we
optimise k but not `. Then ` is a parameter that does not re-
strict the solutions but affect the complexity. However, we
usually cannot know any non-trivial a priori bound for the
plan length, making the parameter pointless. We will, thus,
make the choice in this paper to always treat all solution pa-
rameters as optimised, noting that other choices are possible.
We also choose to always include k as a parameter, although
it is possible to also analyse COP with other parameters only.

5 Complexity Results for COP
Our major complexity results for COP are summarized in
Figure 1, which focuses on separations. Table 1 provides
more details for the main results. Only parameters that af-
fect the complexity appear in the table, and results are only
stated for those entries where the parameter combination is
relevant. Note that some results are implicitly derived, for
instance, hardness for domain Q1 implies hardness for Q+.

5.1 Hardness Results for COP
In order to make the hardness results as strong as possi-
ble they should hold for as many instance parameters as
possible, since removing instance parameters cannot result
in an easier problem. When discussing two instances si-
multaneously, we refer to them as P and P′ and distin-
guish their actual parameters in the same way, i.e. param-
eter k refers to P and parameter k′ refers to P′. Further-
more, when a solution parameter is optional for a result,
i.e. the result holds both with and without this parameter,
we will often enclose it in parantheses. For instance, we
write COP(Z+, {k, (`)}) as a shorthand for both problems
COP(Z+, {k}) and COP(Z+, {k, `}).

The following construction and lemma will be repeatedly
used for hardness results.

Construction 1. Let P = 〈V,A, I,G〉 be a SAS+ instance.
Construct the SAS+ instance P′ = 〈V ′, A′, I ′, G′〉 such that
V ′ = V ∪ {vg}, where vg 6∈ V ; A′ = A ∪ {ag}, where
ag : G, (vg=0) ⇒ (vg=1); I ′[vg] = 0; I ′[v] = I[v] for
v 6= vg; G′[vg] = 1 and G′ is otherwise undefined.

Lemma 2. Let P be a SAS+ instance. (1) If ω is a plan for
P, then ω followed by ag is a plan for P′. (2) If ω′ is a plan
for P′, then ω′ with action ag removed is a plan for P.

We first prove some para-NP-hardness results.

Theorem 3. The following problems are para-NP-hard:
1. COP(Z0, {k, 1

cmin
, cmax,#c}),

2. COP(Q0, {k, 1
cmin
, cmax,#c, d,#d}).

Proof. 1. Proof by polynomial reduction from PSAT to a
slice of the problem. Let P = 〈V,A, I,G〉 be a SAS+

instance and define P′ = 〈V ′, A′, I ′, G′, c′〉 as in Con-
struction 1, where c′(ag) = 1 and c′(a) = 0 for all
a ∈ A. It follows from Lemma 2 that P has a plan if

para-NP-hard
in W[P]

in W[2]

Z+ :

k(`)

Z0 :

k 1
cmin

k` kz

Q1 :

k(`) k 1
cmin

k(`)d

Q+ :

k

k` k 1
cmin

k(`)d

Q0 :

k(z) kd 1
cmin

k`

k`d kzd

Figure 1: Major separation results for COP.

Table 1: Summary of major results for COP (non-helpful parameters are omitted).
parameters Integer costs Rational costs

Z+

(
c(a) ≥ 1

)
Z0

(
c(a) ≥ 0

)
Q1

(
c(a) ≥ 1

)
Q+

(
c(a) > 0

)
Q0

(
c(a) ≥ 0

)
{k} W[2]-complete para-NP-hard W[2]-hard, in W[P] para-NP-hard para-NP-hard

(Thm. 5+Thm. 8) (Thm. 3) (Thm. 5+Thm. 7) (Thm. 4) (Thm. 4)

{k, `} W[2]-complete W[2]-complete W[2]-hard, in W[P] W[2]-hard, in W[P] W[2]-hard, in W[P]
(Thm. 5+Thm. 9) (Thm. 5+Thm. 9) (Thm. 5+Thm. 7) (Thm. 5+Thm. 7) (Thm. 5+Thm. 7)

{k, z} - W[2]-complete - - para-NP-hard
(Thm. 5+Thm. 10) (Thm. 4)

{k, d} - - W[2]-complete W[2]-complete para-NP-hard
(Thm. 5+Thm. 11) (Thm. 5+Thm. 11) (Thm. 3)

{k, `, d} - - W[2]-complete W[2]-complete W[2]-complete
(Thm. 5+Cor. 12) (Thm. 5+Cor. 12) (Thm. 5+Cor. 12)

{k, z, d} - - - - W[2]-complete
(Thm. 5+Cor. 12)

{k, 1
cmin
} W[2]-complete para-NP-hard W[2]-hard, in W[P] W[2]-hard, in W[P] para-NP-hard

(Thm. 5+Thm. 8) (Thm. 3) (Thm. 5+Thm. 7) (Thm. 5+Thm. 7) (Thm. 3)

and only if P′ has a plan of cost 1. Obviously, P′ al-
ways satisfies the parameter values k′ = 1

c′min
= c′max =

1 and #c′ = 2 so this is a reduction from PSAT to a
slice of COP(Z0, {k, 1

cmin
, cmax,#c}). Para-NP-hardness fol-

lows since PSAT is NP-hard (Bäckström and Nebel 1995,
Thm. 5). 2. Analogous, setting d = #d = 1.

Theorem 4. The following problems are para-NP-hard:
1. COP(Q+, {k, cmax,#c,#d}),
2. COP(Q0, {k, (z), cmax,#c,#d})

Proof. 1. Proof by polynomial reduction from LOP to a slice
of the problem. Let I = 〈P, `〉 be a LOP instance, where P =
〈V,A, I,G〉. Let P′ = 〈V ′, A′, I ′, G′, c′〉 be as specified in
Construction 1, where c′(ag) = 1 and c′(a) = 1/` for all
a ∈ A. It follows from Lemma 2 that P has a plan of length
` if and only if P′ has a plan of cost 2 or less. Obviously,
P′ always satisfies the parameter values c′max = 1 and k′ =
#c′ = #d′ = 2 so this is a reduction from LOP to a slice
of COP(Q+, {k, cmax,#c,#d}). Para-NP-hardness follows
since LOP is NP-hard (Bäckström and Nebel 1995, Thm. 5).
2. Analogous, set z = 0.

We then prove that COP is W[2]-hard for all cost do-
mains, even when all relevant parameters are combined.

Theorem 5. The following problems are W[2]-hard:
1. COP(Z+, {k, (`), 1

cmin
, cmax,#c})

2. COP(Z0, {k, (`), (z), 1
cmin
, cmax,#c})

3. COP(Q1, {k, (`), 1
cmin
, cmax,#c, d,#d})

4. COP(Q0, {k, (`), (z), 1
cmin
, cmax,#c, d,#d})

Proof. 1. Proof by fpt reduction from LOP({`}). Let P =
〈V,A, I,G〉 be an instance of LOP({`}). Construct a cor-
responding COP(Z+, {k, `, 1

cmin
, cmax,#c}) instance P′ =

〈V,A, I,G, c′〉, i.e. P′ is identical to P except for the ad-
ditional cost function c′. Define c′ as c′(a) = 1 for all
a ∈ A. The parameters for P′ are defined as k′ = `′ = `
and 1

c′min
= c′max = #c′ = 1. Clearly, |ω| = c′(ω) for all

plans ω, so P has a plan of length ` if and only if P′ has a
plan of cost k′ and length `′. This is thus an fpt reduction
since the parameters k′, `′, 1

c′min
, c′max and #c′ of P′ are

bounded in the parameter ` of P. The theorem follows since
LOP({`}) is W[2]-hard (Bäckström et al. 2015, Thm. 1).
Removing parameter `′ does not change the solutions, so `′
is optional. 2–4. Analogous, set z = 0 and d = #d = 1.

5.2 Membership Results for COP
To make membership results strong, there should be as few
instance parameters as possible, since adding instance pa-
rameters cannot result in a harder problem. We start with

membership results for the class W[P], which can be char-
acterised as follows (Flum and Grohe 2006, Def. 3.1).

Definition 6. A parameterised problem is in W[P] if it can
be solved by some NTM in f(k) · nc steps of which at most
h(k) · log n steps are non-deterministic, where f and h are
computable functions, c is a constant and n the instance size.

Theorem 7. The following problems are in W[P]:
1. COP(Q0, {k, `}), 3. COP(Q1, {k, (`)}).
2. COP(Q+, {k, (`), 1

cmin
}),

Proof. 1. Let n be the instance size. Guess a plan ω with
|ω| ≤ `, which requires guessing at most ` · log n bits since
each action can be indexed by log n bits or less. Then ver-
ify that ω is a plan, which is polynomial time in ` and n.
Checking that c(ω) ≤ k requires adding ` action costs and
compare with k. Let b1, . . . , bm be all different denomina-
tors in the instance. All numbers in the instance take at most
n bits in total so

∑m
1 ||bi|| < n. The action costs in ω and

k can be normalized by multiplying each with the factor
α =

∏m
1 bi. We get ||α|| = ||

∏m
1 bi|| ≤

∑m
1 ||bi|| ≤ n, so

all resulting numbers will still be of size O(n) bits. Hence,
the check can be done in time polynomial in ` and n. In to-
tal, all this takes non-deterministic time f(k, `) ·nc for some
computable function f and some constant c, so it follows
from Def. 6 that the problem is in W[P]. 2. Every plan ω
satisfies that c(ω) ≥ |ω| · cmin, i.e. we need to guess at most
c(ω)
cmin
≤ k

cmin
actions. Hence, we can set ` = k

cmin
and use (1).

3. Immediate from (2), since 1
cmin
≤ 1.

We continue by membership results for W[2].

Theorem 8. COP(Z+, {k}) is in W[2].

Proof. Aghighi and Bäckström (2015, Thm. 5) prove this
result for polynomially bounded action costs, using an fpt
reduction from COP(Z+, {k}) to LOP({`}). We note that
the restriction to polynomial costs is not necessary since we
can first remove all actions a such that c(a) > k.

Theorem 9. COP(Z0, {k, `}) is in W[2].

Proof. Proof by fpt reduction from COP(Z0, {k, `})
to COP(Z+, {k}). Let P = 〈V,A, I,G, c〉 be a
COP(Z0, {k, `}) instance. Construct a corresponding
COP(Z+, {k}) instance P = 〈V ′, A′, I ′, G′, c′〉 with
parameter k′ as follows. Add ` + 1 new binary variables
t0, . . . , t`, where t0 is initially true and t1, . . . , t` are
initially false. Variables t1, . . . , t` correspond to ` time
slots, each of which can be filled with one action. Re-
place each action a with ` new actions a1, . . . , a`, where
ai : pre(a), (ti−1=1) ⇒ eff(a), (ti−1=0), (ti=1) with cost
c′(ai) = ` · c(a) + 1, for all i (1 ≤ i ≤ `), i.e., a is replaced
with one copy for each slot it can occur in. Clearly, no plan
can contain more than ` actions. Define k′ = ` · (k + 1).

First suppose P has a plan ω = 〈a1, . . . , an〉. Then
c(ω) ≤ k and n ≤ `. Let ω′ = 〈a11, a22, . . . , ann〉. We get
c′(ω′) = c′(a11) + · · · + c′(ann) = (` · c(a1) + 1) + · · · +
(` · c(an) + 1) = ` · c(ω) + n, but c(ω) ≤ k and n ≤ `
so we get c′(ω′) ≤ ` · k + ` = k′. Hence, ω′ is a plan
for P′. Instead suppose P′ has a plan ω′ = 〈a11, a22, . . . , ann〉

such that c′(ω′) ≤ k′ = ` · (k + 1). Let ω = 〈a1, . . . , an〉.
Then n ≤ ` by design of P′ (there are ` slots), so this need
not be verified. Suppose c(ω) > k. Then c(ω) ≥ k + 1 so
c′(ω′) = `·c(ω)+n ≥ `·(k+1)+n. Since c′(ω′) ≤ `·(k+1)
we get `·(k+1)+n ≤ c′(ω′) ≤ `·(k+1), but then n = 0 so
ω′ is an empty plan with non-zero cost, which is impossible.
We conclude that c(ω) ≤ k and, thus, that ω is a plan for P.

It follows that P has a plan of maximum cost k and length
` if and only if P has a plan of maximum cost k′ = `·(k+1).
Furthermore, P′ can be constructed in time f(k, `) · ||P′||c,
for some computable function f and constant c, and k′ is
bounded in k and `, so this is an fpt reduction. The theorem
follows since COP(Z+, {k}) is in W[2] by Thm. 8.

Theorem 10. COP(Z0, {k, z}) is in W[2].

Proof. Analogous to the proof of Thm. 9. Introduce vari-
ables t0, . . . , tz but replace only the zero-cost actions with
new actions. Then every plan is limited to at most z zero-
cost actions but the total length is not explicitly restricted.
Define c′(ai) = 1 if c(a) = 0 and c′(a) = (z + 1)c(a) oth-
erwise. Define k′ = z+zk+k. First suppose P has a plan ω
with n actions of which m are zero-cost actions. The corre-
sponding plan ω′ also has n actions andm zero-cost actions,
so c′(ω′) = m+ (z + 1)c(ω) ≤ z + (z + 1)k = k′. Instead
suppose P′ has a plan ω′ with n actions and m zero-cost ac-
tions, such that c′(ω′) ≤ k′ = z + zk + k. Since m ≤ z by
design of P′, this need not be verified. Let ω be the corre-
sponding plan for P. Suppose c(ω) > k. Then c(ω) ≥ k+ 1
so c′(ω′) = m + (z + 1)c(ω) ≥ m + (z + 1)(k + 1) =
m+zk+z+k+1. We also know that c′(ω′) ≤ z+zk+k,
so we getm+zk+z+k+1 ≤ z+zk+k, which is impossi-
ble. We conclude that c(ω) ≤ k. It follows that P has a plan
of maximum cost k with at most z zero-cost actions if and
only if P′ has a plan of maximum cost k′ = z + (z + 1)k.
Furthermore, P′ can be constructed in time f(k, z) · ||P′||c,
for some computable function f and constant c, and k′ is
bounded in k and z, so this is an fpt reduction. The theorem
follows since COP(Z+, {k}) is in W[2] by Thm. 8.

Theorem 11. COP(Q+, {k, d}) is in W[2].

Proof. Proof by fpt reduction from COP(Q+, {k, d})
to COP(Z+, {k}). Let P = 〈V,A, I,G, c〉 be a
COP(Q+, {k, d}) instance with parameters k and d. Con-
struct a corresponding COP(Z+, {k}) instance P =
〈V,A, I,G, c′〉 with parameter k′ as follows, i.e. the in-
stances are identical except for the cost function. Let C =
{c(a) | a ∈ A} = {a1

b1
, . . . , an

bn
} be all the different ac-

tion costs in P. Let b′1, . . . , b
′
m be all different denomina-

tors occurring in C, i.e. m ≤ n. Define the product α =
b′1 · b′2 · . . . · b′m and define c′ such that c′(a) = α · c(a) for
all a ∈ A. Also define k′ = α · k. Then c′(a) ∈ Z+ for all
a ∈ A and k′ ∈ Z+. Since bi ≤ d for all i, we get m ≤ d, so
α ≤ dm ≤ dd. This is an fpt reduction since the new param-
eter k′ = α · k ≤ ddk is bounded in k and d. The theorem
follows since COP(Z+, {k}) is in W[2] by Thm. 8.

Note that this reduction is not an fpt reduction from
COP(Q+, {k}) to COP(Z+, {k}), since k′ is not bounded
in k alone, even though it is a polynomial reduction.

Corollary 12. The following problems are in W[2]:
1. COP(Q0, {k, d, `}), 2. COP(Q0, {k, d, z}).

Proof. Do the reduction in the proof of Thm. 11, but let all
zero costs remain. Then all costs are in Z0. Apply either of
the reductions in the proofs of Thms. 9 and 10.

5.3 Some Explicit Time Bounds for COP
That COP(Q+, {k}) is para-NP-hard, but COP(Q+, {k, d})
is in W[2] does not mean that the problem gets easier to
solve by adding parameter d; we always know d in advance.
This separation in complexity rather indicates that parame-
ter d is important and influences the actual running time of
algorithms. In order to give more intuition for this, we derive
some explicit time complexity bounds. We first demonstrate
two straightforward upper bounds.

Theorem 13.
1. COP(Z+, {k}) can be solved in time O(||P||k)

2. COP(Q+, {k, d}) can be solved in time O(||P||kd
d

).

Proof. 1. Let n = ||P||. We have |ω| ≤ k for all plans,
so guess at most k actions and verify that it is a plan. We
need to guess at most k log n bits, which takes deterministic
timeO(2k logn) = O(nk). Verifying a plan of length k takes
time O(k · nc) for some small constant c. The total time is
O(nk + k · nc), which is O(nk) for k ≥ c. 2. First use the
reduction in the proof of Thm. 11, then apply (1).

We can also show that COP for Q+ is strictly harder than
for Z+ by the following lower bound.

Theorem 14. COP(Q+, {k}) cannot be solved in time
O(||P||ck) for any c > 0, unless P = NP.

Proof. Suppose there is a c such that COP(Q+, {k}) can be
solved in time O(||P||ck). Let I be a 3-SAT instance with n
variables and m clauses. Without losing generality, assume
that n ≤ m, since 3-SAT is still NP-complete. Make a stan-
dard reduction from 3-SAT to LOP, where an optimal plan
contains two actions for each variable, and one action for
each clause (cf. Bylander (1994), proof of Thm. 4.2). Let the
former actions have cost 1

n and the latter cost 1
m . Set k = 3.

An optimal plan ω is then of length |ω| = 2n+m and have
cost c(ω) = 2n · 1

n + m · 1
m = 3. Hence, I is satisfiable if

and only P has a plan of cost 3, so this is a polynomial re-
duction from 3-SAT to COP. We also have that ||P|| ≤ ||I||a
for some constant a. This means we can solve 3-SAT in time
O(||P||3c), i.e. in time O(||I||3ac). However, this means that
P = NP.

This theorem uses only parameter k, but we note that if
adding also parameter d we would need to set d = m in the
proof. In other words, the reason that COP(Q+, {k, d}) has
a lower complexity than COP(Q+, {k}) is that we may need
very large values of d, even if k is small. Choosing a smaller
d value in the proof would require a larger k value; if ω is
an optimal plan, then c(ω) ≥ 2n

d + m
d so we must set k ≥

2n+m
d . In a more extensive analysis, one could attempt to

derive sharper lower bounds, or even so-called XP optimal
bounds (Downey and Thilikos 2011).

6 Complexity Results for Net-benefit
Planning

The net-benefit problem (van den Briel et al. 2004) is a so
called oversubscription problem, where we do not expect to
satisfy all of the goal. Instead each goal variable v has a util-
ity value u(v), which is the reward if the goal value is satis-
fied for v. We generalise this problem to SAS+ as follows,
but no complexity result depends on using non-binary vari-
ables. The utility of a state s is u(s) =

∑
v∈V ′ u(v), where

V ′ = {v ∈ vars(G) | s[v] = G[v]}. If ω is a plan from I to
s, then the net benefit of ω is the difference u(s)−c(ω). The
objective of the net-benefit problem is to maximise the net
benefit over all plans to all states.

NET-BENEFIT PLANNING
(
NBP(D)

)
Instance: A SAS+ instance P = 〈V,A, I,G〉, a cost
function c : A→ D, a utility function u : vars(G)→ D
and a value b ∈ D.
Question: Is there a state s and a plan ω from I to s
such that u(s)− c(ω) ≥ b?

We write the parameterised version as NBP(D, π), where π
may contain all previously defined parameters and the fol-
lowing additional ones:
b: Min. net benefit of the plan.
umin: Min. variable utility in instance.
umax: Max. variable utility in instance.
#u: Number of different utility values in instance.
t: Sum of all utilities in instance, i.e. t =

∑
v∈vars(G) u(v).

Since the net benefit is the primary objective to optimise in
NBP, we choose to always inlcude parameter b, just as we
choose to always include parameter k for COP. Parameter
d is reinterpreted as the maximum denominator of all num-
bers, i.e. both action costs and utilities. While maximising
the net benefit, b, is the main objective of NBP, it is some-
times combined with a restriction on the plan cost, k, (cf.
(Mirkis and Domshlak 2013)) suggesting a multi-objective
optimisation of the type we use for COP.

Our major results for NBP are summarised in Figure 2.

6.1 Hardness Results for NBP
We first prove some para-NP-hardness results.

Theorem 15. The following problems are para-NP-hard:
1. NBP(Z+, {b, 1

cmin
, cmax,#c,

1
umin

,#u})
2. NBP(Z0, {b, (z), 1

cmin
, cmax,#c,

1
umin

,#u})
3. NBP(Q1, {b, 1

cmin
, cmax,#c,

1
umin

,#u, d,#d})
4. NBP(Q0, {b, (z), 1

cmin
, cmax,#c,

1
umin

,#u, d,#d})

Proof. 1. Proof by polynomial reduction from LOP to a
slice. Let I = 〈P, `〉 be a LOP instance, where P =
〈V,A, I,G〉. Let P′ = 〈V ′, A′, I ′, G′, c′, u′〉 be as in Con-
struction 1, where c′(a) = 1 for all a ∈ A′ and u(vg) =
` + 2. It follows from Lemma 2 that P has a plan of length
` if and only if P′ has a plan of cost ` + 1, i.e. if P′
has a plan with net benefit 1. Obviously, P′ always satis-
fies the parameter values b′ = 1

cmin
= c′max = #c′ =

#u′ = 1 and umin = 2 so this is a reduction from LOP to

para-NP-hard
in W[P]

in W[2]

Z+ :

b 1
cmin

b`

b(k)t

Z0 :

b(z) 1
cmin

b(k)t 1
cmin

b` bkz

b(k)`t bkzt

Q1 :

bd 1
cmin

b` bk

bkdt

Q+ :

bd 1
cmin

b(k)t

b` bk 1
cmin bkd

bkdt

Q0 :

b(z)d 1
cmin

b(k)(z)t b(k)dt 1
cmin

b` bkzd

b(k)`dt bkzdt

Figure 2: Major separations for NBP.

a slice of NBP(Z+, {b, 1
cmin

, cmax,#c,
1

umin
,#u}). Para-NP-

hardness follows since LOP is NP-hard (Bäckström and
Nebel 1995, Thm. 5). 2-4. Set z = 0 and d = #d = 1.

Theorem 16. The following problems are para-NP-hard:
1. NBP(Q+, {b, (k), cmax,#c,#d,

1
umin

, umax,#u, t})
2. NBP(Q0, {b, (k), (z), cmax,#c,#d,

1
umin

, umax,#u, t})

Proof. 1. Proof by polynomial reduction from PSAT to
a slice. Let P = 〈V,A, I,G〉 be a SAS+ instance. Let
P′ = 〈V ′, A′, I ′, G′, c′, u′〉 be as in Construction 1,
where c′(ag) = 1, c′(a) = 1/2|V | for all a ∈ A and
u(vg) = 3. Since no optimal plan has more than 2|V |

actions, it follows from Lemma 2 that P has a plan if
and only if P′ has a plan of cost 2 or less, i.e. with net
benefit 1 or more. Obviously, P′ always satisfies the
parameter values b′ = c′max = #u′ = 1, #c′ = 2 and
u′min = u′max = t′ = 3 so this is a reduction from PSAT to a
slice of NBP(Q+, {b, (k), cmax,#c,#d,

1
umin

, umax,#u, t}).
Para-NP-hardness follows since PSAT is NP-hard
(Bäckström and Nebel 1995, Thm. 5). 2. Set z = 0.

Theorem 17. The following problems are para-NP-hard:
1. NBP(Z0, {b, (k), 1

cmin
, cmax,#c,

1
umin

, umax,#u, t})
2. NBP(Q0, {b,(k), 1

cmin
, cmax,#c,

1
umin

, umax,#u, t, d,#d})

Proof sketch. Analogous to Thm. 16, but define c′(ag) = 1,
c′(a) = 0 for all a ∈ A and u(vg) = 2. Then P has a plan if
and only if P′ has a plan of cost 1, i.e. with net benefit 1. Set
parameter values parameter values b′ = k′ = 1

cmin

′
= c′max =

#u′ = 1 and #c′ = u′min = u′max = t′ = 2.

We continue by hardness results for W[2].

Theorem 18. The following problems are W[2]-hard:
1. NBP(Z+, {b, (`), (k), t} ∪ σ)
2. NBP(Z0, {b, (`), (k), (z), t} ∪ σ)
3. NBP(Q1, {b, (`), (k), t, d,#d} ∪ σ)
4. NBP(Q+, {b, (`), (k), t, d,#d} ∪ σ)
5. NBP(Q0, {b, (`), (k), (z), t, d,#d} ∪ σ)

where σ = { 1
cmin
, cmax,#c,

1
umin

, umax,#u}

Proof. 1. Proof by fpt reduction from LOP({l}). Let I =
〈P, `〉 be a LOP({l}) instance, where P = 〈V,A, I,G〉.
Let P′ = 〈V ′, A′, I ′, G′, c′, u′〉 be as specified in Construc-
tion 1, where c′(a) = 1 for all a ∈ A′ and u(vg) = ` + 2.
It follows from Lemma 2 that P has a plan of length ` if
and only if P′ has a plan of length ` + 1, cost ` + 1 and net
benefit 1. That is, P′ satisfies the parameter values b′ = 1,
k′ = ` + 1 and `′ = ` + 1. It furthermore satisfies the

parameter values 1
cmin

′
= c′max = #c′ = #u′ = 1 and

umin = umax = t = ` + 2. Hence, all new parameter values
are bounded in `, so this is an fpt reduction from LOP({l})
to NBP(Z+, {b, (`), (k), t} ∪ σ). The theorem follows since
LOP({l}) is W[2]-hard (Bäckström et al. 2015, Thm. 1). 2–
5. Set z = 0 and d = #d = 1.

6.2 Membership Results for NBP
Just as for COP, bounding the plan length explicitly or im-
plicitly is sufficient for membership in W[P].

Theorem 19. The following problems are in W[P]:
1. NBP(Q0, {b, `}), 4. NBP(Q+, {b, k, 1

cmin
}),

2. NBP(Q0, {b, k, z, d}), 5. NBP(Q1, {b, k}),
3. NBP(Q+, {b, k, d}), 6. NBP(Z0, {b, k, z}).

Proof sketch. 1. Analogous to the proof of Thm. 7(1). 2. Let
ω be a plan and let ω+ be ω with all zero-cost actions re-
moved. We have cmin ≥ 1/d, so c(ω+) ≥ |ω+| 1d , i.e.
|ω+| ≤ c(ω+) · d ≤ kd. Hence, |ω| ≤ kd+ z, so we can set
` = kd+ z and use (1). 3. Immediate from (2) since z = 0.
4. Immediate from (3) since 1

cmin
≤ d. 5. Immediate from (4)

since 1
cmin
≤ 1. 6. Immediate from (2) since d = 1.

We finally prove membership results for W[2], which all
rely on parameter t and use the following reduction1.

Theorem 20. NBP(D,{b, t}) ≤fptCOP(D,{k}).

Proof. Let I = 〈P, b, t〉 be an NBP(D,{b, t}) instance, where
P = 〈V,A, I,G, c, u〉 Construct a COP(D, {k}) instance
I′ = 〈P′, k′〉 as follows. Let P′ = 〈V ′, A′, I, G, c′〉, where
V ′ = V ∪ {w}; A′ contains the following actions:
a′ : pre(a), (w = 0)⇒eff(a) for each a ∈ A,
aw : (w = 0)⇒(w = 1),
av : (w = 1)⇒(v = G[v]) for each v ∈ vars(G);

I ′[w] = 0 and I ′[v] = I[v] for v ∈ V ; G′[w] = 1 and
G′[v] = G[v] for v ∈ V . Define c′(a) = c(a) for a ∈ A,
c′(aw) = 1 and c′(av) = u(v) for all v ∈ Vu. Define
k′ = t − b + 1. We claim that P has a plan with net ben-
efit at least b if and only if P′ has a plan of cost at most k′.
⇒: Suppose P has a plan ω from I to some state s

with net benefit b, i.e. u(s) − c(ω) = b. Let V ′′ =
{v ∈ vars(G) | s[v] 6= G[v]}, i.e. V ′′ are all goal variables
that do not have the goal value in s. Then u(s) =∑

v∈vars(G)\V ′′ u(v). Let ω′ be the plan ω followed by aw
and the actions av for each v ∈ V ′′ in arbitrary order. Then
ω′ is a plan for P′ and c′(ω′) = c′(ω)+1+

∑
v∈V ′′ c′(av) =

1Keyder and Geffner (2009) used a similar reduction, but in
contrast to ours, it relied on zero-cost actions.

c(ω) + 1 +
∑

v∈V ′′ u(v) = c(ω) + (t − u(s)) + 1 =
t− (u(s)− c(ω)) + 1 = t− b+ 1 = k′.
⇐: Suppose P′ has a plan ω′ such that c(ω′) ≤ k′. Let

V ′′ be all variables v such that action av occurs in ω′. Let
ω be the subsequence of ω′ containing only actions from
A. We get c(ω) = c′(ω) = c′(ω′) − 1 −

∑
v∈V ′′ u(v) and

u(ω) =
∑

v∈vars(G)\V ′′ u(v) = t −
∑

v∈V ′′ u(v). Hence,
the net benefit of ω is u(ω)− c(ω) = (t−

∑
v∈V ′′ u(v))−

(c′(ω′)− 1−
∑

v∈V ′′ u(v)) = t− c′(ω′) + 1, but c′(ω′) ≤
k′ = t−b+1 so t−c′(ω′)+1 ≥ t−(t−b+1)+1 = b.

Corollary 21. The following problems are in W[2]:
1. NBP(Z+, {b, (k), t}) 4. NBP(Q+, {b, k, d, t}),
2. NBP(Z0, {b, (k), `, t}) 5. NBP(Q0, {b, k, z, d, t}),
3. NBP(Z0, {b, k, z, t}), 6. NBP(Q0, {b, (k), `, d, t}).

Proof sketch. Combine Thm. 20 with Thms. 8, 9, 10, 11 and
Cor. 12. The reduction works since b, k ≤ t, `′ ≤ `+ t+ 1,
no additional zero-cost actions are required for solving P′
(since a zero utility does not contribute to the net benefit)
and d does not change. Note that the original k and ` values
are not preserved here, so only b is optimised, although `
could be optimised using the technique from Thm. 9.

7 Discussion
It is known that COP with zero-cost actions can be prob-
lematic in practice since a cost-optimal plan can contain a
very large number of such actions. One method to tackle
this problem is to somehow also take the plan length into ac-
count (Richter and Westphal 2010; Benton et al. 2010). This
is a practical approach that is consistent with our findings
that parameters that limit the plan length explicitly or im-
plicitly reduce the complexity. We have seen that adding the
plan length, `, explicitly makes COP easier for all domains
(except Z+). For Z0, this can also be achieved by adding
the plan length implicitly as combination {k, z}. Zero-cost
actions is thus a case where the theoretical results seem to
correlate well with practical experience and intuition.

A set of goal states can be simulated by adding zero-cost
actions from these states to a single goal state (cf. Yang et
al. 2008). We can answer an open question by Aghighi and
Bäckström (2015) whether it is safe to do so? The answer is
yes, the complexity will not increase since z is bounded.

Aghighi and Bäckström (2015) suggested the use of a lin-
ear combination c′(a) = λ · c(a) + b, for some positive
integer constants λ and b, as a pragmatic type of approxi-
mation in practice. This transforms a COP(Z0) instance to
a COP(Z+) instance, which can be solved more efficiently
at the expense of overestimating the optimal solutions. This
is probably best described as a transformation (but not an
fpt reduction) from COP(Z0, {k}) to COP(Z+, {k + `}). A
related technique is used in LAMA, with a heuristic that
puts equal weight to the length and the cost of the plan
(Richter and Westphal 2010). This uses both parameters k
and `, but only k is optimised so ` only influences the effi-
ciency via the heuristic. This can thus be viewed as problem
COP(Z0, {k, `}), but where only k is treated as optimised,
i.e. ` is not a constraint and we do not know a value for it
in advance. While it might seem unconventional to measure

the complexity in a property of the solution that we cannot
know in advance, this is not new. For instance, an algorithm
is said to run in polynomial total time if it runs in polyno-
mial time in the sum of the input size and the output size
(Johnson, Papadimitriou, and Yannakakis 1988).

Cushing, Benton, and Kambhampati (2010) as well as
Wilt and Ruml (2011) have further shown that COP is very
difficult for common heuristic search algorithms, even for
strictly positive action costs. They argued that the difficulty
arises when there is a big span, or ratio, between the max-
imum and minimum action costs. While this may be a cor-
rect analysis of the particular algorithms, our results indicate
that it is not a universal truth for all conceivable algorithms.
The COP problem for positive integers is no harder than for
unit cost, whatever span or ratio in the costs. The difficulties
arise with rational costs, where the minimum cost matters.
The maximum cost does not matter, though, and thus nei-
ther the span nor the ratio. What matters even more than the
minimum cost is the largest cost denominator, even if there
are no costs with value lower than 1, which suggests that it
is the distribution of rational costs rather than the ratio be-
tween maximum and minimum cost that is important. The
reason seems to be that the combination {k, d} bounds the
plan length for Q+ and Q1. In practice, we always know the
value of d from the instance, so the difference in complex-
ity with and without parameter d should be interpreted as an
indication that the actual value of d can have a significant
influence on the running time of actual algorithms. As we
have seen in Sec. 5.3, we cannot solve COP for positive ra-
tionals as efficiently as for positive integers, even if taking
the value of d into account. We noted there that the values
of k and d are not independent. It should be further noted
that while both paramater combinations {k, d} and {k, 1

cmin
}

reduce the complexity of COP for Q+, the latter one may
not be as effective; the first combination guarantees member-
ship in W[2] but second one only guarantees membership in
W[P]. It should be noted, of course, that we have not proven
a strict separation between the two cases, so it is possible
that COP is in W[2] also for combination {k, 1

cmin
}. Further-

more, Cushing, Benton, and Kambhampati (2010) transform
all costs to the interval [0,1], i.e. divide them by cmax, before
doing their analysis. The differences in complexity between
domains Q1 and Q+ suggests that this transformation could,
perhaps, introduce artificial difficulties. To shed more light
on these issues, it would be useful to derive more explicit
bounds of the type in Section 5.3.

Finally, our complexity results refer to worst-case com-
plexity and it is possible that also other parameters can have
an impact on running time in many practical cases. However,
this is diffuclt to analyse theoretically without having a for-
mal characterization of such practical cases, so one would
typically have to resort to empirics for this.

For NBP, we see that parameter b, the net-benefit, which
is the main objective, is not a very helpful parameter for re-
ducing the complexity (as was observed already by Aghighi
and Bäckström (2015)). Intuitively, the reason for this is that
b does not bound neither k nor t; a plan may have both a
very large cost and a very large utility, but a very small dif-

ference between these. While parameters and combinations
like `, kz and d that reduce the complexity of COP often do
so also for NBP, the effect is not so large. We see that it is
often necessary to also add parameter t to achieve member-
ship in W[2], while parameter k has no similar effect. This
can be understood in the following way. If we can achieve
most of the goals, then the sum k + b is close to t, but for
problems where we can only achieve very few goals there
will be a large difference, so t is much larger than k + b and
has a larger influence on the time needed to find a solution.

In SAT planning (Kautz and Selman 1992; Ghallab, Nau,
and Traverso 2004), a number of time slots for actions are
fixed in advance (as in the proof of Thm. 9). If doing this
for COP we get the problem COP(D, {k, `}) that we study,
since both k and ` are strict limits on the plans. It is also com-
mon to allow two or more actions in parallel in a time slot, if
they do not interfere with each other (Kautz, McAllester, and
Selman 1996). Then the number of time slots is no longer the
number of actions in the plan, but its shortest parallel exe-
cution length (aka. makespan). This could be an interesting
parameter, since the two measures are not monotonically re-
lated; a parallel plan with shortest makespan is not always a
plan with the smallest number of actions (Bäckström 1994).

Acknowledgments
Aghighi is partially supported by the National Graduate
School in Computer Science (CUGS), Sweden. Bäckström
is partially supported by the Swedish Research Council
(VR) under grant 621-2014-4086. Sebastian Ordyniak and
the anonymous reviewers provided important feedback.

References
Aghighi, M., and Bäckström, C. 2015. Cost-optimal and
net-benefit planning - A parameterised complexity view. In
Proc. 24th Int’l Joint Conf. Artif. Intell. (IJCAI-15), Buenos
Aires, Argentina, 1487–1493.
Aghighi, M., and Jonsson, P. 2014. Oversubscription plan-
ning: Complexity and compilability. In Proc. 28th AAAI
Conf. Artif. Intell. (AAAI-14), Québec City, QC, Canada.,
2221–2227.
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Comput. Intell. 11:625–656.
Bäckström, C.; Jonsson, P.; Ordyniak, S.; and Szeider, S.
2015. A complete parameterized complexity analysis of
bounded planning. J. Comput. Syst. Sci. 81(7):1311–1332.
Bäckström, C. 1994. Executing parallel plans faster by
adding actions. In Proc. 11th European Conf. Artif. Intell.
(ECAI-94), Amsterdam, Netherlands, 615–619.
Benton, J.; Talamadupula, K.; Eyerich, P.; Mattmüller, R.;
and Kambhampati, S. 2010. G-value plateaus: A challenge
for planning. In Proc. 20th Int’l Conf. Automated Planning
and Scheduling, (ICAPS-10), Toronto, ON, Canada, 259–
262.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artif. Intell. 69(1-2):165–204.

Cooper, M. C.; de Roquemaurel, M.; and Régnier, P. 2011.
A weighted CSP approach to cost-optimal planning. AI
Commun. 24(1):1–29.
Cushing, W.; Benton, J.; and Kambhampati, S. 2010. Cost
based search considered harmful. In Proc. 3rd Ann. Symp.
Combinatorial Search (SoCS-10), Stone Mountain, Atlanta,
GA, USA, 140–141. Long ver.: CoRR abs/1103.3687, 2011.
Downey, R., and Fellows, M. 1999. Parameterized Com-
plexity. New York: Springer.
Downey, R. G., and Thilikos, D. M. 2011. Confronting
intractability via parameters. Computer Science Review
5(4):279–317.
Fellows, M. R.; Gaspers, S.; and Rosamond, F. A. 2012.
Parameterizing by the number of numbers. Theory Comput.
Syst. 50(4):675–693.
Flum, J., and Grohe, M. 2006. Parameterized Complexity
Theory. Berlin: Springer.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.
Johnson, D. S.; Papadimitriou, C. H.; and Yannakakis, M.
1988. On generating all maximal independent sets. Inf. Pro-
cess. Lett. 27(3):119–123.
Kautz, H. A., and Selman, B. 1992. Planning as satisfiabil-
ity. In Proc. 10th European Conf. Artif. Intell. (ECAI-92),
Vienna, Austria, 359–363.
Kautz, H. A.; McAllester, D. A.; and Selman, B. 1996.
Encoding plans in propositional logic. In Proc. 5th Int’l
Conf. Principles of Knowledge Repr. and Reasoning (KR-
96), Cambridge, MA, USA, 374–384.
Keyder, E., and Geffner, H. 2009. Soft goals can be com-
piled away. J. Artif. Intell. Res. 36:547–556.
Kronegger, M.; Pfandler, A.; and Pichler, R. 2013. Parame-
terized complexity of optimal planning: A detailed map. In
Proc. 23rd Int’l Joint Conf. Artif. Intell. (IJCAI-13), Beijing,
China, 954–961.
Likhachev, M., and Ferguson, D. 2009. Planning long dy-
namically feasible maneuvers for autonomous vehicles. I. J.
Robotic Res. 28(8):933–945.
Mirkis, V., and Domshlak, C. 2013. Abstractions for over-
subscription planning. In Proc. 23rd Int’l Conf. Aut. Plan-
ning and Scheduling (ICAPS-13), Rome, Italy, 153–161.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. J. Ar-
tif. Intell. Res. 39:127–177.
van den Briel, M.; Nigenda, R. S.; Do, M. B.; and Kamb-
hampati, S. 2004. Effective approaches for partial satisfac-
tion (over-subscription) planning. In Proc. 19th Nat’l Conf.
Artif. Intell. (AAAI-04), San Jose, CA, USA, 562–569.
Wilt, C. M., and Ruml, W. 2011. Cost-based heuristic
search is sensitive to the ratio of operator costs. In Proc.
4th Ann. Symp. Combinatorial Search (SoCS-11), Castell de
Cardona, Barcelona, Spain, 172–179.
Yang, F.; Culberson, J. C.; Holte, R.; Zahavi, U.; and Felner,
A. 2008. A general theory of additive state space abstrac-
tions. J. Artif. Intell. Res. 32:631–662.

