
To appear in Current Trends in AI Planning: EWSP'95{3rd European Workshop on Planning, Assisi, Italy, 1995.IOS Press.
Tractable Planning for an Assembly Line�Inger KleinDepartment of Electric EngineeringLink�oping UniversityS-581 83 Link�oping, Swedenemail:inger@isy.liu.sephone: +46 13 281665fax: +46 13 282622Peter Jonsson and Christer B�ackstr�omDepartment of Computer and Information ScienceLink�oping UniversityS-581 83 Link�oping, Swedenemail:fpetej,cbag@ida.liu.sephone: +46 13 282415, +46 13 282429Abstract. The industry wants formal methods for dealing withcombinatorial dynamical systems that are provably correct and fast.One example of such problems is error recovery in industrial processes.We have used a provably correct, polynomial-time planning algorithm toplan for a miniature assembly line, which assembles toy cars. Althoughsomewhat limited, this process has many similarities with real industrialprocesses. By exploring the structure of this assembly line we haveextended a previously presented algorithm making the class of problemsthat can be handled in polynomial time larger.1 IntroductionAI planning in its general form is known to be very hard. STRIPS planning is undecid-able in the �rst-order case [Chapman, 1987, Erol et al., 1992b], and PSPACE-completein the unrestricted propositional case [Bylander, 1991]. Complexity results have alsobeen reported for a number of restricted cases [Bylander, 1991, B�ackstr�om and Nebel,1993, Erol et al., 1992a, Gupta and Nau, 1992], most of these being computation-ally di�cult. However, these results apply to the complexity of planning in variousrestricted versions of certain formalisms. The results do not say anything about theinherent complexity of naturally arising planning problems. For instance, the ubiq-uitous blocks-world problem in its standard form can be encoded in the propositionalSTRIPS formalism, where plan existence is PSPACE-complete. Yet, plan existence forthe blocks-world problem per se is only NP-complete [Gupta and Nau, 1992], for �nd-ing an optimal plan, or even tractable [Gupta and Nau, 1992], if we do not require anoptimal plan. Furthermore, the modi�ed problem where several blocks can have iden-tical labels cannot be naturally modelled in propositional STRIPS, yet this problem is�This work was supported by the Swedish Research Council for Engineering Sciences (TFR), whichis gratefully acknowledged.

also NP-complete [Chenoweth, 1991]. That is, the problem lies within NP, but it can-not be reasonably encoded even in a PSPACE-complete (standard) planning formalism.Finding the restrictions on planning formalisms that capture the inherent structure andcomplexity of interesting applications problems is thus an interesting challenge.The usual way to tackle the complexity of planning problems is to use a general-purpose domain-independent planner and add heuristics that are tailored speci�cally tothe problem at hand. Unless the problem is inherently tractable, this method cannotguarantee improved performance, but only result in a better average-case complexity.Alternatively, it can improve the worst-case complexity �gure, but at the expense ofincompleteness, ie. possibly missing that a problem has a solution.For many applications we may be satis�ed with an incomplete algorithm or witha good average-case complexity, despite intractability in the worst case. The latter ofthese situations is also a form of incompleteness since the intractable worst cases canbe reagarded as unsolvable in practice. On the other hand, there are also applicationswhere we do need correct solutions promptly. Such applications arise, for instance, inthe area of sequential control within automatic control, where many problems can beviewed as planning problems and we often need to �nd solutions correctly and promptly.Automatic control has a long tradition of using mathematically well-founded methodswith provable properties. Researchers in this area see the lack of such theories as oneof the major problems with AI planning [Passino and Antsaklis, 1989]. Furthermore,Benveniste and �Astr�om [1993] present a study of how computer software is used in large-scale control applications such as the process industry and metro tra�c networks. Oneof their �ndings was that the industry wants more mathematical tools for modellingdynamical systems of combinatorial nature. Using formal methods is a way to improveformal guarantees and reduce the complexity of the resulting code. That is, we have toaim at more formal methods than heuristics, whenever possible.The manufacturing process industry is one example of application areas where AIplanning can be useful. The problem is not primarily to �nd the plan for normaloperation of the plant. That is usually done once and for all and can probably be donebetter manually, since time is not critical in this case. Automated planning is morelikely to enter the scene when something goes wrong. Since there are many ways inwhich a large process may go wrong, we can end up in any of a very large number ofstates. It is not realistic to have pre-compiled plans for recovering from any such stateso it would be useful to �nd a plan automatically for how to get back to a safe state,where normal operation can resume. It is important that such a plan is correct andwe also want to �nd it fast since the costs accumulate very quickly when large-scaleindustrial processes are non-operational. Automated plan generation is also importantif the initial state is not fully speci�ed until the plan is neeeded. As in the error recoverycase it is important that the plan is correct and that it is found resonably fast.What we ideally need is a provably correct planner that runs in polynomial time.No general-purpose such planner can exist, however, but we may be able to �nd suchplanners for certain restricted planning problems with practical use. We have run aproject for over �ve years trying to identify such restricted, tractable planning prob-lems. Starting with a test problem in sequential control, we identi�ed a number ofinherent restrictions of this problem which, taken together, result in tractability. Wede�ned a formal planning problem, the SAS-PUBS problem, based on these restric-tions, proved this problem tractable and devised a provably correct, polynomial-timealgorithm for it [Klein and B�ackstr�om, 1991, B�ackstr�om and Klein, 1991b]. We removedrestrictions successively which resulted in more general yet tractable planning problems[B�ackstr�om and Klein, 1991a, B�ackstr�om, 1992, B�ackstr�om and Nebel, 1993,Jonsson

and B�ackstr�om, 1994]. Our general research methodology has been to to use a bottom-up strategy, starting with a tractable problem and remove or replace restrictions suchthat the resulting problem is either more expressive than or di�erent than the originalproblem, but still tractable.We report in this paper how we can plan for a semi-realistic miniature version ofan industrial process, the LEGO1 car factory [Str�omberg, 1991]. This is a realisticminiature version of real industrial processes in many respects. Modelling this processas a tractable planning problems has thus been one of our primary goals. We showin this paper that by exploiting the inherent structure of the problem, we can modelit and use a polynomial time planning algorithm to solve it. More precisely, we use asimple and provably correct modi�cation to our previosly presented algorithm for theSAS+-IAO problem [Jonsson and B�ackstr�om, 1994]. The basic idea is to partition theproblem such that one part �ts in the SAS+-IAO class and its solution becomes a planskeleton that can be straightforwardly �lled in with operators from the second part.The rest of this paper is structured as follows. In Section 2 we describe the formal-ism we use and in Section 3 we introduce restrictions forming the SAS+-IAO class ofplanning problems. The planning algorithm is described in Section 4. The LEGO carfactory is described in Section 5 and we show how to model it using the SAS formal-ism. In Section 6 we apply the planning algorithm to the LEGO car factory. Section 7contains the conclusions.2 The SAS+ FormalismWe use the SAS+ planning formalism [B�ackstr�om and Nebel, 1993, Jonsson and B�ack-str�om, 1994] which can be viewed as a variation on the propositional version of theSTRIPS formalism. The SAS+ formalism is, in fact, equivalent, under polynomialreduction, to most other common variants of propositional STRIPS [B�ackstr�om, 1995].Yet, the formalisms have di�erent modelling properties, making them conceptuallydi�erent. Some problems are more naturally expressed in one of the formalisms than inthe other. For instance, control engineers seem to �nd the SAS+ formalism much moreappealing than the STRIPS formalism.First we de�ne the SAS+ planning problem.De�nition 1 An instance of the SAS+ planning problem is given by a quadruple � =hV;O; s0; s�i with components de�ned as follows:� V = fv1; : : : ; vmg is a set of state variables. Each variable v 2 V has anassociated domain of values Dv, which implicitly de�nes an extended domainD+v = Dv [fug, where u denotes the unde�ned value. Further, the total statespace S = Dv1 � : : :�Dvm and the partial state space S+ = D+v1 � : : :�D+vmare implicitly de�ned. We write s[v] to denote the value of the variable v in astate s.� O is a set of operators of the form hpre; post; prvi, where pre; post; prv 2 S+denote the pre-, post- and prevail-condition respectively. O is subject to thefollowing two restrictions(R1) for all hpre; post; prvi 2 O and v 2 V if pre[v] 6= u, then pre[v] 6= post[v] 6= u,(R2) for all hpre; post; prvi 2 O and v 2 V, post[v] = u or prv[v] = u.1LEGO is a trademark of the LEGO company.

� s0 2 S+ and s� 2 S+ denote the initial and goal state respectively.The prevail-condition can be thought of as the part of the pre-condition that is notchanged by the operator. Restriction R1 essentially says that a state variable can neverbe made unde�ned, once made de�ned by some operator. Restriction R2 says that thepost- and prevail-conditions of an operator must never de�ne the same variable. Wefurther write s v t if the state s is subsumed (or satis�ed) by state t, ie. if s[v] = u ors[v] = t[v]. We extend this notion to states, de�nings v t i� forallv 2 V; s[v] = u or s[v] = t[v]:For o = hpre; post; prvi is a SAS+ operator, we write pre(o), post(o) and prv(o) to denotepre, post and prv respectively. A sequence ho1; : : : ; oni 2 Seqs(O) of operators is calleda SAS+ plan (or simply a plan) over �.A plan is a solution to a planning problem if it is executable in the initial state, andit leads to the goal state.De�nition 2 Given two states s; t 2 S+, we de�ne for all v 2 V,(s� t)[v] = (t[v]; if t[v] 6= u;s[v]; otherwise.The ternary relation Valid � Seqs(O) � S+ � S+ is de�ned recursively s.t. forarbitrary operator sequence ho1; : : : ; oni 2 Seqs(O) and arbitrary states s; t 2 S+,Valid(ho1; : : : ; oni; s; t) i� either1. n = 0 and t v s or2. n > 0, pre(o1) v s, prv(o1) v s andValid(ho2; : : : ; oni; (s� post(o1)); t).A plan ho1; : : : ; oni 2 Seqs(O) is a solution to � i� Valid(ho1; : : : ; oni; s0; s�).The function Result returns the state resulting from executing a plan, ie.,t = Result(ho1; : : : ; oni; s) if either t 2 S and V alid(ho1; : : : ; oni; s; t) ort = hu : : :ui.3 RestrictionsTo be able to design polynomial time algorithms we must somehow restrict the problemclass. This paper uses the IAO restriction [Jonsson and B�ackstr�om, 1994] and we repeatits de�nition in this section.For the de�nitions below, let � = hV;O; s0; s�i be a SAS+ instance.De�nition 3 An operator o 2 O is unary i� there is exactly one v 2 V s.t. post(o)[v] 6=u. A value x 2 Dv where x 6= u for some variable v 2 V is said to be requestable ifthere exists some action o 2 O such that o needs x in order to be executed.

De�nition 4 For each v 2 V and O0 � O, the set RO0v of requestable values for O0is de�ned asRO0v = fprv(o)[v] s.t. o 2 O0g [fpre(o)[v]; post(o)[v] s.t. o 2 O0 and o non-unary g�fug:Obviously, ROv � Dv for all v 2 V. For each state variable domain, we further de�nethe graph of possible transitions for this domain, without taking the other domains intoaccount, and the reachability graph for arbitrary subsets of the domain.De�nition 5 For each v 2 V, we de�ne the corresponding domain transition graphGv as a directed labelled graph Gv = hD+v ; Tvi with vertex set D+v and arc set Tv s.t.for all x; y 2 D+v and o 2 O, hx; o; yi 2 Tv i� pre(o)[v] = x and post(o)[v] = y 6= u.Further, for each X � D+v we de�ne the reachability graph for X as a directed graphGXv = hX; TXi with vertex set X and arc set TX s.t. for all x; y 2 X, hx; yi 2 TX i�there is a path from x to y in Gv.Alternatively, GXv can be viewed as the restriction to X � D+v of the transitive closureof Gv, but with unlabelled arcs. When speaking about a path in a domain-transitiongraph below, we will typically mean the sequence of labels, ie. operators, along thispath. We say that a path in Gv is via a set X � Dv i� each member of X is visitedalong the path, possibly as the initial or �nal vertex.De�nition 6 An operator o 2 O is irreplaceable wrt. a variable v 2 V i� removingan arc labelled with o from Gv splits some component of Gv into two components.De�nition 7 A SAS+ instance hV;O; s0; s�i is:(I) Interference-safe i� every operator o 2 O is either unary or irreplaceable wrt.every v 2 V it a�ects.(A) Acyclic i� GROvv is acyclic for each v 2 V.(O) prevail-Order-preserving i� for each v 2 V, whenever there are two x; y 2 D+vs.t. Gv has a shortest path ho1; : : : ; omi from x to y via some set X � ROv and ithas any path ho01; : : : ; o0ni from x to y via some set Y � ROv s.t. X � Y , there existssome subsequence h: : : ; o0i1; : : : ; o0im ; : : :i s.t. prv(ok) v prv(o0ik) for 1 � k � m.A SAS+ instance ful�lling the restrictions above is denoted a SAS+-IAO instance.Whether a SAS+ instane satis�es the IAO restriction or not can be tested in polyno-mial time. Further, we have previously presented a polynomial time plan generationalgorithm for the SAS+-IAO class [Jonsson and B�ackstr�om, 1994] which is proven tobe correct.4 Planning algorithmIn this section we present a formally correct extension of the SAS+-IAO algorithm [Jon-sson and B�ackstr�om, 1994], which is su�cient for modelling the LEGO car factory. Thebasic idea is to partition the original SAS+ instance into two separate instances, bothbeing SAS+-IAO instances. This instance can then be solved in polynomial time and

its solution constitutes a skeleton to be �lled in by solving subproblems from the secondinstance. This process is referred to as interweaving and can be viewed as a restrictedvariant of the more general concept re�nement, as used in hierarchical state abstraction[Knoblock, 1991]. In fact, the whole method we use can be viewed as a restricted vari-ant of two-level state abstraction. However, while state abstraction is a general methodwhich is not formally well understood|it can at some occasions speed up planningconsiderabley [Knoblock, 1991] and at other occasions be disastrous [B�ackstr�om andJonsson, 1995]|our, more restricted method, is provably correct, guaranteed not tomake things worse and runs in polynomial-time.First we show how a SAS+ problem instance can be restricted to take only a subsetof the variables into account.De�nition 8 Let � = hV;O; s0; s�i be a SAS+ instance, s 2 S+ and V 0 � V. Then,the restrictions for states and operators are de�ned as follows:� s e V 0 = hs[vi1]; : : : ; s[vin]i where V 0 = fvi1 ; : : : ving� Let o 2 O. Then, o e V 0 = hpre(o) e V 0; post(o) e V 0; prv(o) e V 0i.� O e V 0 = fo e V 0jo 2 Og.The restriction � e V 0 can now be de�ned as � e V 0 = hV 0;O e V 0; s0 e V 0; s� e V 0i.This can be used to partition a SAS+ problem instance into two independent problemsbased on a partition of V in two disjoint sets.De�nition 9 Let � = hV;O; s0; s�i be a SAS+ instance and let V1, V2 be disjointsubsets of V. Then, V1 is independent of V2 i�� every operator o 2 O a�ecting some variable in V1 satis�es pre(o)eV2 = post(o)eV2 = prv(o) e V2 = hu; : : : ; ui.� every operator o 2 O a�ecting some variable in V2 satis�es pre(o)eV1 = post(o)eV1 = hu; : : : ; ui.Reachability means that every problem instance can be solved regardless of the initialand goal states.De�nition 10 Let � = hV;O; s0; s�i be a SAS+ instance. Then � is reachable if forany two states s1; s2 2 S the planning problem hV;O; s1; s2i is solvable.Thus, reachability is the same as a strongly connected state transition graph. Note thateven if reachability only depends on V and O we say that � is reachable for convenience.We can now show that if a planning problem � is split into two independent problemsthen the original problem can be solved if the two new problem instances can be solved.Theorem 1 Let � = hV;O; s0; s�i be a SAS+ instance and let V1;V2 be disjoint subsetsof V such that V1 [V2 = V. If V1 is independent of V2, � e V1 is reachable and � e V2is solvable then � is solvable.Proof (Sketch): Suppose there exists a plan ! = ho1; : : : ; oni solving � e V2. Let!0 be a plan solving the SAS+ instance hV1;O; s0; prv(o1)i e V1. De�ne recursively !k,1 � k � n� 1 such that !k is a solution to the instancehV1;O; Result((!0; : : : ;!k�1); s0 e V1); prv(ok+1)i e V1:

Finally, let !n be a solution to the instancehV1;O; Result((!0; : : : ;!n�1); s0 e V1); s�i e V1:Since � e V1 is reachable, !0; : : : ; !n exists. Now, let us consider the plan !0 =(!0; o1;!1; : : : ;!n�1; on;!n). By the construction of !0; : : : ; !n�1, all pre- and prevail-conditions of o1; : : : ; on are satis�ed because ! = (o1; : : : ; on) is a valid plan by assump-tion. Furthermore, all pre- and prevail-conditions of the operators in (!0; : : : ;!n) aresatis�ed because (!0; : : : ;!n) is a valid plan and V1 is independent of V2. It remains toshow that s� v Result(!0; s0). This follows immediately since we know that (o1; : : : ; on)is a valid plan for �eV2 and (!0; : : : ;!n) is a valid plan for �eV1 and V1 is independentof V2.An algorithm that works as indicated in the proof of Theorem 1 is shown in Figure 1.The sets V1 and V2 are such that � e V1 and � e V2 satis�es the IAO restriction inthe previous section, and V1 is independent of V2. The procedure PlanIAO solves theSAS+-IAO planning problem [Jonsson and B�ackstr�om, 1994].1 procedure Plan(hV;O; s0; s�i);2 ho1; : : : ; oni PlanIAO(hV2;O; s0; s�i e V2)3 !0 PlanIAO(hV1;O; s0; prv(o1)i e V1)4 for k = 1; : : : ; n� 1 do5 !k PlanIAO(hV1;O; Result(h!0; : : : ;!k�1i; s0 e V1); prv(ok+1)i e V1)6 end for7 !n PlanIAO(hV1;O; Result(h!0; : : : ;!n�1i; s0 e V1); s�i e V1)8 return (!0; o1;!1; o2; : : : ;!n�1; on;!n)Figure 1: Planning algorithmIt is obvious from the proof of Theorem 1 that the algorithm is correct, and sincePlanIAO is polynomial the resulting algorithm is polynomial.5 The LEGO Car FactoryOur application example is an automated assembly line for LEGO cars [Str�omberg,1991], which is used for undergraduate laboratory sessions in digital control at theDepartment of Electrical Engineering at Link�oping University. The students are facedwith the task of writing a program to control this assembly line using the graphicallanguage GRAFCET [IEC, 1988]. GRAFCET is tailored to implementing industrialsequential control and it resembles Petri Nets.The main operations for assembling a LEGO car are shown in Figure 2. The as-sembly line consists of two similar halves, the �rst mounting the chassis parts on thechassis (see Figure 3) and the second mounting the top (see Figure 4).The �rst half of the LEGO car factory is presented in Figure 3. The chassis isinitially stored up-side down in the chassis magazine (cm). It enters the conveyor beltby using the chassis feeder (c-feeder), and is transported to the chassis parts magazine(cpm) where the chassis parts are fed onto the chassis using the chassis parts feeder(cp-feeder). The chassis is then transported to the chassis press (cp), where the chassisis pressed together. It is then transported to the turn station (ts) where the chassis isturned upright and enters the second half of the factory (Figure 4) where it is placed onthe chassis lift (cl). It is lifted up, placed on the conveyour belt (ocvB) and transported

Mounting of topMounting of chassis Resulting Lego car

Figure 2: Assembling a LEGO car.
cpmcm

cp-feeder

cp ts

cpm-stop cp-stop

c-feeder

Figure 3: The �rst half of the LEGO car factory.to the top magazine (tm) where a top is fed onto the chassis by the top feeder (t-feeder).The chassis is then transported to the top press (tp) where the top is pressed tight ontothe chassis. From there it is transported to the end of the conveyour belt (sf) and placedso that the storage feeder (st-feeder) can push the chassis into a bu�er storage (st).The conveyor belt used to transport the chassis runs continously. Hence, stopperbars (cpm-stop, cp-stop, tm-stop, tp-stop) are pushed out in front of the chassis at thefour work-stations cpm, cp, tm and tp, holding the car �xed, sliding on the belt (seeFigure 3 and Figure 4).Figure 5 shows one of the work-stations in more detail, namely the one where thetop is put onto the chassis (tm in Figure 4). The chassis is held �xed at the top storage(A) by the stopper bar (B). The tops are stored in a pile and the feeder (C) is used topush out the lowermost top onto the chassis. When the top is on the chassis, the feederis withdrawn and then the stopper bar is withdrawn, thus allowing the chassis to moveon to the next work-station.We continue by modelling the LEGO car factory as a SAS+ instance. The statevariables are shown in Table 1. The variable pos gives the position of the chassis,and the corresponding positions are given in Figure 3 and Figure 4. The stopper barsand the corresponding variable names are also marked in these �gures, as well as thevariable names for the feeders. For the feeders and the stopper bars the value ext meansthat the feeder (or stopper bar) is extended, while rtr means that it is retracted. Thevariable turner tells if the turner (ts in Figure 3) is turned towards the �rst half ofthe factory (A) or towards the second half of the factory (B). The two variables cp-status and t-status give the status of the chassis parts and the top, respectively, whilethe variable c-status denotes the status of the chassis and is mainly needed since we
ocvB tm

st

Storage

cl

t-feeder

tp sf

tm-stop tp-stop

st-feeder

Figure 4: The second half of the LEGO car factory.

A

B

C

Figure 5: Putting the top onto the chassis.variable valuespos cm, cpm, cp, ts, cl,ocvB, tm, tp, sf, stturner A, Bcp-status o�, on, pressedt-status o�, on, pressedc-status prepared, not-preparedcp-press down, upt-press down, upclift down, upc-feeder, cp-feeder, t-feeder, st-feeder ext, rtrcpm-stop, cp-stop, tm-stop, tp-stop ext, rtrTable 1: State variables V and their associated domains of values Dv.have no sensor detecting if the chassis is just outside the chassis magazine. The othervariables should be obviuos from the table and the �gures.Using the variables de�ned in Table 1 we can de�ne operators as in Tables 2 and 3.Additionally there are two operators for each feeder and each stopper bar for restractingand ectending the feeder or stopper bar. The operators corresponding to the chassisfeeder are denoted extend-c-feeder and retract-c-feeder. The pre-condition is that c-feeder = rtr, the post-condition is that c-feeder = ext and there is no prevail-condition.The other operators corresponding to the feeders and stopper bars are denoted in asimilar manner.6 Planning for the LEGO car factoryWe can now apply the planning algorithm in Figure 1 to the LEGO car factory. Usingthe variables de�ned in table 1 we can de�ne two subsets as follows:V1 = fturner; cp� press; t� press; clift; c� feeder; cp� feeder; t� feeder;st� feeder; cpm� stop; cp� stop; tm� stop; tp� stopgV2 = fpos; cp� status; t� status; c� statusgThis results in that the operators in Table 3 together with all operators for extendingor retracting feeders or stopper bars are the operators that a�ect variables in V1. Theoperators given in Table 2 are the operators that a�ect variables in V2, and these twosets de�ne the partition of the problem.

Operator Pre Post Prevailcm2cpm pos = cm pos = cpm c-feeder = ext, cp-feeder = rtr,cpm-stop = extcpm2cp pos = cpm pos = cp cpm-stop = rtr, cp-stop = extcp-press = upcp2ts pos = cp pos = ts turner = A, cp-stop = rtr,cp-press = upts2cl pos = ts pos = cl turner = B, clift = downcl2ocvB pos = cl pos = ocvB clift = upocvB2tm pos = ocvB pos = tm tm-stop = ext, t-feeder = rtrtm2tp pos = tm pos = tp tm-stop = rtr, tp-stop = extt-press = uptp2sf pos = tp pos = sf tp-stop = rtr, st-feeder = rtr,t-press = upsf2st pos = sf pos = st st-feeder = extprepare-chassis c-status = not-prepared c-status = prepared c-feeder = rtrput-cp cp-status = o� cp-status = on pos = cpm,cp-feeder = extpress-cp cp-status = on cp-status = pressed cp-press = down, pos = cpput-top t-status = o� t-status = on pos = tm, t-feeder = extpress-top t-status = on t-status = pressed pos = tp, t-press = downTable 2: Operators with prevail-conditions.Operator Pre Post PrevailA2B turner = A turner = B -B2A turner = B turner = A -cl-down clift = up clift = down -cl-up clift = down clift = up -cp-press-down cp-press = up cp-press = down -cp-press-up cp-press = down cp-press = up -t-press-down t-press = up t-press = down -t-press-up t-press = down t-press = up -Table 3: Operators without prevail-conditions.It is easy to see that � e V1 and � e V2 satis�es the IAO restriction and that V1 isindependent of V2. The set V1 is such that for every o 2 OeV1 and v 2 V1 prv(o)[v] = u.Furthermore, for every v 2 V1 there are operators for setting each value (for examplethere is one operator for extending the c-feeder and one operator for retracting it).Obviously � e V1 is reachable, and the algorithm in Figure 1 can be applied.Depending on how we choose the initial state and the goal state we can plan fordi�erent cases. Here we show a plan for normal operation, ie. the goal is to assemblya LEGO car. It is straightforward to modify this to plan for error recovery or for abefore execution unknown initial state. The goal state is that the chassis should bein the bu�er storage (pos = st) and the top and chassis parts should be pressed ontothe chassis (cp-status = pressed and t-status = pressed). All other state variables areunde�ned and can have any value. Suppose that the initial state is given as follows.The chassis is placed in the chassis magazine (pos = cm, c-status = not-prepared), thereis no chassis parts on the chassis (cp-status = o�) and there is no top on the chassis(t-status = o�). Furthermore the turner is turned towards the �rst half of the factory(turner = A), all feeders and stopper bars are retracted and the chassis press, the top

press and the chassis lift are in their down position.Applying the algorithm in Figure 1 results in a plan as in Figure 6.
extend-cpm-stop

cm2cmp put-cp cpm2cp press-cp cp2ts ts2cl

cl2ocvB

extend-c-feeder

extend-cp-feeder

retract-cpm-stop

c-press-up

retract-cp-stop

A2B

cl-up

t-press-up

c-press-up

c-press-down

extend-cp-stop

ocvB2tmput-top

extend-tm-stop

extend-st-feeder t-press-down

retract-tp-stop

press-toptp2sfsf2st

extend-t-feederretract-tm-stop t-press-up

extend-tp-stop

prepare-chassis

tm2tp

Figure 6: Resulting plan. The solid arrows are the output from the SAS+-IAO algorithmsolving � e V2, and the dashed arrows are the result from the interweaving process.7 ConclusionsTsatsoulis and Kayshap [1988] call planning \one of the most underused techniques ofAI" in the context of manufacturing. They list a number of areas within industry whereplanning could be applied, but where no or very little attempts have been made at suchapplications.We have applied our previous results on tractable planning to an application exam-ple in automatic control {an assembly line for LEGO cars. This example does not quite�t within the restriction of any previoulsy presented tractable planning class. The clos-est class is the SAS+-IAO class, which is su�cient except for the requirement that theremust be no cycles between requestable states. The assembly line does not have thisproperty. This fact provided feedback for modifying the theory and we have presentedan extended variant of the previous SAS+-IAO class and its associated algorithm. Lim-ited forms of such cycles are now allowed, which is su�cient for modelling the assemblyline. The modi�ed algorithm is also provably correct and runs in polynomial time.We believe this limited form of cycles to be su�cient for modelling many othersimilar applications. However, the modi�cation suggests generalizing the extension inthis paper, allowing more complex cyclic structures, which is a topic for future research.References[AAAI-91, 1991] American Association for Arti�cial Intelligence. Proceedings of the 9th (US)National Conference on Arti�cial Intelligence (AAAI-91), Anaheim, CA, USA, July 1991.AAAI Press/MIT Press.[B�ackstr�om and Jonsson, 1995] C. B�ackstr�om and P. Jonsson. Planning with abstractionhierarchies can be exponentially less e�cient. In Proceedings of the 14th InternationalJoint Conference on Arti�cial Intelligence (IJCAI-95), pages 1599{1604, Montreal, Qu�ebec,Canada, Aug 1995.[B�ackstr�om and Klein, 1991a] C. B�ackstr�om and I. Klein. Parallel non-binary planning inpolynomial time. In Reiter and Mylopoulos [1991], pages 268{273.

[B�ackstr�om and Klein, 1991b] C. B�ackstr�om and I. Klein. Planning in polynomial time: TheSAS-PUBS class. Computational Intelligence, 7(3):181{197, August 1991.[B�ackstr�om and Nebel, 1993] C. B�ackstr�om and B. Nebel. Complexity results for SAS+ plan-ning. In Ruzena Bajcsy, editor, Proceedings of the 13th International Joint Conference onArti�cial Intelligence (IJCAI-93), Chamb�ery, France, August{September 1993. MorganKaufman.[B�ackstr�om, 1992] C. B�ackstr�om. Equivalence and tractability results for SAS+ planning. InBill Swartout and Bernhard Nebel, editors, Proceedings of the 3rd International Conferenceon Principles on Knowledge Representation and Reasoning (KR-92), Cambridge, MA, USA,October 1992. Morgan Kaufman.[B�ackstr�om, 1995] C. B�ackstr�om. Expressive equivalence of planning formalisms. Arti�cialIntelligence, Special Issue on Planning and Scheduling, 1995. To appear.[Benveniste and �Astr�om, 1993] A. Benveniste and K.J. �Astr�om. Meeting the challenge ofcomputer science in the industrial applications of control: An introductory discussion tothe special issue. IEEE Transactions on Automatic Control, 38:1004{1010, 1993.[Bylander, 1991] T. Bylander. Complexity results for planning. In Reiter and Mylopoulos[1991], pages 274{279.[Chapman, 1987] D. Chapman. Planning for conjunctive goals. Arti�cial Intelligence, 32:333{377, 1987.[Chenoweth, 1991] S. V. Chenoweth. On the NP-hardness of blocks world. In AAAI-91 [1991],pages 623{628.[Erol et al., 1992a] K. Erol, D. S. Nau, and V. S. Subrahmanian. On the complexity ofdomain-independent planning. In Proceedings of the 10th (US) National Conference onArti�cial Intelligence (AAAI-92), pages 381{386, San Jos�e, CA, USA, July 1992. AmericanAssociation for Arti�cial Intelligence.[Erol et al., 1992b] K. Erol, D. S. Nau, and V. S. Subrahmanian. When is planning decidable?In James Hendler, editor, Arti�cial Intelligence Planning Systems: Proceedings of the 1stInternational Conference (AIPS'92), pages 222{227, College Park, MD, USA, June 1992.Morgan Kaufman.[Gupta and Nau, 1992] N. Gupta and D. S. Nau. On the complexity of blocks-world planning.Arti�cial Intelligence, 56:223{254, 1992.[IEC, 1988] IEC. Preparation of function charts for control systems - IEC 848. TechnicalReport 848:1988, IEC, Geneve, 1988.[Jonsson and B�ackstr�om, 1994] P. Jonsson and C. B�ackstr�om. Tractable planning with statevariables by exploiting structural restrictions. In Proceedings of the 12th (US) NationalConference on Arti�cial Intelligence (AAAI-94), Seattle, WA, USA, July{August 1994.American Association for Arti�cial Intelligence.[Klein and B�ackstr�om, 1991] I. Klein and C. B�ackstr�om. On the planning problem in se-quential control. In Proceedings of the 30th Conference on Decision and Control, pages1819{1823, Brighton, England, 1991. IEEE.[Knoblock, 1991] C. A. Knoblock. Search reduction in hierarchical problem solving. In AAAI-91 [1991], pages 686{691.[Passino and Antsaklis, 1989] K. M. Passino and P. J. Antsaklis. A system and control theo-retic perspective on arti�cial intelligence planning systems. Applied Arti�cial Intelligence,(3):1{32, 1989.[Reiter and Mylopoulos, 1991] Ray Reiter and John Mylopoulos, editors. Proceedings of the12th International Joint Conference on Arti�cial Intelligence (IJCAI-91), Sydney, Aus-tralia, August 1991. Morgan Kaufman.[Str�omberg, 1991] J-E. Str�omberg. Styrning av lego-bilfabrik. Technical report, Departmentof Electrical Engineering, Link�oping University, Link�oping, Sweden, 1991. Manual forcontrol laboratory session.[Tsatsoulis and Kayshap, 1988] C. Tsatsoulis and R. L. Kayshap. Planning and its applica-tion to manufacturing. In Soundar T Kumara, Rangasami L Kashyap, and Allen L Soyster,editors, Arti�cial Intelligence, Manufacturing Theory and Practice, chapter 7, pages 193{223. Institute of Industrial Engineers, 1988.

