
Invited paper to appear in M. Ghallab and A. Milani (eds.), New Directions in AI Planning:EWSP'95|3rd European Workshop on Planning, Assisi, Italy, Sep. 27{29, 1995. IOS Press.Five Years of Tractable PlanningChrister B�ACKSTR�OM�Department of Computer and Information ScienceLink�oping University, S-581 83 Link�oping, Swedenemail: cba@ida.liu.seAbstract. We summarize the results from the �rst �ve years ofa project aiming at identifying tractable classes of planning problemsand investigate sources of computational di�culties in planning. Thepaper is a non-formal survey, including also historical remarks on thebackground of the project as well as discussion and motivation of theunderlying assumptions, the methodology and the intended applications.1 IntroductionPlanning has been an important subdiscipline of arti�cial intelligence for some two tothree decades. Although predated by some earlier work, planning research really `tooko�' with the two papers on QA3 [30] and STRIPS [27]. Already here, in the infancyof the area, we can see a methodological distinction which has prevailed ever since. InQA3, actions and states were axiomatised in logic (the situation calculus). A theoremprover was used to prove the goal and the plan was extracted from this proof. We referto this approach as logic-based planning. STRIPS, on the other hand, generated a planby searching through the state of possible operator sequences, until �nding a sequenceleading to the goal. We refer to this approach (and similar ones, like plan-space search)as search-based planning. The area of planning research has been very active ever since,but the two approaches has lived mostly separate lives. The logic-based approach hasalways been heavily theoretical; it has seriously considered the issue of correctness,but almost entirely ignored e�ciency. The search-based approach, on the other hand,was mostly informal, implementation-oriented and experimental|caring little aboutcorrectness, but paying some notice to e�ciency (although in an informal way). Manynovel methods and techniques were developed. Yet it was not until Chapman's paperon TWEAK [20], less than ten years ago, that theoretical research started to slowlymake its entrance also into this approach, starting to analyse the methods and systemsdeveloped. Some results on correctness and complexity has appeared since then, butonly in the past few years have we started to see a trend that these issues are seriouslypaid attention to by (at least parts of) the planning community.In many other branches of AI, e.g. terminological logics, abduction and non-monoto-nic reasoning, we have seen very active research into identifying tractable subcasesand sources of intractability. For several years now, we have run a similar researchproject on identifying computationally tractable classes of planning problems, devisingpolynomial time algorithms for these. We have also tried to identify various sources�This paper reports research by Inger Klein, Bernhard Nebel, Peter Jonsson and the author.



of computational di�culties and tried to learn more about the borderline betweentractable and intractable planning problems. Having published in 1990 what we believeto be the �rst tractable class of planning problems reported in the literature [9], itseems appropriate now, �ve years later, to report on the progress so far. Since all ourtechnical results already appear in the literature, this paper is non-technical in nature,summarising and giving references to the results rather than restating them. Thepaper also discusses many issues underlying the project, e.g. motivation and intendedapplications; the role of correctness and tractability; how to interpret complexity resultsfor planning and more. These are issues often omitted since they can usually be reportedonly very briey, if at all, within the page limits of ordinary conference papers reportinga technical result.2 Motivation and Intended ApplicationsAI planning has often been intimately connected with robotics. For instance, Charniakand McDermott [21, Chapter 9] introduce their chapter on planning as follows: \Thischapter is about robots|intelligent computers that act in the world." Similarly, eventhough many authors do not explicitly mention robots, they frequently use roboticsexamples. We believe this tacit assumption of planning = robotics is very unfortunate;while planning is important for robotics, it is also important for many non-roboticsapplications, a fact which might not always be obvious from reading the literature onAI planning. The typical robotics examples in AI are of a type which leads us toassume that the goal is to make robots that can replicate every-day human behaviourand capabilities. There are applications where this is to some extent desired; we may,for instance, prefer to send robots instead of human �re�ghters into a burning building.However, what we need in most cases is not such systems, but rather systems whichoutperform humans in certain narrow �elds of expertise. For instance, Hayes and Ford[32] point out that \As many have observed, there is no shortage of humans, and wealready have well-proven ways of making more of them." They continue arguing thatsystems with brittle knowledge in a narrow �eld can be quite useful. Simon [50] similarlypoints out that even human expert knowledge is extremely brittle, so why should werequire more of machines.Focussing again on planning, we can �nd successful attempts at applying knowledge-based planners likeNonLin,O-Plan and Sipe to non-robotics applications, in narrow�elds of expertise [24]. Our intended applications are likewise narrow �elds of expertise,but mainly applications where no human expert has good knowledge of how to plan.Such applications frequently arise in various engineering applications, typically hav-ing a large number of simple, specialized operators and being so extensive as to causecomputational problems. Many applications of this type arise in the �eld of sequentialcontrol, a subarea of automatic control dealing with discrete aspects of control applica-tions. Although most industrial processes are continuous systems they almost alwaysalso contain a superior discrete level. On this superior level the actions can, hence,often be viewed as discrete actions even if implemented as continuous processes. Manyproblems on this level can be viewed as action planning. Typical actions can be to openor close a valve or to start or stop a motor. An interesting application for automatedplanning is the situation where a process breaks down or is stopped in an emergencysituation. At such an event the system may end up in any of a very large number of



states and it might require a quite complex plan1 to bring the system back into thenormal operation mode. It is not realistic to have pre-compiled plans for how to startup the process again from each such state. Furthermore, the considerable costs involvedwhen a large industrial process, such as a paper mill, is inactive necessitate a promptresponse from the planner. There is typically no human expert who knows how to solvethe problem or write down rules for this. Typically, the (human) operators have somepartial understanding and experience which they combine with experimentation andimprovisation|eventually getting the system running again (in most cases). Hence,planning from �rst principles seem a better approach than knowledge-based planningfor this type of applications, even if di�cult. In principle, nothing prevents us fromalso incorporating expert knowledge to the extent it is available.Another example of applications in sequential control is large tra�c systems, e.g. arailway or underground network. In this case a planner might be used more frequently,not only when the system breaks down, but rather to prevent break-downs and maintaina smooth tra�c ow. It can be used, for example, as a support system for networkoperators to decide how to direct the train tra�c in a station area.Our project grew out of a series of joint meetings and discussions between computerscientists and automatic-control scientists at Link�oping University. While the disciplineof automatic control has a long tradition and huge accumulated knowledge of contin-uous systems, their research into discrete systems is still in its infancy, while it is theother way around for computer science. It all started with some experiments tryingto apply AI planning to a toy problem in automatic control, the tunnel problem (seeSection 6). Control researchers are used to think in terms of state variables and con-sider STRIPS style languages as awkward and inappropriate. Hence, a more suitablechoice was the actions structures formalism [49], a state-variable-based representationfor plans with parallel actions. However, since we concentrated mainly on the compu-tational aspects of non-parallel plans to start with, we introduced the simpli�ed actionsstructures formalism (SAS).One of our target test applications has been the LEGO Car Factory, a miniatureassembly line for LEGO cars, used for undergraduate laboratory assignments in se-quential control at the department of EE at Link�oping University. This application isinteresting because it contains many of the problems and properties found in real indus-trial processes, while being small enough to be used as a test application and to analysetheoretically. We have recently identi�ed a class of tractable planning problems whichincludes this application and devised a correct, polynomial-time planning algorithm forthis [42].3 Formal Basis and CorrectnessTwo seemingly reasonable requirements on a planner are that it is sound and completewrt. to some notion of correct plans. A planner that is sound never returns an incorrectplan, but it may answer that there is no solution even when there is one. A plannerthat is complete always returns a correct plan when a solution exists, but it may returnan (incorrect) plan when there is no solution. To prove that a planner does or does nothave these properties requires that it be based on some formal theory|otherwise nosuch proof is possible. Many implemented, working planning systems are not based on1Such a plan may also contain parallel structures, of course. The word sequential in sequentialcontrol should not be interpreted literally.



any formal theory, however, so not much is known about their correctness. Wilkins [53],for instance, says of his SIPE system that a correctness analysis probably cannot becarried out. It is often claimed that provable correctness is neither necessary nor possiblefor planning systems that are capable of solving real problems e�ciently. Provablecorrectness is important, however, especially if we want to apply planning to automaticcontrol problems. Automatic Control has a long tradition of using mathematicallywell-founded theories with provable properties. Researchers in automatic control seethe lack of such theories as one of the major problems with AI planning. For example,Passino and Antsaklis [48, page 1] say:The essential ideas in the theory of AI planning have been developedand reported in the literature. There is, however, a need to create a mathe-matical theory of AI planning systems that operate in dynamic, uncertain,and time-critical environments (real-time environments).In a control system the controller produces inputs to a dynamical systemto change its undesirable behavior to a desirable one. In contrast to AIplanning, there exists a relatively well-developed mathematical systems andcontrol theory for the study of properties of systems represented with, forinstance, linear ordinary di�erential equations.Furthermore, �Astr�om et. al. [2, 3] have carried out a study of how computer software isused in large-scale control applications, such as the process industry and undergroundtra�c networks. One �nding was that the industry wants more mathematical methodsto \tackle the issue of `software errors' and increase productivity", e.g. \new models ofdynamical systems for systems that are combinatorial in nature (supervision or infor-mation processing systems...)". Another �nding was that expert systems are frequentlyused in large-scale control applications, but never in safety-critical parts of the systems.It may, �nally, be worth pointing out that even if a particular application does notdemand that the planner always returns correct solutions, having a formal basis forit and knowing what the correct solutions are can still help us characterize when thealgorithm is reliable and when it is not.4 Tractability and the Restricted-Problems ApproachComputational tractability is a fundamental issue in all problem solving. If a problem isnot tractable, we cannot hope to solve an arbitrary instance of it within reasonable time.This is obviously important if our goal is to use computers for solving planning problems.Unfortunately, planning is known to be very hard. Even simple propositional planningis PSPACE-complete [18], which means that it is most likely intractable. Planning withvariables ranging over an in�nite domain is even undecidable [20, 26]. Until recentlythe planning community has not shown much interest in the formal complexity analysisof planning. Common arguments against such analysis are:� The hard problem is to formally characterize the right answers. Once we havedone that, it is trivial to write algorithms.� Of course there may be worst cases that are intractable, but these do not occurin practice.� Planning is undecidable even for problems that are trivial for humans, so classicalAI planning will never succeed.



� Complexity results for planning are useless since everything is intractable, yet realplanners work in practice.The �rst argument is typically advocated by researchers in the logic-based approachto planning. Bylander [17] has critically reviewed three arguments along these lines|arguments applying to AI in general, not only planning. His counter-argument is[17, page 174]:In all three cases, the error can be traced to a methodological separationbetween getting the answer right (epistemology, computational theory level,knowledge level) and getting the answer tractably (heuristics, representa-tion and algorithm level, symbol level). They presuppose, quite correctly,that it is di�cult to discover a description that characterizes the right an-swer. However, they also presuppose, quite incorrectly, that given such aproblem, it is relatively easy to implement a tractable program. Unfortu-nately, computational complexity theory implies that unless a problem isinherently tractable, it is impossible to implement a tractable program.Similarly, Ullman [51, p. 43] comments that in the early days of of computer sciencethe success on �nding e�cient algorithms for certain problems misled the communityto believe there were more e�cient algorithms for all problems. He continues saying:The theory community was not alone in its naivite. AI was similarlytaken in by the early successes : : : This view has led to periodic overlyoptimistic predictions of success that continue to trouble AI.The answer to the second argument is that if the hard cases do not occur in the realproblem, then we have not modelled the problem correctly. That is, the real problemis a tractable, proper subproblem of the formal problem we have characterized, or toquote Levesque [44, page 386]:If the only problematic cases are the ones that do not seem to occurin practice : : : we can simply decide to eliminate them from consideration: : : But this does not eliminate our concern with extreme cases; it merelychanges what cases we consider to be extreme.This leads us to the restricted-problems approach, to be discussed shortly.An archetypical example of the third argument is given by Chapman, who writesabout his TWEAK planner [20, page 350]:The restrictions on action representation make TWEAK almost uselessas a real-world planner. It is barely possible to formalize the cubical blocksworld in this representation; HACKER's blocks world with di�erent-sizedblocks, can not be represented.It seems as if Chapman wants us to conclude that classical AI planning cannot be usedto solve real-world problems. However, he also writes [20, page 344]:Any Turing machine with its input can be encoded as a planning problemin the TWEAK representation. Therefore, planning is undecidable, and noupper bound can be put on the amount of time required to solve a problem.



This leads to an interesting consequence: if we can encode a Turing machine in theTWEAK representation, then TWEAK can solve any problem that a computer cansolve (if accepting Church's hypothesis). As a consequence, the real-world planningproblems considered cannot be solved by any computer, whatever program we use.Furthermore, if taking seriously the claims that only tractable theories are candidatesfor explaining human intelligence [17, 44] the above reasoning would imply that noteven humans can solve the real-world problems considered. This is most likely notthe conclusion Chapman intended. A more reasonable conclusion from Chapman'sobservations is that TWEAK is too restricted in some aspects, but at the same timeit has too much expressive power in other aspects, the latter being the cause of theundecidability. A similar case arises when encoding the blocks world in propositionalSTRIPS, quite possible despite Chapman's claims. Planning in propositional STRIPSis PSPACE-complete [18], but blocks-world planning per se is solvable in low-orderpolynomial time [4, 5, 31]. This is no contradiction; the PSPACE-completeness �gurecorresponds to the hardest problems encodable in propositional STRIPS, not to everyapplication encodable in it. The answer to the fourth argument above is, thus, thatcomplexity �gures are useful, but we must know how to interpret them and we mustanalyse the right thing. We have to distinguish the inherent complexity of an applicationproblem from the complexity of planning in a formalism. While the latter can give anupper bound for the former, a tractable application problem does not guarantee thatthe problem is solved in polynomial time by a general problem solver for an intractableformalism. Hence, it seems worthwhile to look for restricted subcases of planning thatwrap up interesting application problems more tightly and are tractable (or at least ofreasonable complexity), which we refer to as the restricted-problems approach.Furthermore, we may even have to modify, rather than restrict, formalisms. Con-sider, e.g., the blocks-world problem where several blocks may have the same label,thus being interchangeable. This problem is NP-complete [22], thus probably simplerthan the PSPACE-complete problems, yet it cannot be naturally modelled in proposi-tional STRIPS, further supporting what we said in the case of TWEAK above. Thatis, although we could wish for a number of more advanced constructs in the standardplanning formalisms, we could, at the same time, most likely limit the use of many otherconstructs in order to reduce the complexity|still being able to model most applicationproblems.Similar observations have motivated research into identifying restrictions that makehard problems tractable in other areas of AI than planning, eg., concept languages [16],abduction [19] and non-monotonic reasoning [39].5 The SAS and SAS+ formalismsAs the basic vehicle for our research we have used the SAS+ formalism and its prede-cessor, the SAS formalism. The SAS+ formalism models states by multi-valued statevariables, rather than propositional atoms, and also allows a state variable to havean unknown value in a state, allowing a rudimentary form of uncertainty. Operatorsare modelled using three conditions, the pre-, post- and prevail-conditions. The pre-and post-condition must only de�ne variables which are a�ected, i.e. changed, by theoperator; the pre-condition speci�es the required initial value for such a variable andthe post-condition speci�es its value after executing the operator. The pre-conditionmay be left unspeci�ed for an a�ected variable if its initial value does not matter. The



prevail-condition speci�es those variables which must have some particular initial valuein order to execute the operator and which are not a�ected by the operator. Obviously,such a variable has the same value after executing the operator so its value prevails,the reason for the name of this condition.2 It is easy to see that the pre- and prevail-conditions taken together correspond to the pre-condition of a STRIPS operator andthe post-condition corresponds to the STRIPS post-condition, i.e. the combination ofits add- and delete-lists. Making a distinction between the a�ected and the non-a�ectedvariables in the initial condition has been very important for identifying restrictions.There are alternative ways of making this distinction than having two separate condi-tions, but we have used this method, partly for historical reasons (heritage from theactions structures formalism) and partly because we have found it the simplest andclearest method for de�nitions and proofs.It should be quite obvious to the reader now that the SAS+ formalism is very simi-lar to the propositional STRIPS language, except that we allow not only binary statevariables. It may seem that multi-valued state variables add to the expressive power,but this turns out not to be the case. We have proven [8] that the propositional variantsof the STRIPS and TWEAK formalisms are equally expressive as the SAS+ formal-ism, under a very strong form of polynomial reduction. This means that of negativepre-conditions and goals; unde�ned propositions in the initial state and multi-valuedstate variables neither add to the expressiveness. However, naturalness and easiness ofmodelling applications can di�er, of course. Furthermore, most of the restrictions wehave identi�ed are di�cult to translate into restrictions for the other formalisms andbecome awkward and unintelligible when translated [47].While SAS+ is our `standard' formalism, we actually started with de�ning the SASformalism, which does not allow partial initial states or goals and does not allow oper-ators changing a variable from any value to some speci�c value. The SAS+ formalismappeared as an extension to the SAS formalism.6 The First Phase|Syntactical RestrictionsThe �rst phase of our project started with an attempt to apply AI planning to a toyproblem in sequential control|the tunnel problem. This problem assumes a tunnel(see Figure 1) divided into n sections such that the light can be switched on and o�independently in each of these. Furthermore, the only light switches for a section arelocated at each end of that section. It is also assumed that one can only pass througha section if the light is on in that section. As a typical instance of this problem assumethat all lights are o�, except in section n, the innermost section. The task is to makesure that all lights are switched o�. This can be achieved by going into the tunnel,repeatedly switching on the light in each new section encountered until reaching theinnermost section, then leaving the tunnel again, repeatedly switching o� the light ineach section, including the innermost one, when leaving it. Although this problemmightseem like a trivial toy problem it has a structure similar to many realistic problems,and it is hardly more `toyish' than the blocks-world problem, which has followed us inAI planning ever since the beginning. Furthermore, although any programmer couldeasily come up with a program speci�cally designed to solve the tunnel problem, thereare no general standard methods in automatic control for coping with such problems.2It was, perhaps, even more obvious in the action structures formalism [49] where actions aremodelled to have a duration, why the value actually prevails during the action execution.



Sec 2Sec 1 Sec 3 Sec nFigure 1: The tunnel example.We started by looking for inherent restrictions in the tunnel problem and we iden-ti�ed four such restrictions (out of many more possible ones, of course).P Post-uniqueness: For each variable and each possible value for that variable, theremust be at most one operator changing the variable to this particular value. Thatis, there are essentially no alternative ways to achieve an e�ect.U Unariness: Every operator changes exactly one state variable. That is, an oper-ator cannot have multiple e�ects.B Binariness: All state variables have two possible values, in addition to the unde-�ned value. In principle, this simulates STRIPS or TWEAK.S Single-valuedness: It is not allowed for two operators to both de�ne the samevariable in their prevail-conditions if they specify di�erent values. For instance,consider the two operators of showing some slides and of reading a book, re-spectively. Showing slides require that the lights are o� in this room, but alsoleaves the lights o�, i.e. it has as a prevail-condition that the lights are o�. Toread a book, on the other hand, has as prevail-condition that the lights are on, avalue conicting with the value o�. Hence, a set of operators containing both theslide-showing operator and the book-reading operator cannot be single-valued.These restrictions appear as quite natural and straightforward in the SAS formal-ism, but they seem much harder to express in STRIPS. In fact, it is most questionablewhether we would have been able to identify them if using a STRIPS formalism in-stead. Hence, it seems useful to also try non-standard formalisms when looking forrestrictions|thus getting another point of view. We refer to the subclass of planningproblems in the SAS formalism satisfying all four restrictions above as the SAS-PUBSclass. While the planning problem in the SAS formalism per se is not tractable, weproved the SAS-PUBS planning problem tractable by devising a sound and completepolynomial-time algorithm for it [9, 11, 41].Starting from the SAS-PUBS problem, we have then incrementally removed restric-tions and modi�ed the SAS formalism into SAS+, resulting in a number of new tractablesubclasses. In parallel with incrementally lower-bounding the tractability borderline inthis way, we have also tried to upper-bound it, by proving intractability results forcertain subcases (see Section 9).7 The Second Phase|Structural RestrictionsUntil recently, we worked only with the syntactical restrictions in the previous section.Similarly, other results in the literature on planning complexity also considered syn-tactical restrictions only, e.g. restricting the number and/or polarity of atoms in theprecondition [18, 25].



Syntactical restrictions are very appealing to study since, typically, they are easy tode�ne and not very costly to test. However, to gain any deeper insight into what makesplanning problems hard and easy respectively probably require that we study the struc-ture of the problem, in particular the state-transition graph induced by the operators.To some extent, syntactic restrictions allow us to do this since they undoubtedly haveimplications for what this graph looks like. However, their value for this purpose seemssomewhat limited since many properties that are easy to express as structural restric-tions would require horrendous syntactical equivalents. Putting explicit restrictions onthe state-transition graph must be done with great care, however, since this graph istypically of size exponential in the size of the planning problem instance, making itextremely costly to test arbitrary properties.Recently we took an intermediate approach [36, 37]. Instead of analysing the wholestate-transition graph, we concentrate on its projections onto the variables, that is,we study the possible transitions for each variable in isolation. Since these domain-transition graphs are only of polynomial size, it possible to do some analysis in poly-nomial time. Naturally, much information is lost here compared to using the state-transition graph, but interesting structural properties can still be revealed, especiallyif paying some attention to dependencies between variables. Although not being asubstitute for restrictions on the whole state-transition graph, many interesting anduseful properties of this graph can be indirectly exploited. In particular, we identi�edthree structural restrictions (I, A and O, presented below) which, taken together, makeplanning tractable and properly generalize the tractable problems we have previouslyde�ned using syntactical restrictions. These restrictions are more di�cult to explaininformally than the syntactic ones and will, thus, be presented in a much simpli�edform here, focussing on how to exploit them for planning. To understand the restric-tions, however, it helps to realize that the algorithm used to plan for the SAS+-IAOclass works by generating subplans separately for each variable and then merging these.Obviously, it cannot do so without taking interference e�ects between the subplans intoaccount, so the process is somewhat more complex, iteratively recreating subplans untilconverging on a number of subplans that can be trivially merged to a valid plan. Therestrictions are as follows:I Interference-safeness: If an operator changes more than one variable, then foreach such variable it splits the domain into two partitions and is the only operatorwhich can move between these partitions. This means that if we have to movefrom one partition to the other for a variable, then we know that we must also doso for all other variables the operator a�ects, i.e. we get an interference betweensubplans. If this side-e�ect is unacceptable, then we can know immediately thatthere is no solution. Otherwise, this helps by splitting the problem into smallersubproblems.A Acyclicity: For each variable, certain distinguished values must be achieved in aparticular order, if achieved at all. Since these are precisely those values that maycause interference between subplans, they can be used as synchronization pointsin the planning process. In fact, these values drive the iterative process and de�neits termination condition. There are also the variants A+ and A� which considerfewer and more distinguished values respectively.O Prevail-order-preservation: For each variable, the sequence of prevail-conditionsalong a shortest operator sequence between two values must be the same or a



relaxation of the values for any other sequence between the same values. Hence,it can never be easier to generate a plan by generating non-shortest subplans fora variable since this would cause more interference between the subplans.Despite being structural, these restrictions can be tested in polynomial time. Fur-ther, this approach would not be very useful for a planning formalism based on propo-sitional atoms, since the resulting two-vertex domain-transition graphs would not allowfor much structure to exploit.In total we have so far worked with 9 syntactic and structural restrictions. Theseare not all orthogonal to each other, however; for instance, I subsumes U, O subsumesP and IA subsumes US.8 Issues in Planning ComplexityBefore summarizing our complexity results in the next section, it seems appropriateto clear out some subtle details in planning complexity. When turning to the issue ofcomplexity, we have to make clear what problem we are discussing. In simple terms, theplanning problem is to �nd a plan, i.e. a seuquence of operators, from an initial stateto a goal state.3 However, in complexity theory one distinguishes between decisionproblems and search problems. A decision problem only asks whether a solution existsor not, while the corresponding search problem also asks for a solution. We may alsorestrict our problems to consider optimal solutions only. In the case of a search problemwe can ask for an optimal solution, but in the case of decision problems this makes nosense; if there is any solution, then there must also be an optimal solution. Hence, oneusually adds an extra parameter instead, asking for/whether there is a solution havinga certain measure less than/greater than this parameter.We thus distinguish the following variants of the planning problem, all taking a setof operators, an initial state and a goal state as parameters: The plan existence problem(PE) asks whether there exists a sequence of operators (a plan) leading from the initialstate to the goal state, i.e. it asks for a YES/NO answer. The plan generation problem(PG) asks for such a plan, or the answer NO. If adding also a positive integer K asparameter we further have: The bounded plan existence problem (BPE) asks whetherthere exists a sequence of at most K operators leading from the initial state to the goalstate, while the bounded plan generation problem (BPG) asks for such a sequence orthe answer NO.Normally, one only considers the decision variants of problems since these are simplerto handle and often give a good indication of the complexity for the corresponding searchproblems. If a decision problem is polynomial, then the search problem is typicallypolynomial and if the decision problem is NP-complete, then the search problem istypically NP-equivalent.4 In the case of planning problems, however, this turns outto be a dangerous assumption. Formalisms like propositional STRIPS and SAS+ letus encode problem instances having only solutions with exponentially many operators,which makes the plan generation problem inherently intractable|we could not evenoutput the solution in polynomial time. We know that the corresponding plan existenceproblems is PSPACE-complete, but this does not guarantee intractability|nobody3In principle, it is su�cient to study total-order plans since every total-order plan is a partial-orderplan. However, the complexity results for generating total-order and partial-order plans respectivelymay di�er if we demand certain optimality criteria of the partial-order plans [6, 7].4Loosely speaking, NP-equivalent means NP-complete, but for search problems.



knows yet whether P6=PSPACE. Even worse (or even more interesting, depending onone's point of view), we have recently identi�ed a restricted class of planning problems,3S, where minimal solutions may be exponentially long, hence the plan generationproblem is intractable, but where we can decide in polynomial time whether a solutionexists or not [38]. Since we are mostly interested in a plan to execute, not only knowingwhether it exists or not, this result shows that it is not su�cient to prove tractability forthe plan existence problem|we must rather show that plan generation, our ultimategoal, is tractable. The situation is somewhat di�erent for bounded plans, because ofthe length parameter. The bounded plan existence problem can actually be used tosolve the bounded plan generation problem using a method referred to as pre�x search[15, 28]. However, unless we bound the value of K polynomially in the instance size,this only yields a pseudopolynomial reduction and, thus, still does not allow us to relatethe complexity of the existence and generation problems. Although exponentially sizedplans are, in a sense, pathological and unrealistic [4, 12, 13], it is non-trivial to rulethem out formally, thus plaguing our complexity �gures.9 Summary of Complexity Results for SAS+ PlanningA complete map over the complexities of both the bounded and unbounded versionsof the plan existence and generation problems for all combinations of the syntacticrestrictions P, U, B and S appear in B�ackstr�om and Nebel [12, 13]. Since results forplan existence seem less relevant, we restrict ourselves to summarizing the results forplan generation here. SAS+-PUS is the maximal tractable subclass for bounded plangeneration wrt. to the four syntactical restrictions P, U, B and S. That is, if we wantto generate optimal plans in polynomial time, then all three restrictions P, U and Smust hold. If we drop the U restriction, then BPG becomes NP-equivalent. However,if we do not require the plans to be optimal, then it is su�cient to have the U and Srestrictions to �nd a plan in polynomial time. If either of these two conditions does nothold, then planning is inherently intractable, due to exponentially sized solutions|evenif all other conditions hold, i.e. SAS+-PUB and SAS+-PBS are intractable.Similar complexity maps for the bounded and unbounded plan generation problemwhen taking both the syntactic restrictions P, U, B and S and the structural restric-tions I, A and O into account appear in Jonsson and B�ackstr�om [34, 35]. The maximaltractable class for bounded plan generation then turns out to be SAS+-IA�O, whichproperly includes the SAS+-PUS class. Dropping either I or A� leads to inherentintractability. Dropping O, however, results in NP-equivalence, since the optimal solu-tions remain polynomially bounded in this case. Furthermore, it is also worth notingthat the algorithm for the SAS+-IA�O class remains sound and runs in polynomialtime also for the SAS+-IA� class, but completeness is lost.5 In the case of non-boundedplan generation, the SAS+-US formalism remains maximal.Recently, we have stepped outside also these restrictions, identifying a tractableclass of planning problems which allows modelling the LEGO car factory [42] and planfor it using an extension of the algorithm for the SAS+-IAO class. Another recent resultis the 3S class [38], mentioned above, which is based on analysing variable dependenciesin a propositional STRIPS formalism.5Similarly, the SAS-PUBS algorithm is sound but incomplete for the SAS-PUB class [40].



10 DiscussionHaving read this far, the reader may rightfully ask whether we believe it possible toeventually �nd tractable classes covering most application problems. The answer, how-ever, is not as simple as the question. While we believe that many application problemsin structured environments, like the industry, are inherently tractable, this fact may notbe easily exploited. Finding and exploiting the underlying structure causing tractabil-ity may be non-trivial. In other cases, tractability may only hold for certain values ofparameters which cannot be easily bounded, but can be assumed from experience tohave reasonable values.6 While this latter case does not guarantee formal tractability,it may guarantee tractability under a certain hypothesis, which may be quite reason-able in many cases. It is also worth pointing out that in many cases of NP-completeplanning problems, the NP-completeness is likely to stem from a scheduling and/orresource allocation subproblem, while planning, i.e. �nding the actions, is simple. Inthis case, a deliberate separation of the problems may enable the use of an e�cientscheduler/resource allocator and a simple planner in combination.Furthermore, we should also not be to obsessed by tractability only. The searchfor tractable subclasses and the complexity analysis of restrictions can provide usefulinformation about how to �nd e�cient, although not polynomial, algorithms for otherrestricted classes (cf. results in temporal reasoning [52]). For instance, in some of ouralgorithms it may be possible to relax some restriction and introduce a limited form ofsearch. Another possibility is to build up a library of algorithms for tractable subclassesand then use these as subroutines in a more general search-based planner, or to use aclassi�er and invoke one of these algorithms whenever possible and otherwise use ageneral search-based planner.It may be worth pointing out that the restricted-problem approach is somewhatsimilar to knowledge-based planning as used in HTN planners like O-Plan [24]. Inan HTN planner, expert knowledge is encoded as task reduction schemata having thee�ect of allowing only a small portion of the whole search-space of plans to be explored.Tate [pers. comm.] argues that search should be avoided entirely whenever possible. Inprinciple, the main di�erence between this approach and ours is whether the informationused to avoid or reducing search comes from expert knowledge or from a formal analysisof the problem. The HTN approach is more general, but not formally veri�able, whileour approach requires special algorithms tailored to subclasses, but provides formalguarantees.Similarly, using a general search-based planner like TWEAK or SNLP equippedwith heuristics to prune or reorder the search tree is also a complementary approach.In principle, it may be possible to tailor such a planner to a tractable class, but theheuristic needed for this may be quite complex and non-trivial to �nd, and a tailoredalgorithm is most likely more e�cient.Another issue is whether our approach scales up to handle more realistic applicationsrequiring reasoning about uncertainty, resources and metric time. This question remainsto be satisfactorily answered also for the other approaches we just discussed. For ourapproach, the truth is that we have hope but no guarantee. However, even if ourapproach does not scale up, our research is hardly wasted; we strongly believe thatwe have to thoroughly understand these simpler formalisms before we can formallyattack and understand more expressive ones, and that many lessons learned will carry6An example of a constant-by-experience parameter limiting the plan length appears in manufac-turing planning [45].



over. An example supporting this is the paper on temporal projection by Lin and Dean[33]. Dean [pers. comm.] says that the problem they are trying to solve is temporalprojection with uncertainty, but after having spent some years trying this they foundthe problem so di�cult they had to switch back, analysing the basic case �rst.Appendix. Chronology and References for Planning AlgorithmsBelow is listed in chronological order the tractable subcases we have devised planningalgorithms for, together with the year and references to the literature.SAS-PUBS 1990 [9, 11, 41]SAS-PUS 1991 [10]SAS+-PUS 1992 [4, 5]SAS+-US 1993 [12, 13] (only for the PG problem)SAS+-IAO 1994 [36, 37]SAS+-IA�O 1994 [34, 35]SAS+-IAO w. interweaving 1995 [42] (can plan for the LEGO car factory)3S 1995 [38] (solves PE in polynomial time and PG in solution-polynomial time)AcknowledgementsInger Klein and Peter Jonsson have provided helpful comments on this paper. This paperand the research reported is also inuenced by many comments and discussions over theyears with various people including, but not limited to, Tom Bylander, Marco Cadoli, TomDean, Mark Drummond, John Hallam, Jim Hendler, Lennart Ljung, Bernhard Nebel, ChristosPapadimitriou, Erik Sandewall, Bart Selman, Austin Tate, Wolfgang Wahlster, Qiang Yangand lots of anonymous referees. The research reported in this paper has been sponsored byvarious sources inlcuding the Swedish National Board for Technology Development (STU), theSwedish Research Council for Engineering Sciences (TFR), the German Ministry for Researchand Technology and the European Commission.References[1] J. Allen, J. Hendler, and A. Tate, editors. Readings in Planning. San Mateo, CA, 1990.[2] K.-J. �Astr�om and A. Benveniste. Meeting the challenge of computer science in theindustrial applications of control: An introductury discussion to the special issue. IEEETrans. Automatic Control, 38(7):1004{1010, July 1993.[3] K.-J. �Astr�om, A. Benveniste, et al. Facing the challenge of computer science in theindustrial applications of control: a joint IEEE CSS{IFAC project. Progress Report,Mar. 1991.[4] C. B�ackstr�om. Computational Complexity of Reasoning about Plans. Doctoral disserta-tion, Link�oping University, Link�oping, Sweden, June 1992.[5] C. B�ackstr�om. Equivalence and tractability results for SAS+ planning. In Proc. 3rdInt'l Conf. on Principles of Knowledge Repr. and Reasoning (KR-92), pages 126{137,Cambridge, MA, USA, 1992.
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