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Abstract. We summarize the results from the first five years of
a project aiming at identifying tractable classes of planning problems
and investigate sources of computational difficulties in planning. The
paper is a non-formal survey, including also historical remarks on the
background of the project as well as discussion and motivation of the
underlying assumptions, the methodology and the intended applications.

1 Introduction

Planning has been an important subdiscipline of artificial intelligence for some two to
three decades. Although predated by some earlier work, planning research really ‘took
off” with the two papers on QA3 [30] and STRIPS [27]. Already here, in the infancy
of the area, we can see a methodological distinction which has prevailed ever since. In
QA3, actions and states were axiomatised in logic (the situation calculus). A theorem
prover was used to prove the goal and the plan was extracted from this proof. We refer
to this approach as logic-based planning. STRIPS, on the other hand, generated a plan
by searching through the state of possible operator sequences, until finding a sequence
leading to the goal. We refer to this approach (and similar ones, like plan-space search)
as search-based planning. The area of planning research has been very active ever since,
but the two approaches has lived mostly separate lives. The logic-based approach has
always been heavily theoretical; it has seriously considered the issue of correctness,
but almost entirely ignored efficiency. The search-based approach, on the other hand,
was mostly informal, implementation-oriented and experimental—caring little about
correctness, but paying some notice to efficiency (although in an informal way). Many
novel methods and techniques were developed. Yet it was not until Chapman’s paper
on TWEAK [20], less than ten years ago, that theoretical research started to slowly
make its entrance also into this approach, starting to analyse the methods and systems
developed. Some results on correctness and complexity has appeared since then, but
only in the past few years have we started to see a trend that these issues are seriously
paid attention to by (at least parts of) the planning community.

In many other branches of Al e.g. terminological logics, abduction and non-monoto-
nic reasoning, we have seen very active research into identifying tractable subcases
and sources of intractability. For several years now, we have run a similar research
project on identifying computationally tractable classes of planning problems, devising
polynomial time algorithms for these. We have also tried to identify various sources
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of computational difficulties and tried to learn more about the borderline between
tractable and intractable planning problems. Having published in 1990 what we believe
to be the first tractable class of planning problems reported in the literature [9], it
seems appropriate now, five years later, to report on the progress so far. Since all our
technical results already appear in the literature, this paper is non-technical in nature,
summarising and giving references to the results rather than restating them. The
paper also discusses many issues underlying the project, e.g. motivation and intended
applications; the role of correctness and tractability; how to interpret complexity results
for planning and more. These are issues often omitted since they can usually be reported
only very briefly, if at all, within the page limits of ordinary conference papers reporting
a technical result.

2 Motivation and Intended Applications

AT planning has often been intimately connected with robotics. For instance, Charniak
and McDermott [21, Chapter 9] introduce their chapter on planning as follows: “This
chapter is about robots—intelligent computers that act in the world.” Similarly, even
though many authors do not explicitly mention robots, they frequently use robotics
examples. We believe this tacit assumption of planning = robotics is very unfortunate;
while planning is important for robotics, it is also important for many non-robotics
applications, a fact which might not always be obvious from reading the literature on
AT planning. The typical robotics examples in Al are of a type which leads us to
assume that the goal is to make robots that can replicate every-day human behaviour
and capabilities. There are applications where this is to some extent desired; we may,
for instance, prefer to send robots instead of human firefighters into a burning building.
However, what we need in most cases is not such systems, but rather systems which
outperform humans in certain narrow fields of expertise. For instance, Hayes and Ford
[32] point out that “As many have observed, there is no shortage of humans, and we
already have well-proven ways of making more of them.” They continue arguing that
systems with brittle knowledge in a narrow field can be quite useful. Simon [50] similarly
points out that even human expert knowledge is extremely brittle, so why should we
require more of machines.

Focussing again on planning, we can find successful attempts at applying knowledge-
based planners like NONLIN, O-PLAN and SIPE to non-robotics applications, in narrow
fields of expertise [24]. Our intended applications are likewise narrow fields of expertise,
but mainly applications where no human expert has good knowledge of how to plan.
Such applications frequently arise in various engineering applications, typically hav-
ing a large number of simple, specialized operators and being so extensive as to cause
computational problems. Many applications of this type arise in the field of sequential
control, a subarea of automatic control dealing with discrete aspects of control applica-
tions. Although most industrial processes are continuous systems they almost always
also contain a superior discrete level. On this superior level the actions can, hence,
often be viewed as discrete actions even if implemented as continuous processes. Many
problems on this level can be viewed as action planning. Typical actions can be to open
or close a valve or to start or stop a motor. An interesting application for automated
planning is the situation where a process breaks down or is stopped in an emergency
situation. At such an event the system may end up in any of a very large number of



states and it might require a quite complex plan' to bring the system back into the
normal operation mode. It is not realistic to have pre-compiled plans for how to start
up the process again from each such state. Furthermore, the considerable costs involved
when a large industrial process, such as a paper mill, is inactive necessitate a prompt
response from the planner. There is typically no human expert who knows how to solve
the problem or write down rules for this. Typically, the (human) operators have some
partial understanding and experience which they combine with experimentation and
improvisation—eventually getting the system running again (in most cases). Hence,
planning from first principles seem a better approach than knowledge-based planning
for this type of applications, even if difficult. In principle, nothing prevents us from
also incorporating expert knowledge to the extent it is available.

Another example of applications in sequential control is large traffic systems, e.g. a
railway or underground network. In this case a planner might be used more frequently,
not only when the system breaks down, but rather to prevent break-downs and maintain
a smooth traffic flow. It can be used, for example, as a support system for network
operators to decide how to direct the train traffic in a station area.

Our project grew out of a series of joint meetings and discussions between computer
scientists and automatic-control scientists at Linkoping University. While the discipline
of automatic control has a long tradition and huge accumulated knowledge of contin-
uous systems, their research into discrete systems is still in its infancy, while it is the
other way around for computer science. It all started with some experiments trying
to apply Al planning to a toy problem in automatic control, the tunnel problem (see
Section 6). Control researchers are used to think in terms of state variables and con-
sider STRIPS style languages as awkward and inappropriate. Hence, a more suitable
choice was the actions structures formalism [49], a state-variable-based representation
for plans with parallel actions. However, since we concentrated mainly on the compu-
tational aspects of non-parallel plans to start with, we introduced the simplified actions
structures formalism (SAS).

One of our target test applications has been the LEGO Car Factory, a miniature
assembly line for LEGO cars, used for undergraduate laboratory assignments in se-
quential control at the department of EE at Linkoping University. This application is
interesting because it contains many of the problems and properties found in real indus-
trial processes, while being small enough to be used as a test application and to analyse
theoretically. We have recently identified a class of tractable planning problems which
includes this application and devised a correct, polynomial-time planning algorithm for

this [42].

3 Formal Basis and Correctness

Two seemingly reasonable requirements on a planner are that it is sound and complete
wrt. to some notion of correct plans. A planner that is sound never returns an incorrect
plan, but it may answer that there is no solution even when there is one. A planner
that is complete always returns a correct plan when a solution exists, but it may return
an (incorrect) plan when there is no solution. To prove that a planner does or does not
have these properties requires that it be based on some formal theory—otherwise no
such proof is possible. Many implemented, working planning systems are not based on

'Such a plan may also contain parallel structures, of course. The word sequential in sequential
control should not be interpreted literally.



any formal theory, however, so not much is known about their correctness. Wilkins [53],
for instance, says of his SIPE system that a correctness analysis probably cannot be
carried out. It is often claimed that provable correctness is neither necessary nor possible
for planning systems that are capable of solving real problems efficiently. Provable
correctness s important, however, especially if we want to apply planning to automatic
control problems. Automatic Control has a long tradition of using mathematically
well-founded theories with provable properties. Researchers in automatic control see
the lack of such theories as one of the major problems with Al planning. For example,
Passino and Antsaklis [48, page 1] say:

The essential ideas in the theory of Al planning have been developed
and reported in the literature. There is, however, a need to create a mathe-
matical theory of Al planning systems that operate in dynamic, uncertain,
and time-critical environments (real-time environments).

In a control system the controller produces inputs to a dynamical system
to change its undesirable behavior to a desirable one. In contrast to Al
planning, there exists a relatively well-developed mathematical systems and
control theory for the study of properties of systems represented with, for
instance, linear ordinary differential equations.

Furthermore, Astrém et. al. [2, 3] have carried out a study of how computer software is
used in large-scale control applications, such as the process industry and underground
traffic networks. One finding was that the industry wants more mathematical methods
to “tackle the issue of ‘software errors’ and increase productivity”, e.g. “new models of
dynamical systems for systems that are combinatorial in nature (supervision or infor-
mation processing systems...)”. Another finding was that expert systems are frequently
used in large-scale control applications, but never in safety-critical parts of the systems.

It may, finally, be worth pointing out that even if a particular application does not
demand that the planner always returns correct solutions, having a formal basis for
it and knowing what the correct solutions are can still help us characterize when the
algorithm is reliable and when it is not.

4 Tractability and the Restricted-Problems Approach

Computational tractability is a fundamental issue in all problem solving. If a problem is
not tractable, we cannot hope to solve an arbitrary instance of it within reasonable time.
This is obviously important if our goal is to use computers for solving planning problems.
Unfortunately, planning is known to be very hard. Even simple propositional planning
is PSPACE-complete [18], which means that it is most likely intractable. Planning with
variables ranging over an infinite domain is even undecidable [20, 26]. Until recently
the planning community has not shown much interest in the formal complexity analysis
of planning. Common arguments against such analysis are:

e The hard problem is to formally characterize the right answers. Once we have
done that, it is trivial to write algorithms.

e Of course there may be worst cases that are intractable, but these do not occur
in practice.

e Planning is undecidable even for problems that are trivial for humans, so classical
AT planning will never succeed.



o Complexity results for planning are useless since everything is intractable, yet real
planners work in practice.

The first argument is typically advocated by researchers in the logic-based approach
to planning. Bylander [17] has critically reviewed three arguments along these lines—
arguments applying to Al in general, not only planning. His counter-argument is

[17, page 174]:

In all three cases, the error can be traced to a methodological separation
between getting the answer right (epistemology, computational theory level,
knowledge level) and getting the answer tractably (heuristics, representa-
tion and algorithm level, symbol level). They presuppose, quite correctly,
that it is difficult to discover a description that characterizes the right an-
swer. However, they also presuppose, quite incorrectly, that given such a
problem, it is relatively easy to implement a tractable program. Unfortu-
nately, computational complexity theory implies that unless a problem is
inherently tractable, it is impossible to implement a tractable program.

Similarly, Ullman [51, p. 43] comments that in the early days of of computer science
the success on finding efficient algorithms for certain problems misled the community
to believe there were more efficient algorithms for all problems. He continues saying:

The theory community was not alone in its naivite. Al was similarly
taken in by the early successes ... This view has led to periodic overly
optimistic predictions of success that continue to trouble Al

The answer to the second argument is that if the hard cases do not occur in the real
problem, then we have not modelled the problem correctly. That is, the real problem
is a tractable, proper subproblem of the formal problem we have characterized, or to
quote Levesque [44, page 386]:

If the only problematic cases are the ones that do not seem to occur
in practice ... we can simply decide to eliminate them from consideration
... But this does not eliminate our concern with extreme cases; it merely
changes what cases we consider to be extreme.

This leads us to the restricted-problems approach, to be discussed shortly.
An archetypical example of the third argument is given by Chapman, who writes

about his TWEAK planner [20, page 350]:

The restrictions on action representation make TWEAK almost useless
as a real-world planner. It is barely possible to formalize the cubical blocks
world in this representation; HACKER’s blocks world with different-sized
blocks, can not be represented.

It seems as if Chapman wants us to conclude that classical Al planning cannot be used
to solve real-world problems. However, he also writes [20, page 344]:

Any Turing machine with its input can be encoded as a planning problem
in the TWEAK representation. Therefore, planning is undecidable, and no
upper bound can be put on the amount of time required to solve a problem.



This leads to an interesting consequence: if we can encode a Turing machine in the
TWEAK representation, then TWEAK can solve any problem that a computer can
solve (if accepting Church’s hypothesis). As a consequence, the real-world planning
problems considered cannot be solved by any computer, whatever program we use.
Furthermore, if taking seriously the claims that only tractable theories are candidates
for explaining human intelligence [17, 44] the above reasoning would imply that not
even humans can solve the real-world problems considered. This is most likely not
the conclusion Chapman intended. A more reasonable conclusion from Chapman’s
observations is that TWEAK is too restricted in some aspects, but at the same time
it has too much expressive power in other aspects, the latter being the cause of the
undecidability. A similar case arises when encoding the blocks world in propositional
STRIPS, quite possible despite Chapman’s claims. Planning in propositional STRIPS
is PSPACE-complete [18], but blocks-world planning per se is solvable in low-order
polynomial time [4, 5, 31]. This is no contradiction; the PSPACE-completeness figure
corresponds to the hardest problems encodable in propositional STRIPS, not to every
application encodable in it. The answer to the fourth argument above is, thus, that
complexity figures are useful, but we must know how to interpret them and we must
analyse the right thing. We have to distinguish the inherent complexity of an application
problem from the complexity of planning in a formalism. While the latter can give an
upper bound for the former, a tractable application problem does not guarantee that
the problem is solved in polynomial time by a general problem solver for an intractable
formalism. Hence, it seems worthwhile to look for restricted subcases of planning that
wrap up interesting application problems more tightly and are tractable (or at least of
reasonable complexity), which we refer to as the restricted-problems approach.

Furthermore, we may even have to modify, rather than restrict, formalisms. Con-
sider, e.g., the blocks-world problem where several blocks may have the same label,
thus being interchangeable. This problem is NP-complete [22], thus probably simpler
than the PSPACE-complete problems, yet it cannot be naturally modelled in proposi-
tional STRIPS, further supporting what we said in the case of TWEAK above. That
is, although we could wish for a number of more advanced constructs in the standard
planning formalisms, we could, at the same time, most likely limit the use of many other
constructs in order to reduce the complexity—still being able to model most application
problems.

Similar observations have motivated research into identifying restrictions that make
hard problems tractable in other areas of Al than planning, eg., concept languages [16],
abduction [19] and non-monotonic reasoning [39].

5 The SAS and SAST formalisms

As the basic vehicle for our research we have used the SAST formalism and its prede-
cessor, the SAS formalism. The SAST formalism models states by multi-valued state
variables, rather than propositional atoms, and also allows a state variable to have
an unknown value in a state, allowing a rudimentary form of uncertainty. Operators
are modelled using three conditions, the pre-, post- and prevail-conditions. The pre-
and post-condition must only define variables which are affected, i.e. changed, by the
operator; the pre-condition specifies the required initial value for such a variable and
the post-condition specifies its value after executing the operator. The pre-condition
may be left unspecified for an affected variable if its initial value does not matter. The



prevail-condition specifies those variables which must have some particular initial value
in order to execute the operator and which are not affected by the operator. Obviously,
such a variable has the same value after executing the operator so its value prevails,
the reason for the name of this condition.? It is easy to see that the pre- and prevail-
conditions taken together correspond to the pre-condition of a STRIPS operator and
the post-condition corresponds to the STRIPS post-condition, i.e. the combination of
its add- and delete-lists. Making a distinction between the affected and the non-affected
variables in the initial condition has been very important for identifying restrictions.
There are alternative ways of making this distinction than having two separate condi-
tions, but we have used this method, partly for historical reasons (heritage from the
actions structures formalism) and partly because we have found it the simplest and
clearest method for definitions and proofs.

It should be quite obvious to the reader now that the SAST formalism is very simi-
lar to the propositional STRIPS language, except that we allow not only binary state
variables. It may seem that multi-valued state variables add to the expressive power,
but this turns out not to be the case. We have proven [8] that the propositional variants
of the STRIPS and TWEAK formalisms are equally expressive as the SAST formal-
ism, under a very strong form of polynomial reduction. This means that of negative
pre-conditions and goals; undefined propositions in the initial state and multi-valued
state variables neither add to the expressiveness. However, naturalness and easiness of
modelling applications can differ, of course. Furthermore, most of the restrictions we
have identified are difficult to translate into restrictions for the other formalisms and
become awkward and unintelligible when translated [47].

While SAST is our ‘standard’ formalism, we actually started with defining the SAS
formalism, which does not allow partial initial states or goals and does not allow oper-
ators changing a variable from any value to some specific value. The SAS* formalism
appeared as an extension to the SAS formalism.

6 The First Phase—Syntactical Restrictions

The first phase of our project started with an attempt to apply Al planning to a toy
problem in sequential control-—the tunnel problem. This problem assumes a tunnel
(see Figure 1) divided into n sections such that the light can be switched on and off
independently in each of these. Furthermore, the only light switches for a section are
located at each end of that section. It is also assumed that one can only pass through
a section if the light is on in that section. As a typical instance of this problem assume
that all lights are off, except in section n, the innermost section. The task is to make
sure that all lights are switched off. This can be achieved by going into the tunnel,
repeatedly switching on the light in each new section encountered until reaching the
innermost section, then leaving the tunnel again, repeatedly switching off the light in
each section, including the innermost one, when leaving it. Although this problem might
seem like a trivial toy problem it has a structure similar to many realistic problems,
and it is hardly more ‘toyish’ than the blocks-world problem, which has followed us in
AT planning ever since the beginning. Furthermore, although any programmer could
easily come up with a program specifically designed to solve the tunnel problem, there
are no general standard methods in automatic control for coping with such problems.

It was, perhaps, even more obvious in the action structures formalism [49] where actions are
modelled to have a duration, why the value actually prevails during the action execution.
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Figure 1: The tunnel example.

We started by looking for inherent restrictions in the tunnel problem and we iden-
tified four such restrictions (out of many more possible ones, of course).

P Post-uniqueness: For each variable and each possible value for that variable, there
must be at most one operator changing the variable to this particular value. That
is, there are essentially no alternative ways to achieve an effect.

U Unariness: Every operator changes exactly one state variable. That is, an oper-
ator cannot have multiple effects.

B Binariness: All state variables have two possible values, in addition to the unde-

fined value. In principle, this simulates STRIPS or TWEAK.

S Single-valuedness: It is not allowed for two operators to both define the same
variable in their prevail-conditions if they specify different values. For instance,
consider the two operators of showing some slides and of reading a book, re-
spectively. Showing slides require that the lights are off in this room, but also
leaves the lights off, i.e. it has as a prevail-condition that the lights are off. To
read a book, on the other hand, has as prevail-condition that the lights are on, a
value conflicting with the value off. Hence, a set of operators containing both the
slide-showing operator and the book-reading operator cannot be single-valued.

These restrictions appear as quite natural and straightforward in the SAS formal-
ism, but they seem much harder to express in STRIPS. In fact, it is most questionable
whether we would have been able to identify them if using a STRIPS formalism in-
stead. Hence, it seems useful to also try non-standard formalisms when looking for
restrictions—thus getting another point of view. We refer to the subclass of planning
problems in the SAS formalism satistying all four restrictions above as the SAS-PUBS
class. While the planning problem in the SAS formalism per se is not tractable, we
proved the SAS-PUBS planning problem tractable by devising a sound and complete
polynomial-time algorithm for it [9, 11, 41].

Starting from the SAS-PUBS problem, we have then incrementally removed restric-
tions and modified the SAS formalism into SASY, resulting in a number of new tractable
subclasses. In parallel with incrementally lower-bounding the tractability borderline in
this way, we have also tried to upper-bound it, by proving intractability results for
certain subcases (see Section 9).

7 The Second Phase—Structural Restrictions

Until recently, we worked only with the syntactical restrictions in the previous section.
Similarly, other results in the literature on planning complexity also considered syn-
tactical restrictions only, e.g. restricting the number and/or polarity of atoms in the
precondition [18, 25].



Syntactical restrictions are very appealing to study since, typically, they are easy to
define and not very costly to test. However, to gain any deeper insight into what makes
planning problems hard and easy respectively probably require that we study the struc-
ture of the problem, in particular the state-transition graph induced by the operators.
To some extent, syntactic restrictions allow us to do this since they undoubtedly have
implications for what this graph looks like. However, their value for this purpose seems
somewhat limited since many properties that are easy to express as structural restric-
tions would require horrendous syntactical equivalents. Putting explicit restrictions on
the state-transition graph must be done with great care, however, since this graph is
typically of size exponential in the size of the planning problem instance, making it
extremely costly to test arbitrary properties.

Recently we took an intermediate approach [36, 37]. Instead of analysing the whole
state-transition graph, we concentrate on its projections onto the variables, that is,
we study the possible transitions for each variable in isolation. Since these domain-
transition graphs are only of polynomial size, it possible to do some analysis in poly-
nomial time. Naturally, much information is lost here compared to using the state-
transition graph, but interesting structural properties can still be revealed, especially
if paying some attention to dependencies between variables. Although not being a
substitute for restrictions on the whole state-transition graph, many interesting and
useful properties of this graph can be indirectly exploited. In particular, we identified
three structural restrictions (I, A and O, presented below) which, taken together, make
planning tractable and properly generalize the tractable problems we have previously
defined using syntactical restrictions. These restrictions are more difficult to explain
informally than the syntactic ones and will, thus, be presented in a much simplified
form here, focussing on how to exploit them for planning. To understand the restric-
tions, however, it helps to realize that the algorithm used to plan for the SAST-TAO
class works by generating subplans separately for each variable and then merging these.
Obviously, it cannot do so without taking interference effects between the subplans into
account, so the process is somewhat more complex, iteratively recreating subplans until
converging on a number of subplans that can be trivially merged to a valid plan. The
restrictions are as follows:

I Interference-safeness: It an operator changes more than one variable, then for
each such variable it splits the domain into two partitions and is the only operator
which can move between these partitions. This means that if we have to move
from one partition to the other for a variable, then we know that we must also do
so for all other variables the operator affects, i.e. we get an interference between
subplans. If this side-effect is unacceptable, then we can know immediately that
there is no solution. Otherwise, this helps by splitting the problem into smaller
subproblems.

A Aecyelicity: For each variable, certain distinguished values must be achieved in a
particular order, if achieved at all. Since these are precisely those values that may
cause interference between subplans, they can be used as synchronization points
in the planning process. In fact, these values drive the iterative process and define
its termination condition. There are also the variants A* and A~ which consider
fewer and more distinguished values respectively.

O Prevail-order-preservation: For each variable, the sequence of prevail-conditions
along a shortest operator sequence between two values must be the same or a



relaxation of the values for any other sequence between the same values. Hence,
it can never be easier to generate a plan by generating non-shortest subplans for
a variable since this would cause more interference between the subplans.

Despite being structural, these restrictions can be tested in polynomial time. Fur-
ther, this approach would not be very useful for a planning formalism based on propo-
sitional atoms, since the resulting two-vertex domain-transition graphs would not allow
for much structure to exploit.

In total we have so far worked with 9 syntactic and structural restrictions. These
are not all orthogonal to each other, however; for instance, I subsumes U, O subsumes

P and [A subsumes US.

8 Issues in Planning Complexity

Before summarizing our complexity results in the next section, it seems appropriate
to clear out some subtle details in planning complexity. When turning to the issue of
complexity, we have to make clear what problem we are discussing. In simple terms, the
planning problem is to find a plan, i.e. a seuquence of operators, from an initial state
to a goal state.® However, in complexity theory one distinguishes between decision
problems and search problems. A decision problem only asks whether a solution exists
or not, while the corresponding search problem also asks for a solution. We may also
restrict our problems to consider optimal solutions only. In the case of a search problem
we can ask for an optimal solution, but in the case of decision problems this makes no
sense; if there is any solution, then there must also be an optimal solution. Hence, one
usually adds an extra parameter instead, asking for/whether there is a solution having
a certain measure less than/greater than this parameter.

We thus distinguish the following variants of the planning problem, all taking a set
of operators, an initial state and a goal state as parameters: The plan existence problem
(PFE) asks whether there exists a sequence of operators (a plan) leading from the initial
state to the goal state, i.e. it asks for a YES/NO answer. The plan generation problem
(PG) asks for such a plan, or the answer NO. If adding also a positive integer K as
parameter we further have: The bounded plan existence problem (BPFE) asks whether
there exists a sequence of at most K operators leading from the initial state to the goal
state, while the bounded plan generation problem (BPG) asks for such a sequence or
the answer NO.

Normally, one only considers the decision variants of problems since these are simpler
to handle and often give a good indication of the complexity for the corresponding search
problems. If a decision problem is polynomial, then the search problem is typically
polynomial and if the decision problem is NP-complete, then the search problem is
typically NP-equivalent.* In the case of planning problems, however, this turns out
to be a dangerous assumption. Formalisms like propositional STRIPS and SAST let
us encode problem instances having only solutions with exponentially many operators,
which makes the plan generation problem inherently intractable—we could not even
output the solution in polynomial time. We know that the corresponding plan existence
problems is PSPACE-complete, but this does not guarantee intractability—mnobody

31n principle, it is sufficient to study total-order plans since every total-order plan is a partial-order
plan. However, the complexity results for generating total-order and partial-order plans respectively
may differ if we demand certain optimality criteria of the partial-order plans [6, 7].

*Loosely speaking, NP-equivalent means NP-complete, but for search problems.



knows yet whether P#£PSPACE. Even worse (or even more interesting, depending on
one’s point of view), we have recently identified a restricted class of planning problems,
3S, where minimal solutions may be exponentially long, hence the plan generation
problem is intractable, but where we can decide in polynomial time whether a solution
exists or not [38]. Since we are mostly interested in a plan to execute, not only knowing
whether it exists or not, this result shows that it is not sufficient to prove tractability for
the plan existence problem—we must rather show that plan generation, our ultimate
goal, is tractable. The situation is somewhat different for bounded plans, because of
the length parameter. The bounded plan existence problem can actually be used to
solve the bounded plan generation problem using a method referred to as prefiz search
[15, 28]. However, unless we bound the value of K polynomially in the instance size,
this only yields a pseudopolynomial reduction and, thus, still does not allow us to relate
the complexity of the existence and generation problems. Although exponentially sized
plans are, in a sense, pathological and unrealistic [4, 12, 13], it is non-trivial to rule
them out formally, thus plaguing our complexity figures.

9 Summary of Complexity Results for SAS*T Planning

A complete map over the complexities of both the bounded and unbounded versions
of the plan existence and generation problems for all combinations of the syntactic
restrictions P, U, B and S appear in Béackstrom and Nebel [12, 13]. Since results for
plan existence seem less relevant, we restrict ourselves to summarizing the results for
plan generation here. SAST-PUS is the maximal tractable subclass for bounded plan
generation wrt. to the four syntactical restrictions P, U, B and S. That is, if we want
to generate optimal plans in polynomial time, then all three restrictions P, U and S
must hold. If we drop the U restriction, then BPG becomes NP-equivalent. However,
if we do not require the plans to be optimal, then it is sufficient to have the U and S
restrictions to find a plan in polynomial time. If either of these two conditions does not
hold, then planning is inherently intractable, due to exponentially sized solutions—even
if all other conditions hold, i.e. SAST-PUB and SAST-PBS are intractable.

Similar complexity maps for the bounded and unbounded plan generation problem
when taking both the syntactic restrictions P, U, B and S and the structural restric-
tions I, A and O into account appear in Jonsson and Backstrém [34, 35]. The maximal
tractable class for bounded plan generation then turns out to be SAS*T-IA~O, which
properly includes the SAST-PUS class. Dropping either I or A~ leads to inherent
intractability. Dropping O, however, results in NP-equivalence, since the optimal solu-
tions remain polynomially bounded in this case. Furthermore, it is also worth noting
that the algorithm for the SAST-TA~O class remains sound and runs in polynomial
time also for the SAST-IA™ class, but completeness is lost.? In the case of non-bounded
plan generation, the SAST-US formalism remains maximal.

Recently, we have stepped outside also these restrictions, identifying a tractable
class of planning problems which allows modelling the LEGO car factory [42] and plan
for it using an extension of the algorithm for the SAST-TAQO class. Another recent result
is the 35 class [38], mentioned above, which is based on analysing variable dependencies
in a propositional STRIPS formalism.

®Similarly, the SAS-PUBS algorithm is sound but incomplete for the SAS-PUB class [40].



10 Discussion

Having read this far, the reader may rightfully ask whether we believe it possible to
eventually find tractable classes covering most application problems. The answer, how-
ever, is not as simple as the question. While we believe that many application problems
in structured environments, like the industry, are inherently tractable, this fact may not
be easily exploited. Finding and exploiting the underlying structure causing tractabil-
ity may be non-trivial. In other cases, tractability may only hold for certain values of
parameters which cannot be easily bounded, but can be assumed from experience to
have reasonable values.® While this latter case does not guarantee formal tractability,
it may guarantee tractability under a certain hypothesis, which may be quite reason-
able in many cases. It is also worth pointing out that in many cases of NP-complete
planning problems, the NP-completeness is likely to stem from a scheduling and/or
resource allocation subproblem, while planning, ¢.e. finding the actions, is simple. In
this case, a deliberate separation of the problems may enable the use of an efficient
scheduler /resource allocator and a simple planner in combination.

Furthermore, we should also not be to obsessed by tractability only. The search
for tractable subclasses and the complexity analysis of restrictions can provide useful
information about how to find efficient, although not polynomial, algorithms for other
restricted classes (cf. results in temporal reasoning [52]). For instance, in some of our
algorithms it may be possible to relax some restriction and introduce a limited form of
search. Another possibility is to build up a library of algorithms for tractable subclasses
and then use these as subroutines in a more general search-based planner, or to use a
classifier and invoke one of these algorithms whenever possible and otherwise use a
general search-based planner.

It may be worth pointing out that the restricted-problem approach is somewhat
similar to knowledge-based planning as used in HTN planners like O-PLAN [24]. In
an HTN planner, expert knowledge is encoded as task reduction schemata having the
effect of allowing only a small portion of the whole search-space of plans to be explored.
Tate [pers. comm.] argues that search should be avoided entirely whenever possible. In
principle, the main difference between this approach and ours is whether the information
used to avoid or reducing search comes from expert knowledge or from a formal analysis
of the problem. The HTN approach is more general, but not formally verifiable, while
our approach requires special algorithms tailored to subclasses, but provides formal
guarantees.

Similarly, using a general search-based planner like TWEAK or SNLP equipped
with heuristics to prune or reorder the search tree is also a complementary approach.
In principle, it may be possible to tailor such a planner to a tractable class, but the
heuristic needed for this may be quite complex and non-trivial to find, and a tailored
algorithm is most likely more efficient.

Another issue is whether our approach scales up to handle more realistic applications
requiring reasoning about uncertainty, resources and metric time. This question remains
to be satisfactorily answered also for the other approaches we just discussed. For our
approach, the truth is that we have hope but no guarantee. However, even if our
approach does not scale up, our research is hardly wasted; we strongly believe that
we have to thoroughly understand these simpler formalisms before we can formally
attack and understand more expressive ones, and that many lessons learned will carry

5An example of a constant-by-experience parameter limiting the plan length appears in manufac-
turing planning [45].



over. An example supporting this is the paper on temporal projection by Lin and Dean
[33]. Dean [pers. comm.]| says that the problem they are trying to solve is temporal
projection with uncertainty, but after having spent some years trying this they found
the problem so difficult they had to switch back, analysing the basic case first.

Appendix. Chronology and References for Planning Algorithms

Below is listed in chronological order the tractable subcases we have devised planning
algorithms for, together with the year and references to the literature.

SAS-PUBS 1990 [9, 11, 41]

SAS-PUS 1991 [10]

SASt-PUS 1992 [4, 5]

SAST-US 1993 [12, 13] (only for the PG problem)

SAS*-IAO 1994 [36, 37]

SAST-IA-O 1994 [34, 35]

SAST-TAO w. interweaving 1995 [42] (can plan for the LEGO car factory)

3S 1995 [38] (solves PE in polynomial time and PG in solution-polynomial time)
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