
Incremental PlanningPeter Jonsson and Christer B�ackstr�omDepartment of Computer and Information ScienceLink�oping University, S-581 83 Link�oping, Swedenemail: fpetej,cbag@ida.liu.seAbstract. Ambros-Ingerson and Steel suggested to interleave plan-ning and execution through incremental planning, ie. using a plannerthat can output valid pre�xes of the �nal plan before it has �nishedplanning. This method could considerably bring down the time lost inplanning, especially in dynamic domains, where replanning has to occurfrequently. We improve on the basic idea, avoiding certain problems,by presenting an incremental planner with provable properties for a re-stricted class of planning problems, the 3S class. Finding out whether a3S instance is solvable or not is computationally tractable, despite thefact that generating a plan is inherently intractable. By �rst testingwhether an instance is solvable or not, we can avoid outputting pre�xesof invalid plans in the latter case. Furthermore, making the reasonableassumption that natural problems have non-exponential-size solutions,we can also plan e�ciently in practice since we need not waste time onnon-solvable instances.1 IntroductionClasical planning is sometimes considered inadequate for coping with dynamic worldsand execution failures. First, planning is computationally expensive in the generalcase; plan existence for Strips-style formalisms is undecidable in the �rst-order case[Chapman, 1987] and Pspace-complete in the propositional case [Bylander, 1994]. Thisis a problem in time-critical applications since we have to wait for the planner togenerate the whole plan before we can start executing it. Second, when the executionof an action fails, or other changes in the world force us to some unexpected world state,we have to reinvoke the planner to �nd a new plan from the current world state to thegoal. This is known as replanning and is often considered an infeasible method sinceit can be as costly as planning. So called reactive planning is sometimes considereda better alternative, but it must be noted that, from a computational perspective,a reactive planner could not perform any better than a classical planning/replanningsystem unless we allow it to solve a relaxed version of the problem.Ambros-Ingerson & Steel [Ambros-Ingerson and Steel, 1987] have addressed theproblems above by suggesting to interleave planning with execution. Their idea is to usea planner which will as soon as possible output a pre�x of the �nal solution|that is, aset of actions which are the �rst actions of the �nal solution. We can, thus, immediatelystart executing this plan pre�x and the planner will concurrently continue to generatethe rest of the solution and output successive pre�xes for execution whenever possible.This approach has two advantages. First, even if it takes a long time to generate thewhole solution, we can hope to start executing a pre�x within a reasonably short time.In most applications, we can expect action execution to take place on a relatively much



slower time scale than planning, so outputting pre�xes now and then will keep the planexecutor busy and not much time will be lost in planning. Second, if we have to replan,we only have to wait for the �rst pre�x of the new plan before we can, once again, startexecution. That is, for each failure, we only lose the time it takes to generate a pre�xof the new plan. We will refer to this method as incremental planning.There is an obvious problem with incremental planning: In general, there is no guar-antee that the planner can output a pre�x before it has generated the whole solution.Even worse, before the planner has terminated we cannot know if there is a solutionat all. Hence, if the planner outputs a pre�x, we cannot know whether it is a pre�xof a solution or not. Executing the pre�x of a non-solution is not advisable, since wemay wish to try planning for some alternative goal if there is no solution for the �rstone. However, executing the invalid pre�x may prevent us from reaching the alternativegoal.Now, to be more precise, we have to distinguish between the plan existence problem,ie. �nding out whether a solution exists or not, and the plan generation problem,ie. actually generating a plan. While other authors in the literature have restrictedthemselves to analysing the complexity of plan existence only, under various restrictions,we have also analysed the corresponding plan generation problems [B�ackstr�om andNebel, 1993, Jonsson and B�ackstr�om, 1994a]. It turned out that while plan existence istypically only conjectured intractable (ie. NP- or Pspace-complete), plan generationis often inherently intractable since optimal plans may be of exponential length. Thereare even a few problem classes where we could not determine the complexity of planexistence, although plan generation is inherently intractable. This raised the questionof whether there might be problems exhibiting tractable plan existence but intractableplan generation|a question which we answer positively in this paper by presenting the3S class, which exhibits this property.Incremental planning is obviously attractive for the 3S class, since we can e�ciently�nd out in advance whether an instance has a solution or not. Having �rst veri�ed thata solution exists, we can be assured both that all pre�xes are indeed valid pre�xes ofa solution and that we will not waste time on the intractable plan generation problemfor a non-solvable instance. We augment this theoretical result with presenting anincremental planning algorithm for the 3S class. The planning algorithm is provencorrect and runs in polynomial time in the length of the solution, which we will referto as solution-polynomial time.The remainder of the paper is organized as follows. Section 2 recapitulates thepropositional Strips formalism, Section 3 de�nes the problem class 3S and Section 4proves that plan existence is tractable for 3S. Section 5 presents the incremental plan-ning algorithm for the 3S class and, �nally, Section 6 discusses the results and futurework.2 Basic FormalismWe base our work in this paper on the propositional Strips formalism with nega-tive goals [Bylander, 1994], which is equivalent to most other variants of propositionalStrips [B�ackstr�om, 1995].De�nition 2.1 Given a set of operators O, we de�ne the set of all operator sequencesover O as Seqs(O) = fhig [ fhoi;!jo 2 O and ! 2 Seqs(O)g; where ; is the sequenceconcatenation operator.



De�nition 2.2 An instance of the PSN planning problem is a quadruple � =hP;O; s0; hs�+; s��ii where� P is a �nite set of atoms;� O is a �nite set of operators of the form hpre+; pre�; add; del ;namei, wherepre+; pre� � P denote the positive and negative precondition respectively, satisfy-ing pre+ \ pre� = ?, add ; del � P denote the positive and negative postcondition(add and delete list) respectively, satisfying add \ del = ?, and name is a uniqueidenti�er;� s0 � P denotes the initial state and s�+; s�� � P denote the positive and negativegoal respectively, satisfying s�+ \ s�� = ?;The unique identi�er for each operator is not technically necessary but it will simplifythe forthcoming proofs. For o = hpre+; pre�; add ; del ;namei � O, we write pre+(o),pre�(o), add(o), del (o) and name(o) to denote pre+, pre�, add , del and name respec-tively. A sequence ho1; : : : ; oni 2 Seqs(O) of operators is called a PSN plan (or simplyplan) over �. We can now de�ne when a plan solves a planning instance.De�nition 2.3 The ternary relation Valid � Seqs(O)�2P�(2P�2P) is de�ned s.t. forarbitrary ho1; : : : ; oni 2 Seqs(O) and S; T+; T� � P, Valid (ho1; : : : ; oni; S; hT+; T�i) i�either1. n = 0, T+ � S and T� \ S = ? or2. n > 0, pre+(o1) � S, pre�(o1) \ S = ? andValid(ho2; : : : ; oni; (S � del (o1)) [ add(o1); hT+; T�i).A plan ho1; : : : ; oni 2 Seqs(O) is a solution to � i� Valid (ho1; : : : ; oni; s0; hs+� ; s�� i).We can now formally de�ne the planning problems that we will consider in this paper.De�nition 2.4 Let � = hP;O; s0; hs+� ; s�� ii be a given PSN instance. The plan exis-tence problem is to decide whether there exists or not exists some ! 2 Seqs(O) s.t. !is a solution to �. The plan generation problem is to �nd some ! 2 Seqs(O) s.t. ! is asolution to � or answer that no such ! exists.3 The 3S ClassWe begin by de�ning dependency graphs on planning instances. Such a graph representsfor each atom p, which other atoms we will possibly have to add or delete in order toadd or delete p. The idea is not new; a more restricted variant is used by Knoblock[Knoblock, 1994] in his Alpine system.De�nition 3.1 Let p 2 P and let Q � P. Then, A�ects(p) = fo 2 Ojp 2 add(o) orp 2 del(o)g and A�ects(Q) = Sq2QA�ects(q).De�nition 3.2 For a given PSN instance � = hP;O; s0; hs+� ; s�� ii, we de�ne the corre-sponding dependency graph DG(�) as a directed labelled graph DG(�) = hP;Di withvertex set P and arc set D such that for all p; q 2 P,



� hp;+; qi 2 D i� there exists an operator o 2 A�ects(q) such that p 2 pre+(o)� hp;�; qi 2 D i� there exists an operator o 2 A�ects(q) such that p 2 pre�(o).� hp;�; qi 2 D i� there exists an operator o 2 O such that p; q 2 add(o) [ del (o)and p 6= q.An example of an dependency graph for some � with P = fA; : : : ; Ig can be found inFigure 1. For example, we can see that there exists some operator a�ecting both A andB and that I is not dependent of the other atoms in any way. We continue by de�ningthree classes of atoms, namely static, irreversible and reversible atoms. The intuitionbehind these classes is that a static atom must not or cannot be added or deleted, anirreversible atom can be added or deleted but not both and a reversible atom can beboth added and deleted.
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�A B+ �� � +CD E� + � F GHFigure 1: An example dependency graph.De�nition 3.3 Let � = hP;O; s0; hs+� ; s�� ii be a PSN instance and let p 2 P. Then,p is static in � i� (1) p 62 s0 and there does not exist an o 2 O such that p 2 add(o)or (2) p 2 s0 and there does not exist an o 2 O such that p 2 del (o) or (3) p 62 s0 andp 2 s�� and there does not exist an o 2 O such that p 2 del (o) or (4) p 2 s0 and p 2 s+�and there does not exist an o 2 O such that p 2 add(o).Case (1) says that there does not exist any operator that can add p and since p 62 s0, pcannot occur in any state that any plan solving � might achieve. Case (2) is analogousto case (1). Case (3) says that if we add p, then we cannot delete it again. But sincep 2 s�� we must delete p if we have added it. Hence, p cannot be added by any plansolving �. Case (4) is analogous to case (3). So, if an atom p is static in �, then noplan solving � can add or delete p.De�nition 3.4 Let � = hP;O; s0; hs+� ; s�� ii be a PSN instance. An atom p 2 P isreversible in � i� for all o 2 O, whenever p 2 add(o) then there exists an o0 2 O suchthat p 2 del(o) and vice versa. Moreover, p is symmetrically reversible in � i� p isreversible and for all o 2 O, whenever p 2 add(o) then there exists an o0 2 O such thatp 2 del(o), pre+(o) = pre+(o0) and pre�(o) = pre�(o0).If an atom p is reversible in �, then plans that solve � can contain both operatorsadding p and operators deleteing p. If an atom is symmetrically reversible, then we canalways delete it under the same conditions as we can add it and vice versa.De�nition 3.5 Let � = hP;O; s0; hs+� ; s�� ii be a PSN instance. An atom p 2 P isirreversible in � i� it is not static in � and not reversible in �.



If an atom p is irreversible in �, then plans that solve � must contain an operator thatadds or deletes p, but not both.De�nition 3.6 Let G = hV;Ei be a directed labelled graph and G0 = hV;E0i be itsundirected counterpart, that is, let E 0 = f(v; x;w); (w; x; v)j(v;x;w) 2 Eg. Then, forv;w 2 V , w is weakly reachable from v i� there exists a path from v to w in G0 = hV;E0i.De�nition 3.7 Let � = hP;O; s0; hs+� ; s�� ii be a PSN instance, DG(�) = hV;Eiand let p 2 P. Furthermore, let Qp+ = fqj(p;+; q) 2 Eg, Qp� = fqj(p;�; q) 2 Eg,DGp+(�) = hV;E � f(p;+; x) 2 Ejx 2 V gi and DGp�(�) = hV;E � f(p;�; x) 2 Ejx 2V gi. Then, we can divide P into the following three sets:1. Pp+ = Qp+ [ fqjq is weakly reachable from some r 2 Qp+ in DGp+(�)g.2. Pp� = Qp� [ fqjq is weakly reachable from some r 2 Qp� in DGp�(�)g.3. Pp0 = fq 2 �0jq is not weakly reachable from p in DG(�)g.Consider the dependency graph in Figure 1 and the vertex C. We can see that QC+ =fEg and consequently, PC+ = fEg[fF;G;Hg = fE;F;G;Hg. Analogously, QC� = fDgand PC� = fDg [ ? = fDg. Also note that PC0 = fIg. Obviously, Pp+ \ Pp0 = ? andPp� \ Pp0 = ? for all choices of p but, in the general case, Pp+ and Pp� are not disjoint.This observation leads to the next de�nition:De�nition 3.8 Let � = hP;O; s0; hs+� ; s�� ii be a PSN instance. An atom p 2 P issplitting in � i� Pp+ and Pp� are disjoint.The atom C in Figure 1 is a splitting atom because PC+ \PC� = fE;F;G;Hg\fDg = ?.Another example is the atom F where both PF+ and PF� equal ?. Intuitively, if an atomp is splitting then the problem instance can be split into three subproblems which canbe solved independently and the sets Pp+;Pp� and Pp0 tells us which atoms that belongsto which subproblem. As a convention, we usually drop \in �" when dealing with typesof atoms if � is clear from the context. We can now de�ne the 3S class of planningproblems.De�nition 3.9 3S is the set of PSN instances having acyclic dependency graphs andwhere every atom is static, symmetrically reversible or splitting.Note that if DG(�) is acyclic for some PSN instance � = hP;O; s0; hs+� ; s�� ii, then � isunary, that is, jadd(o)[ del(o)j = 1 for every o 2 O. Hence, every 3S instance is unary.It should also be noted that the restrictions on the atomic level are not orthogonal. Forexample, an atom can be splitting and symmetrically reversible at the same time.4 Polynomial-time Plan ExistenceIn this section, we show that the plan existence problem for instances in 3S is polyno-mial while the plan generation problem is provably intractable. However, we begin byde�ning some concepts that will facilitate the forthcoming proofs.De�nition 4.1 Let � = hP;O; s0; hs+� ; s�� ii be a PSN instance, p be a member of Pand let s; s+; s� � P. Then s is compatible with hs+; s�i wrt p i� (1) p 2 s and p 62 s�or (2) p 62 s and p 62 s+.



Loosely speaking, an initial state s0 is compatible with a goal state hs+� ; s�� i wrt. p ifwe do not have to add or delete p in order to satisfy the goal. We continue by de�ninga function e for restricting operators and planning instances to limited sets of atoms.We also de�ne a function for recreating operators that have been restricted by e.De�nition 4.2 Let � = hP;O; s0; hs+� ; s�� ii be a PSN instance, o 2 O and P 0 � P.Then, oeP 0 (the restriction of o to P 0) is the operator hadd(o)\P 0; del(o)\P 0; pre+(o)\P 0; pre�(o) \ P 0;name(o)i. We de�ne e for a set O0 � O of operators in the followingway: O0 e P 0 = fo e P 0jo 2 O0g. Finally, we de�ne e for a PSN problem instance �such that � e P 0 = hP 0;O e P 0; s0 \ P 0; hs+� \ P 0; s�� \ P 0iiDe�nition 4.3 Let o be an operator and O a set of operators. Then, #O (o) is de�nedas the unique operator o0 2 O such that name(o) = name(o0). We generalize #O tooperate on plans in the obvious way, namely #O (ho1; : : : ; oni) = h#O (o1); : : : ; #O (on)i.Observe that the previous de�nition is sound since we have assumed that every operatorhas a unique name in every operator set. In the next de�nition, we provide a methodfor removing certain operators from a planning instance.De�nition 4.4 Let � = hP;O; s0; hs+� ; s�� ii be a PSN instance, O0 � O and p 2 P.Then, R+(p;O0) = fo 2 O0jp 62 pre+(o)g and R�(p;O0) = fo 2 O0jp 62 pre�(o)g. Wealso de�ne R+ and R� for PSN problem instances the obvious way; namely R+(p;�) =hP; R+(p;O); s0; hs+� ; s�� ii and R�(p;�) = hP; R�(p;O); s0; hs+� ; s�� ii.We can view R+(p;�) as the problem instance � with all operators o such that p 2pre+(o) is removed and R�(p;�) as � with all operators o such that p 2 pre�(o) isremoved. Finally, we de�ne a well-known graph-theoretic concept.De�nition 4.5 Let G = hV;Ei be a directed (labelled) graph. A vertex v 2 V isminimal i� there does not exist any e 2 E ending in v.We claim that the PE-3S algorithm which is presented in Figure 2 solves the planexistence problem in polynomial time for problem instances in 3S. To prove the claim,we need the following three lemmata.Lemma 4.6 Let � = hP;O; s0; hs+� ; s�� ii 2 3S and let P 0 = P�fpg for some arbitraryp 2 P. Then, � e P 0; R+(p;�) e P 0; R�(p;�) e P 0 2 3S.1 function PE-3S(�) : boolean (* � = hP;O; s0; hs+� ; s�� ii *)2 if P = ? then return true3 else4 choose an atom p that is minimal in DG(�)5 if p is static then6 if s0 is not compatible with hs+� ; s�� i wrt. p7 then return false8 elsif p 62 s0 then return PE-3S(R+(p;�) e (P � fpg))9 else return PE-3S(R�(p;�) e (P � fpg))10 else return PE-3S(� e (P � fpg))Figure 2: The PE-3S algorithm.



Proof: If �0 = � e P 0, then DG(�0) is acyclic and every atom in �0 is either static,symmetrically reversible or splitting since � 2 3S. Assume �0 = R+(p;�)eP 0. DG(�0)is acyclic since DG(�) is acyclic. Choose an arbitrary q 2 P 0. If q is static, then qis static in �0 because jO0j � jOj. If q is symmetrically reversible, then q is eitherreversible or static in �0. This follows from the fact that if some add operator thata�ects p is removed by R+, then the corresponding delete operator is removed as well.Finally, if q is splitting, then q is still splitting in �0 because jO0j � jOj. The case when�0 = R�(p;� e P 0) is analogous. 2Lemma 4.7 Let � = hP;O; s0; hs+� ; s�� ii 2 3S. Then, PE-3S(�) returns true if � hasa solution.Proof: Suppose there exists a plan ! that solves �, but PE-3S(�) returns false. Weshow that this is impossible by induction over jPj:Basis step: jPj = 0. PE-3S(�) returns true by de�nition.Induction hypothesis: Suppose the lemma holds for jPj � k, k � 0.Induction step: We want to show that the lemma holds for jPj = k+ 1. We have fourcases:1. PE-3S returns false in line 7. Obviously, � does not have any solution. Contra-diction.2. PE-3S returns false in line 8. Since we cannot add p, we must check if R+(p;�)e(P � fpg) has any solution. By Lemma 4.6, R+(p;�) e (P � fpg) 2 3S so, bythe induction hypothesis, we can do this with the PE-3S procedure. Hence, ifPE-3S(R+(p;�) e (P � fpg)) returns false, � does not have any solution. Con-tradiction.3. PE-3S returns false in line 9. Analogous to the previous case.4. PE-3S returns false in line 10. By Lemma 4.6, � e (P � fpg) 2 3S. Hence, bythe induction hypothesis, we can check whether � e (P � fpg) has a solutionor not with PE-3S. If � e (P � fpg) has no solution, then � has no solution.Contradiction. 2Lemma 4.8 Let � = hP;O; s0; hs+� ; s�� ii 2 3S Then, � has a solution if PE-3S(�)returns true.Proof: Assume PE-3S(�) returns true. We show the lemma by induction over jPj:Basis step: If jPj = 0, then PE-3S(�) returns true in line 2. Obviously, hi is a validplan for � so the lemma holds in this case.Induction hypothesis: Suppose the lemma holds for jPj � k, k � 0.Induction step: We want to show that the lemma holds for jPj = k + 1. Let p be theminimal atom in DG(�) that PE-3S chooses in line 7 and let P 0 = P � fpg. (Notethat the algorithm always can choose such a p since DG(�) is acyclic). We have threecases:1. p is static. Since PE-3S(�) returns true, s0 is compatible with hs+� ; s�� i wrt.p. Hence, PE-3S must return true in line 10 or 11. Both R+(p;�) e P 0 andR�(p;�)eP 0 are members of 3S by Lemma 4.6. So, by the induction hypothesis,there exists a valid plan ! for R+(p;�) e P 0 or R�(p;�) e P 0. Since p is static,#O (!) is a valid plan for �.



2. p is reversible. We know that p is not static so PE-3S must return true in line13. Since p is minimal in DG(�), there exists operators o+; o� that adds p anddeletes p having no preconditions at all. Hence, we can add and delete p freely.By Lemma 4.6, � e P 0 2 3S so by the induction hypothesis, there exists a validplan ! for �eP 0. Consequently, there exists a plan !0 for �. (Simply by insertingo+ before every operator in #O (!) that needs p to be true and inserting o� beforeevery operator in #O (!) that needs p to be false. Possibly, we also have to insertsome operator last in the plan to ensure that the goal state is satis�ed.)3. p is irreversible. We begin by showing that p is splitting. Assume p is not splitting.Since � 2 3S and p is not static, p must be symmetrically reversible. Then p isnot irreversible, so p is splitting. Consequently, PE-3S must return true in line13. By Lemma 4.6, �0 = � e P 0 2 3S and by the induction hypothesis, thereexists a plan ! that solves �0. Since p is splitting, Pp+;Pp� and Pp0 are disjoint.Form the following three subinstances: �0+ = � ePp+;�0� = � ePp�;�00 = � ePp0 .Assume that p 2 s0. As we know that p is not static, there exists an operator o�that deletes p. Furthermore, we know that Pp+;Pp� and Pp0 are disjoint, so we canreorder ! to the plan !0 = (!+;!�;!0) where !+ solves �0+, !� solves �0� and !0solves �00. As a consequence, !00 = (#O (!+); o�; #O (!�); #O (!0)) is a valid plansolving �. The case when p 62 s0 is analogous. 2We are now able to prove that the plan existence problem for instances in 3S is poly-nomial.Theorem 4.9 Let � = hP;O; s0; hs+� ; s�� ii 2 3S. Then, whether � has a solution ornot can be decided in polynomial time.Proof: The recursion depth of PE-3S is bounded above by jPj since the number ofatoms decreases strictly for each recursive level. Hence, PE-3S must eventually returntrue or false. By Lemmata 4.7 and 4.8, � has a solution i� PE-3S(�) returns true.Conversely, � lacks a solution i� PE-3S(�) is false. It remains to show that PE-3Sruns in polynomial time for every �. Constructing DG(�) and performing the di�erenttests takes only polynomial time. We have already shown that we PE-3S will make lessthan jPj recursive calls. Consequently, PE-3S runs in polynomial time. 2Now, we turn our attention to the complexity of plan generation for instances in 3S.In the next theorem, we show that there exists instances having exponentially sizedminimal solution in 3S.Theorem 4.10 For all n > 0, there is some instance � = hP;O; s0; hs+� ; s�� ii 2 3Ssuch that jPj = n and all minimal plans solving � are of length 2n � 1.Proof sketch: The SAS-PUB instance in B�ackstr�om & Nebel [B�ackstr�om and Nebel,1993] which have exponentially sized minimal solution can trivially be converted into a3S instance with the desired properties. 2So, plan existence is polynomial for instances in 3S while plan generation takes expo-nential time in the worst case.



5 Incremental PlanningSince Lemma 4.8 is constructive, it allows us to devise a planner that generates asolution plan whenever one exists. By exploiting our knowledge of the structure ofthe plan, we can even construct a incremental planner, ie. a planner that attemptsoutputting an executable pre�x of the �nal solution plan before the whole of this solutionis completed. This algorithm, IP-3S, appears in Figure 3. To be able to output pre�xesbefore the whole solution is computed, we use streams. The primitive output puts oneor more elements on the stream and the function read returns the �rst element of thestream and removes it.The ability of IP-3S to produce executable pre�xes stems from two facts: (1) ifan atom p is splitting, then the problem can be divided into three subproblems whichcan be solved independently and (2) Interweave does not have to wait for its incomingstream to be closed before it can begin putting operators on its output stream. To takefull advantage of the pre�x-generation, a certain amount of parallelism is needed. Wedo not want to wait until a recursive call in line 15 of IP-3S is completed before webegin to process the output on the stream from this call. Instead, we want the recursivecall to be a new process that executes concurrently with the process that called it.It should be noted that # has to be rede�ned in a straight-forward way to operateon streams in order to make IP-3S work correctly. The IP-3S algorithm clearly followsthe cases in the proof of Lemma 4.8 so the following theorem follows immediately.Theorem 5.1 Let � is a soluble instance of 3S, then, IP-3S will generate a plan !solving �Since we can check if � 2 3S has a solution or not in polynomial time, it is not veryrestrictive that IP-3S requires � to have a solution in order to work; It would, in fact,be very disappointing if IP-3S generated a large pre�x (which we perhaps would start toexecute) and then suddenly told us that no solution exists for the instance. We continuewith de�ning a complexity concept for capturing the time complexity of IP-3S.De�nition 5.2 An algorithm runs in solution-polynomial time i� its running time isbounded above by some polynomial in the size of the input and in the size of thegenerated solution.This concept is similar to the concept total polynomial time [Johnson et al., 1988]. ByTheorem 4.10, IP-3S cannot run in polynomial time. However, it runs in solution-polynomial time, which is probably as good as we can hope for when dealing withproblems having exponentially sized solutions.Theorem 5.3 IP-3S runs in solution-polynomial time.Proof sketch: Suppose we want to compute IP-3S(�) for some arbitrary � =hP;O; s0; hs+� ; s�� ii 2 3S and assume that the resulting plan ! has length L. Then,IP-3S will perform less than jPj recursive calls on non-empty subinstances of the orig-inal instance at most. This is trivial if the chosen p is static or reversible and followsfrom the fact that Pp+, Pp� and Pp0 are disjoint otherwise. We can over-estimate theconsumed time by assuming that every recursive calls works on a plan of length L. Theconstruction of DG(�), �nding a minimal p, the di�erent tests and the #and Interweavefunctions are all bounded by some polynomial p in jPj and L. Hence, the running time



1 function IP-3S(�) : stream (* � = hP;O; s0; hs+� ; s�� ii *)2 if P 6= ? then3 choose an atom p that is minimal in DG(�)4 if p is static then5 if p 62 s0 then output(#O (IP-3S(R+(p;�) e (P � fpg)))6 else output(#O (IP-3S(R�(p;�) e (P � fpg)))7 elsif p is irreversible then8 if p 62 s0 then9 output(#O (IP-3S(� e Pp�)))10 output(o) where o 2 O adds p11 output(#O (IP-3S(� e Pp+)))12 output(#O (IP-3S(� e Pp0)))13 else the case when p 2 s0 is analogous14 else (* p is reversible *)15 output (Interweave(#O (IP-3S(� e (P � fpg))); p;O; s0; hs+� ; s�� i))1 function Interweave(! : stream; p;O; s0; s+� ; s�� ) : stream2 if p 2 s0 then added T3 else added F4 let o+; o� 2 O be such that p 2 add(o+) and p 2 del (o�)5 while ! is not closed do6 o read(!)7 if p 2 pre+(o) and not added then output(o+); added T8 elsif p 2 pre�(o) and added then output(o�); added F9 output(o)10 if p 2 s+� and not added then output(o+)11 elsif p 2 s�� and added then output(o�)Figure 3: The IP-3S algorithm.is L � p(jPj; L) at most and the theorem follows. 2It is important to notice that IP-3S is polynomial in the length of the generated plan,not in the shortest possible plan. Hence, it is possible that IP-3S can take exponentialtime when solving an instance � though it is possible to solve � in polynomial timewith some other algorithm.6 DiscussionWe have presented a class of planning problems where we can tell in advance, in polyno-mial time, whether a solution exists or not. We have also presented a provably correctplanner for this class that runs in polynomial time in the length of the solution itproduces. Furthermore, this planner will, whenever possible, output successive validpre�xes of the �nal solution for immediate execution, concurrently with the continuingplanning process.This research continues as well as complements our ongoing research into tractableplanning, using syntactic restrictions [B�ackstr�om and Nebel, 1993] as well as structuralones [Jonsson and B�ackstr�om, 1994b]. Incremental planning seems to provide one way



of tackling non-tractable classes of planning problems, while also making replanningfeasible. The variable-graph approach is an obvious continuation of the research intostructural restrictions. Interestingly, these graphs can be viewed as a generalizationof the dependency graphs Knoblock [Knoblock, 1994] uses for generating abstractionhierarchies, where our graphs contain more information.We have earlier argued [B�ackstr�om and Nebel, 1993] that planning problems allow-ing exponential-size optimal solutions should be considered unrealistic.1 This does notimply that the 3S class is unrealistic, however. It is important to distinguish betweenthe inherent complexity of an application problem and the complexity of the hardestproblems allowed by planning formalism per se. The only natural examples of prob-lems with exponential-size optimal solutions seem to be arti�cial puzzles, like Towersof Hanoi, which are deliberatly designed to have this property. Application problemsarising 'naturally' in industry etc. can be expected not to exhibit this property. In otherwords, we can expect real problems �tting within the 3S class to have reasonably sizedsolutions. (Indeed, if we can be sure that all solvable instances we feed the planner havepolynomially bounded solutions, then we can actually solve plan generation in polyno-mial time.) Note, however, that this would not be of much help to us if the 3S class didnot allow tractable plan existence, since we would then still face the intractability forthe unsolvable instances|not being able to tell in advance that these are unsolvable.An interesting theoretical consequence of the 3S class is that the relevance of derivingcomplexity results for plan existence only is questionable since this need not at all berelated to the complexity of our ultimate goal|plan generation. However, the 3S class isnot only of theoretical interest; it is, in fact, expressive enough for modelling the LEGOcar factory, a miniature assembly line for LEGO cars, which is used for undergraduatelaborations at the department of EE at Link�oping University. This assembly line is inmany respects a realistic miniature version of real industrial processes and is describedin Klein [Klein et al., 1995].One problem with the 3S algorithm is that although it runs in polynomial time inthe length of the solution it generates, it is not guaranteed to generate an optimal plan.In fact, in the worst case it could happen to generate an exponential plan when there isa short, optimal one. Although we can hope for this not to happen in practice, it seemshard to rule out the possibility by any simple means and this problem arises also for`standard' general-purpose planners, like Tweak. However, while such planners canavoid the problem through backtracking, although at a considerably higher cost, thismay not be possible if we want to generate pre�xes greedily. This problem is not uniquefor incremental planning, however. An analogous problem arises in state abstraction,where the wrong choice of abstraction hierarchy can force the hierarchical planner tospend exponentially longer time generating an exponentially longer solution than anon-hierarchical planner [B�ackstr�om and Jonsson, 1995]. For incremental planners,there seems to be a tuning factor between outputting pre�xes early and guaranteeingreasonably short plans respectively|an interesting challenge for future research.Another intimately related topic we are currently studying is to determine boundson the length of solutions before generating them, which could provide a solution to theproblem mentioned above. We further plan to exploit the information in the variable-dependency graphs more heavily and also generalize them to multi-valued state vari-ables, since we believe these graphs to provide a major vehicle for future research intotractable planning.1This is simply a specialization of the `same' claim for problems in general [Garey and Johnson,1979].
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