Incremental Planning

Peter Jonsson and Christer Backstrom
Department of Computer and Information Science
Linkoping University, S-581 83 Linkoping, Sweden

email: {petej,cha}@ida.liu.se

Abstract. Ambros-Ingerson and Steel suggested to interleave plan-
ning and execution through incremental planning, ie. using a planner
that can output valid prefixes of the final plan before it has finished
planning. This method could considerably bring down the time lost in
planning, especially in dynamic domains, where replanning has to occur
frequently. We improve on the basic idea, avoiding certain problems,
by presenting an incremental planner with provable properties for a re-
stricted class of planning problems, the 35S class. Finding out whether a
3S instance is solvable or not is computationally tractable, despite the
fact that generating a plan is inherently intractable. By first testing
whether an instance is solvable or not, we can avoid outputting prefixes
of invalid plans in the latter case. Furthermore, making the reasonable
assumption that natural problems have non-exponential-size solutions,
we can also plan efficiently in practice since we need not waste time on
non-solvable instances.

1 Introduction

Clasical planning is sometimes considered inadequate for coping with dynamic worlds
and execution failures. First, planning is computationally expensive in the general
case; plan existence for STRIPS-style formalisms is undecidable in the first-order case
[Chapman, 1987] and PSPACE-complete in the propositional case [Bylander, 1994]. This
is a problem in time-critical applications since we have to wait for the planner to
generate the whole plan before we can start executing it. Second, when the execution
of an action fails, or other changes in the world force us to some unexpected world state,
we have to reinvoke the planner to find a new plan from the current world state to the
goal. This is known as replanning and is often considered an infeasible method since
it can be as costly as planning. So called reactive planning is sometimes considered
a better alternative, but it must be noted that, from a computational perspective,
a reactive planner could not perform any better than a classical planning/replanning
system unless we allow it to solve a relaxed version of the problem.

Ambros-Ingerson & Steel [Ambros-Ingerson and Steel, 1987] have addressed the
problems above by suggesting to interleave planning with execution. Their idea is to use
a planner which will as soon as possible output a prefiz of the final solution—that is, a
set of actions which are the first actions of the final solution. We can, thus, immediately
start executing this plan prefix and the planner will concurrently continue to generate
the rest of the solution and output successive prefixes for execution whenever possible.
This approach has two advantages. First, even if it takes a long time to generate the
whole solution, we can hope to start executing a prefix within a reasonably short time.
In most applications, we can expect action execution to take place on a relatively much



slower time scale than planning, so outputting prefixes now and then will keep the plan
executor busy and not much time will be lost in planning. Second, if we have to replan,
we only have to wait for the first prefix of the new plan before we can, once again, start
execution. That is, for each failure, we only lose the time it takes to generate a prefix
of the new plan. We will refer to this method as incremental planning.

There is an obvious problem with incremental planning: In general, there is no guar-
antee that the planner can output a prefix before it has generated the whole solution.
Even worse, before the planner has terminated we cannot know if there is a solution
at all. Hence, if the planner outputs a prefix, we cannot know whether it is a prefix
of a solution or not. Executing the prefix of a non-solution is not advisable, since we
may wish to try planning for some alternative goal if there is no solution for the first
one. However, executing the invalid prefix may prevent us from reaching the alternative
goal.

Now, to be more precise, we have to distinguish between the plan existence problem,
ie. finding out whether a solution exists or not, and the plan generation problem,
ie. actually generating a plan. While other authors in the literature have restricted
themselves to analysing the complexity of plan existence only, under various restrictions,
we have also analysed the corresponding plan generation problems [Backstrém and
Nebel, 1993, Jonsson and Béackstrom, 1994a). It turned out that while plan existence is
typically only conjectured intractable (ie. NP- or PSPACE-complete), plan generation
is often inherently intractable since optimal plans may be of exponential length. There
are even a few problem classes where we could not determine the complexity of plan
existence, although plan generation is inherently intractable. This raised the question
of whether there might be problems exhibiting tractable plan existence but intractable
plan generation—a question which we answer positively in this paper by presenting the
35 class, which exhibits this property.

Incremental planning is obviously attractive for the 3S class, since we can efficiently
find out in advance whether an instance has a solution or not. Having first verified that
a solution exists, we can be assured both that all prefixes are indeed valid prefixes of
a solution and that we will not waste time on the intractable plan generation problem
for a non-solvable instance. We augment this theoretical result with presenting an
incremental planning algorithm for the 3S class. The planning algorithm is proven
correct and runs in polynomial time in the length of the solution, which we will refer
to as solution-polynomial time.

The remainder of the paper is organized as follows. Section 2 recapitulates the
propositional STRIPS formalism, Section 3 defines the problem class 3S and Section 4
proves that plan existence is tractable for 3S. Section 5 presents the incremental plan-
ning algorithm for the 3S class and, finally, Section 6 discusses the results and future
work.

2 Basic Formalism

We base our work in this paper on the propositional STRIPS formalism with nega-
tive goals [Bylander, 1994], which is equivalent to most other variants of propositional
STRIPS [Backstréom, 1995].

Definition 2.1 Given a set of operators O, we define the set of all operator sequences
over O as Seqs(O) = {()} U{(0o);w]o € O and w € Seqs(O)}, where ; is the sequence
concatenation operator.



Definition 2.2 An instance of the PSN planning problem is a quadruple II =
<7D7 Ov S0, <5*+7 3*_>> where

o P is a finite set of atoms;

e O is a finite set of operators of the form (pret,pre™, add, del, name), where
pret, pre” C P denote the positive and negative precondition respectively, satisfy-
ing pret Npre™ = @, add, del C P denote the positive and negative postcondition
(add and delete list) respectively, satisfying add N del = @, and name is a unique
identifier;

e 39 C P denotes the initial state and s, s,” C P denote the positive and negative
goal respectively, satisfying s,7 N s.” = &;

The unique identifier for each operator is not technically necessary but it will simplify
the forthcoming proofs. For o = (pre*, pre™, add, del, name) C O, we write pre* (o),
pre”(0), add(o), del(o) and name(o) to denote pret, pre™, add, del and name respec-
tively. A sequence (01,...,0,) € Seqs(O) of operators is called a PSN plan (or simply
plan) over II. We can now define when a plan solves a planning instance.

Definition 2.3 The ternary relation Valid C Seqs(O)x27 x (27 x27) is defined s.t. for
arbitrary (o1,...,0,) € Seqs(O) and S, T+, T~ C P, Valid({o1,...,0,),S,{TT,T7))iff

either
I.n=0,TTCSand T-NS = or

2. n>0, pret(o) C S, pre (01) NS =@ and
Valid({og,...,0n), (S — del(01)) U add(o1), (T*,T7)).

A plan (o1,...,0,) € Seqs(O) is a solution to I iff Valid({o1,...,04.), S0, (sF,s7)).
We can now formally define the planning problems that we will consider in this paper.

Definition 2.4 Let II = (P, O, so, (sf,s.)) be a given PSN instance. The plan exis-
tence problem is to decide whether there exists or not exists some w € Seqs(O) s.t. w
is a solution to II. The plan generation problem is to find some w € Seqs(O) s.t. wis a

solution to Il or answer that no such w exists.

3 The 3S Class

We begin by defining dependency graphs on planning instances. Such a graph represents
for each atom p, which other atoms we will possibly have to add or delete in order to
add or delete p. The idea is not new; a more restricted variant is used by Knoblock
[Knoblock, 1994] in his ALPINE system.

Definition 3.1 Let p € P and let @ C P. Then, Affects(p) = {0 € O|p € add(o) or
p € del(o)} and Affects(Q) = U,eq Affects(q).

Definition 3.2 For a given PSN instance IT = (P, O, s, (sI, s )), we define the corre-

sponding dependency graph DG(I1) as a directed labelled graph DG(I1) = (P, D) with
vertex set P and arc set D such that for all p,q € P,



e (p,+,q) € Diff there exists an operator o € Affects(q) such that p € pret(o)
e (p,—,q) € D iff there exists an operator o € Affects(q) such that p € pre= (o).

e (p,~,q) € D iff there exists an operator o € O such that p,q € add(o) U del(o)
and p # q.

An example of an dependency graph for some Il with P = {A,... I} can be found in
Figure 1. For example, we can see that there exists some operator affecting both A and
B and that [ is not dependent of the other atoms in any way. We continue by defining
three classes of atoms, namely static, irreversible and reversible atoms. The intuition
behind these classes is that a static atom must not or cannot be added or deleted, an
irreversible atom can be added or deleted but not both and a reversible atom can be

both added and deleted.
B— ©
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®

Figure 1: An example dependency graph.

Definition 3.3 Let II = (P, O, s, (sf,s.)) be a PSN instance and let p € P. Then,
p is static in 11 iff (1) p & so and there does not exist an o € O such that p € add(o)
or (2) p € 59 and there does not exist an o € O such that p € del(o) or (3) p & so and
p € s; and there does not exist an o € O such that p € del(o) or (4) p € sp and p € sF

and there does not exist an o € O such that p € add(o).

Case (1) says that there does not exist any operator that can add p and since p & sq, p
cannot occur in any state that any plan solving II might achieve. Case (2) is analogous
to case (1). Case (3) says that if we add p, then we cannot delete it again. But since
p € s, we must delete p if we have added it. Hence, p cannot be added by any plan
solving II. Case (4) is analogous to case (3). So, if an atom p is static in II, then no
plan solving Il can add or delete p.

Definition 3.4 Let II = (P, O, sq, (s}, s;)) be a PSN instance. An atom p € P is
reversible in I1 iff for all o € O, whenever p € add(o) then there exists an o’ € O such
that p € del(o) and vice versa. Moreover, p is symmetrically reversible in II iff p is
reversible and for all 0 € O, whenever p € add(o) then there exists an o' € O such that
p € del(o0), pret (o) = pret (o) and pre=(o) = pre=(o').

If an atom p is reversible in II, then plans that solve II can contain both operators
adding p and operators deleteing p. If an atom is symmetrically reversible, then we can
always delete it under the same conditions as we can add it and vice versa.

Definition 3.5 Let II = (P, O, sq, (s}, s;)) be a PSN instance. An atom p € P is
wrreversible in 11 iff it is not static in Il and not reversible in 1I.



If an atom p is irreversible in II, then plans that solve Il must contain an operator that
adds or deletes p, but not both.

Definition 3.6 Let G = (V. F) be a directed labelled graph and G' = (V, E’) be its
undirected counterpart, that is, let £ = {(v,z,w), (w,z,v)|(v,2,w) € E}. Then, for
v,w €V, wis weakly reachable from v iff there exists a path from v to win G' = (V| E").
Definition 3.7 Let II = (P, 0, s, (sf,s7)) be a PSN instance, DG(II) = (V, E)
and let p € P. Furthermore, let Q% = {q[(p,+,¢) € £}, QL = {q|(p.—,q) € E},
DG]-I)-(H) = <V7E - {(p,—l—,:li) S E|$ S V}> and DG{(H) = <V7E - {(pv_vx) S E|$ S
V1. Then, we can divide P into the following three sets:

L. PL = Q% U{q|q is weakly reachable from some r € Q% in DG (II)}.
2. P2 = Q% U{q|q is weakly reachable from some r € Q¥ in DG (11)}.

3. P = {q € Il'|q is not weakly reachable from p in DG(II)}.

Consider the dependency graph in Figure 1 and the vertex . We can see that Qg =
{E} and consequently, P$ = {E}U{F,G, I} = {E,F,G, H}. Analogously, Q¢ = {D}
and P = {D} U@ = {D}. Also note that P = {I}. Obviously, P} N P} = & and
P NP = @ for all choices of p but, in the general case, P} and P~ are not disjoint.
This observation leads to the next definition:

Definition 3.8 Let II = (P, 0, sq, (s}, s;)) be a PSN instance. An atom p € P is
splitting in 11 iff PY and P? are disjoint.

The atom C' in Figure 1 is a splitting atom because PSNPY = {E, F,G, H}N{D} = @.
Another example is the atom F where both Pf and PF equal @. Intuitively, if an atom
p is splitting then the problem instance can be split into three subproblems which can
be solved independently and the sets PL,PL and P§ tells us which atoms that belongs
to which subproblem. As a convention, we usually drop “in II” when dealing with types
of atoms if II is clear from the context. We can now define the 35S class of planning
problems.

Definition 3.9 3S is the set of PSN instances having acyclic dependency graphs and
where every atom is static, symmetrically reversible or splitting.

Note that if DG(II) is acyclic for some PSN instance IT = (P, O, sq, (s}, s7)), then 11 is
unary, that is, |add(o) U del(o)| = 1 for every o € O. Hence, every 3S instance is unary.
It should also be noted that the restrictions on the atomic level are not orthogonal. For

example, an atom can be splitting and symmetrically reversible at the same time.

4 Polynomial-time Plan Existence

In this section, we show that the plan existence problem for instances in 35 is polyno-
mial while the plan generation problem is provably intractable. However, we begin by
defining some concepts that will facilitate the forthcoming proofs.

Definition 4.1 Let I = (P, O, sq, (sF,s;)) be a PSN instance, p be a member of P

* 9 Tk

and let s,s%,s7 CP. Then s is compatible with (s7,s7) wrt piff (1) p € s and p & s~
or (2) pé sandpdst.



FosD) wrt. pif

Loosely speaking, an initial state sq is compatible with a goal state (s, s

we do not have to add or delete p in order to satisfy the goal. We continue by defining
a function m for restricting operators and planning instances to limited sets of atoms.
We also define a function for recreating operators that have been restricted by .

Definition 4.2 Let I = (P, O, s, (sf,s.)) be a PSN instance, 0 € O and P’ C P.
Then, onP’ (the restriction of o to P’) is the operator (add(o)NP’, del(o) NP, pret(o)N
P’ pre= (o) NP’ name(o)). We define m for a set O C O of operators in the following
way: O'a P’ = {onP'lo € O'}. Finally, we define a for a PSN problem instance 11
such that ITa P = (P, Oa P, so NP, (st NP s NP))

Definition 4.3 Let o be an operator and O a set of operators. Then, | (0) is defined
as the unique operator o' € O such that name(o) = name(o’). We generalize |© to
operate on plans in the obvious way, namely | ({01,...,0,)) = (19 (01),...,19(0,)).

Observe that the previous definition is sound since we have assumed that every operator
has a unique name in every operator set. In the next definition, we provide a method
for removing certain operators from a planning instance.

Definition 4.4 Let IT = (P, O, sq, (sf,5.)) be a PSN instance, O' C O and p € P.
Then, RT(p,0") = {o € O'|p & pret(o)} and R~ (p,O') = {o € O'|p & pre=(0)}. We
also define Rt and R~ for PSN problem instances the obvious way; namely R*(p, 1) =
(P, R+(p, O), so, <31—7 7)) and R~ (p,11) = (P, R~ (p, O), so, <51—7 s))-

We can view RT(p,1I) as the problem instance II with all operators o such that p €
pret (o) is removed and R~ (p,II) as II with all operators o such that p € pre=(o) is
removed. Finally, we define a well-known graph-theoretic concept.

Definition 4.5 Let G = (V, E) be a directed (labelled) graph. A vertex v € V is

minimal iff there does not exist any e € F ending in v.

We claim that the PE-3S algorithm which is presented in Figure 2 solves the plan
existence problem in polynomial time for problem instances in 35. To prove the claim,
we need the following three lemmata.

Lemma 4.6 Let I1 = (P, O, s, (sf,s7)) € 35 and let P’ = P — {p} for some arbitrary
p € P. Then, Ila P, RT(p,11)a P, R~ (p,1I) a P’ € 3S.

1 function PE-3S(II) : boolean (* Il = (P, O, s, (s}, s)) ™)

2 if P =2 then return true

3 else

4 choose an atom p that is minimal in DG/(II)

5 if p is static then

6 if sg is not compatible with (s}, s;) wrt. p

7 then return false

8 elsif p € so then return PE-3S(R*(p,II)n (P — {p}))
9 else return PE-3S(R~(p,II)a (P — {p}))
10 else return PE-3S(Ila (P — {p}))

Figure 2: The PE-3S algorithm.



Proof: If II' =1 aP’, then DG(I') is acyclic and every atom in II' is either static,
symmetrically reversible or splitting since IT € 3S. Assume I’ = RY(p, [I)aP’. DG(IT')
is acyclic since DG(II) is acyclic. Choose an arbitrary ¢ € P'. If ¢ is static, then ¢
is static in II" because |O'| < |O]. If ¢ is symmetrically reversible, then ¢ is either
reversible or static in II'. This follows from the fact that if some add operator that
affects p is removed by R, then the corresponding delete operator is removed as well.
Finally, if ¢ is splitting, then ¢ is still splitting in I’ because |O'| < |O|. The case when
II'= R~ (p,lI @ P’") is analogous. O
Lemma 4.7 Let Il = (P, O, s, (sF,s)) € 35. Then, PE-3S(II) returns true if II has

E sk
a solution.

Proof: Suppose there exists a plan w that solves II, but PE-3S(II) returns false. We
show that this is impossible by induction over |P|:

Basis step: |P| = 0. PE-35(II) returns true by definition.

Induction hypothesis: Suppose the lemma holds for |P| < k, k > 0.

Induction step: We want to show that the lemma holds for |P| = k+ 1. We have four

cases:

1. PE-3S returns false in line 7. Obviously, I does not have any solution. Contra-
diction.

2. PE-3S returns false in line 8. Since we cannot add p, we must check if RT(p,1I)n
(P — {p}) has any solution. By Lemma 4.6, R*(p,1I) m (P — {p}) € 3S so, by
the induction hypothesis, we can do this with the PE-3S procedure. Hence, if
PE-3S(R*(p, 1) m (P — {p})) returns false, II does not have any solution. Con-

tradiction.
3. PE-35 returns false in line 9. Analogous to the previous case.

4. PE-3S returns false in line 10. By Lemma 4.6, Il a (P — {p}) € 3S. Hence, by
the induction hypothesis, we can check whether II a (P — {p}) has a solution
or not with PE-3S. If Il m (P — {p}) has no solution, then II has no solution.
Contradiction. O

Lemma 4.8 Let 1T = (P, 0, s, (sf,s7)) € 3S Then, II has a solution if PE-3S(II)

E *
returns true.

Proof: Assume PE-3S(II) returns true. We show the lemma by induction over |P|:
Basis step:  If |P| = 0, then PE-3S(II) returns true in line 2. Obviously, () is a valid
plan for II so the lemma holds in this case.

Induction hypothesis: Suppose the lemma holds for |P| < k, k > 0.

Induction step: We want to show that the lemma holds for |P| =k + 1. Let p be the
minimal atom in DG(II) that PE-3S chooses in line 7 and let P = P — {p}. (Note
that the algorithm always can choose such a p since DG(II) is acyclic). We have three
cases:

L. p is static. Since PE-3S(II) returns true, sq is compatible with (sf,s) wrt.
p. Hence, PE-3S must return true in line 10 or 11. Both R*(p,I) m P’ and
R~ (p,II) aP" are members of 3S by Lemma 4.6. So, by the induction hypothesis,
there exists a valid plan w for R*(p,II) m P’ or R~ (p,II) m P’. Since p is static,

1€ (w) is a valid plan for II.



2. p is reversible. We know that p is not static so PE-35 must return true in line
13. Since p is minimal in DG(II), there exists operators ot, 0o~ that adds p and
deletes p having no preconditions at all. Hence, we can add and delete p freely.
By Lemma 4.6, Il @ P" € 35S so by the induction hypothesis, there exists a valid
plan w for [ImP’. Consequently, there exists a plan w’ for II. (Simply by inserting
ot before every operator in |© (w) that needs p to be true and inserting o~ before
every operator in |“ (w) that needs p to be false. Possibly, we also have to insert
some operator last in the plan to ensure that the goal state is satisfied.)

3. pisirreversible. We begin by showing that p is splitting. Assume p is not splitting.
Since IT € 3S and p is not static, p must be symmetrically reversible. Then p is
not irreversible, so p is splitting. Consequently, PE-3S must return true in line
13. By Lemma 4.6, II' = Il a P’ € 3S and by the induction hypothesis, there
exists a plan w that solves II'. Since p is splitting, P5,P? and P§ are disjoint.
Form the following three subinstances: II'’ = Ia Py, 11’ = IIa P2, 11} = llaPg.
Assume that p € so. As we know that p is not static, there exists an operator o~
that deletes p. Furthermore, we know that P, PZ and Py are disjoint, so we can
reorder w to the plan w' = (wy;w_;wy) where wy solves I, w_ solves II” and wy
solves II}). As a consequence, w” = ([© (wy);07;1% (w_); 19 (wo)) is a valid plan
solving II. The case when p ¢ s is analogous. O

We are now able to prove that the plan existence problem for instances in 35S is poly-
nomial.

Theorem 4.9 Let 11 = (P, O, s, (sF,s.)) € 3S. Then, whether II has a solution or

* 9 O
not can be decided in polynomial time.

Proof: The recursion depth of PE-3S is bounded above by |P| since the number of
atoms decreases strictly for each recursive level. Hence, PE-3S must eventually return
true or false. By Lemmata 4.7 and 4.8, II has a solution iff PE-3S(II) returns true.
Conversely, II lacks a solution iff PE-3S(II) is false. It remains to show that PE-3S
runs in polynomial time for every II. Constructing DG/(II) and performing the different
tests takes only polynomial time. We have already shown that we PE-35 will make less
than |P| recursive calls. Consequently, PE-3S runs in polynomial time. O

Now, we turn our attention to the complexity of plan generation for instances in 3S.
In the next theorem, we show that there exists instances having exponentially sized
minimal solution in 3S.

Theorem 4.10 For all n > 0, there is some instance Il = (P, O, s, (sf,s.)) € 39
such that |P| = n and all minimal plans solving II are of length 2" — 1.

Proof sketch: The SAS-PUB instance in Bickstrom & Nebel [Béackstrom and Nebel,
1993] which have exponentially sized minimal solution can trivially be converted into a
3S instance with the desired properties. a

So, plan existence is polynomial for instances in 3S while plan generation takes expo-
nential time in the worst case.



5 Incremental Planning

Since Lemma 4.8 is constructive, it allows us to devise a planner that generates a
solution plan whenever one exists. By exploiting our knowledge of the structure of
the plan, we can even construct a incremental planner, ie. a planner that attempts
outputting an executable prefix of the final solution plan before the whole of this solution
is completed. This algorithm, IP-35, appears in Figure 3. To be able to output prefixes
before the whole solution is computed, we use streams. The primitive output puts one
or more elements on the stream and the function read returns the first element of the
stream and removes it.

The ability of IP-3S to produce executable prefixes stems from two facts: (1) if
an atom p is splitting, then the problem can be divided into three subproblems which
can be solved independently and (2) Interweave does not have to wait for its incoming
stream to be closed before it can begin putting operators on its output stream. To take
full advantage of the prefix-generation, a certain amount of parallelism is needed. We
do not want to wait until a recursive call in line 15 of IP-3S is completed before we
begin to process the output on the stream from this call. Instead, we want the recursive
call to be a new process that executes concurrently with the process that called it.

It should be noted that | has to be redefined in a straight-forward way to operate
on streams in order to make IP-3S work correctly. The IP-3S algorithm clearly follows
the cases in the proof of Lemma 4.8 so the following theorem follows immediately.

Theorem 5.1 Let II is a soluble instance of 35, then, IP-3S will generate a plan w
solving II

Since we can check if I € 35S has a solution or not in polynomial time, it is not very
restrictive that IP-3S requires Il to have a solution in order to work; It would, in fact,
be very disappointing if IP-3S generated a large prefix (which we perhaps would start to
execute) and then suddenly told us that no solution exists for the instance. We continue
with defining a complexity concept for capturing the time complexity of IP-3S.

Definition 5.2 An algorithm runs in solution-polynomial time iff its running time is
bounded above by some polynomial in the size of the input and in the size of the
generated solution.

This concept is similar to the concept total polynomial time [Johnson et al., 1988]. By
Theorem 4.10, IP-35 cannot run in polynomial time. However, it runs in solution-
polynomial time, which is probably as good as we can hope for when dealing with
problems having exponentially sized solutions.

Theorem 5.3 IP-3S runs in solution-polynomial time.

Proof sketch:  Suppose we want to compute IP-3S(1l) for some arbitrary Il =
(P,0, s0,(st,s;)) € 3S and assume that the resulting plan w has length L. Then,
[P-3S will perform less than |P| recursive calls on non-empty subinstances of the orig-
inal instance at most. This is trivial if the chosen p is static or reversible and follows
from the fact that PL, PL and P§ are disjoint otherwise. We can over-estimate the
consumed time by assuming that every recursive calls works on a plan of length L. The
construction of DG(1I), finding a minimal p, the different tests and the | and Interweave

functions are all bounded by some polynomial p in |P| and L. Hence, the running time



1 function IP-3S(II) : stream (* Il = (P, O, sq, (sF,s7)) *)
2 if P#o then
3 choose an atom p that is minimal in DG/(II)
4 if p is static then
5 if p & so then output([° (IP-3S(R*(p, 1) m (P — {p})))
6 else output([° (IP-3S(R~(p,11) a (P — {p})))
7 elsif p is irreversible then
8 if p& sy then
9 output(1° (IP-3S(IT m PL)))
10 output(o) where o € O adds p
11 output (1° (IP-3S(IL m PY)))
12 output(1° (IP-3S(1L a PY)))
13 else the case when p € s¢ is analogous

14 else (* p is reversible *)

15 output (Interweave(|° (IP-3S(ITm (P — {p}))),p, O, s0, (sF,s2)))
1 function Interweave(w : stream,p, O, s, s, s,) : stream
2 if p € 5o then added — T
3 else added — F
4 let 07,07 € O be such that p € add(o™) and p € del(o™)
5 while w is not closed do
6 0 — read(w)
7 if p € pret(o) and not added then output(oh); added — T
8 elsif p € pre” (o) and added then output(o™); added — F
9 oulput(o)
10 if p € st and not added then output(o™)
11 elsif p € s; and added then output(o™)
Figure 3: The IP-3S algorithm.
is L-p(|P|, L) at most and the theorem follows. O

It is important to notice that IP-35 is polynomial in the length of the generated plan,
not in the shortest possible plan. Hence, it is possible that IP-35 can take exponential
time when solving an instance II though it is possible to solve II in polynomial time
with some other algorithm.

6 Discussion

We have presented a class of planning problems where we can tell in advance, in polyno-
mial time, whether a solution exists or not. We have also presented a provably correct
planner for this class that runs in polynomial time in the length of the solution it
produces. Furthermore, this planner will, whenever possible, output successive valid
prefixes of the final solution for immediate execution, concurrently with the continuing
planning process.

This research continues as well as complements our ongoing research into tractable
planning, using syntactic restrictions [Backstrém and Nebel, 1993] as well as structural
ones [Jonsson and Béackstrom, 1994b]. Incremental planning seems to provide one way



of tackling non-tractable classes of planning problems, while also making replanning
feasible. The variable-graph approach is an obvious continuation of the research into
structural restrictions. Interestingly, these graphs can be viewed as a generalization
of the dependency graphs Knoblock [Knoblock, 1994] uses for generating abstraction
hierarchies, where our graphs contain more information.

We have earlier argued [Backstrom and Nebel, 1993] that planning problems allow-
ing exponential-size optimal solutions should be considered unrealistic.! This does not
imply that the 35 class is unrealistic, however. It is important to distinguish between
the inherent complexity of an application problem and the complexity of the hardest
problems allowed by planning formalism per se. The only natural examples of prob-
lems with exponential-size optimal solutions seem to be artificial puzzles, like Towers
of Hanoi, which are deliberatly designed to have this property. Application problems
arising ‘naturally’ in industry ete. can be expected not to exhibit this property. In other
words, we can expect real problems fitting within the 35S class to have reasonably sized
solutions. (Indeed, if we can be sure that all solvable instances we feed the planner have
polynomially bounded solutions, then we can actually solve plan generation in polyno-
mial time.) Note, however, that this would not be of much help to us if the 3S class did
not allow tractable plan existence, since we would then still face the intractability for
the unsolvable instances—not being able to tell in advance that these are unsolvable.

An interesting theoretical consequence of the 3S class is that the relevance of deriving
complexity results for plan existence only is questionable since this need not at all be
related to the complexity of our ultimate goal—plan generation. However, the 3S class is
not only of theoretical interest; it is, in fact, expressive enough for modelling the LEGO
car factory, a miniature assembly line for LEGO cars, which is used for undergraduate
laborations at the department of EE at Linkoping University. This assembly line is in
many respects a realistic miniature version of real industrial processes and is described
in Klein [Klein et al., 1995].

One problem with the 3S algorithm is that although it runs in polynomial time in
the length of the solution it generates, it is not guaranteed to generate an optimal plan.
In fact, in the worst case it could happen to generate an exponential plan when there is
a short, optimal one. Although we can hope for this not to happen in practice, it seems
hard to rule out the possibility by any simple means and this problem arises also for
‘standard’ general-purpose planners, like TWEAK. However, while such planners can
avoid the problem through backtracking, although at a considerably higher cost, this
may not be possible if we want to generate prefixes greedily. This problem is not unique
for incremental planning, however. An analogous problem arises in state abstraction,
where the wrong choice of abstraction hierarchy can force the hierarchical planner to
spend exponentially longer time generating an exponentially longer solution than a
non-hierarchical planner [Backstrom and Jonsson, 1995]. For incremental planners,
there seems to be a tuning factor between outputting prefixes early and guaranteeing
reasonably short plans respectively—an interesting challenge for future research.

Another intimately related topic we are currently studying is to determine bounds
on the length of solutions before generating them, which could provide a solution to the
problem mentioned above. We further plan to exploit the information in the variable-
dependency graphs more heavily and also generalize them to multi-valued state vari-
ables, since we believe these graphs to provide a major vehicle for future research into
tractable planning.

!This is simply a specialization of the ‘same’ claim for problems in general [Garey and Johnson,

1979].
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