
In C. B�ackstr�om and E. Sandewall (eds.), Current Trends in AI Planning: EWSP'93|2ndEuropean Workshop on Planning, Vadstena, Sweden, Dec. 1993. IOS Press, 1994.Finding Least Constrained Plans andOptimal Parallel Executions is Harderthan We ThoughtChrister B�ackstr�omDepartment of Computer and Information ScienceLink�oping University, S-581 83 Link�oping, Swedenemail: cba@ida.liu.seAbstract. It seems to have been generally assumed in the planning commu-nity that it is easy to compute a least-constrained partially ordered version of atotal-order plan. However, it is not clear what this concept means. Five candi-dates for this criterion are de�ned in this paper, and it turns out that the onlyones giving some reasonable optimality guarantee are NP-hard to compute. Arelated problem is to �nd a shortest parallel execution of a plan, also provenNP-hard. Algorithms can be found in the literature which are claimed to solvethese problems optimally in polynomial time. However, according to the NP-hardness of the problems, this is impossible unless P=NP, and it is explained inthis paper why the algorithms fail. The algorithms are, instead, reconsideredas approximation algorithms, but it is shown that neither algorithm gives anyconstant performance guarantee. This is not surprising, however, since bothproblems turn out not to be approximable within a constant ratio.1. IntroductionA total-order plan (linear plan) is a totally ordered set of actions, that is, a sequence ofactions, where the order is the intended execution order. A partial-order plan (non-linearplan), on the other hand, is a partially ordered set of actions; that is, some actions maybe left unordered with respect to each other. That two actions are unordered does notimply that they can be executed in parallel|it only means that they can be executedin either order. The main advantage of a partial-order plan over a total-order one isthat the former can be post-processed by a scheduler subject to additional information.For instance, the �nal execution order of two unordered actions may be chosen suchthat a deadline can be met and some of the unordered actions may be executable inparallel, thus decreasing the total execution time of the plan.A total-order planner is a planner that maintains and works on a total-order plan, bymodifying or extending it. Such a planner is over-committed in the sense that it mostlyintroduces stronger ordering constraints than is necessary. The early AI planners weretotal-order planners, eg. STRIPS [6]. A partial-order planner maintains and works ona partial-order plan, thus being less committed to ordering the actions until necessary,typically leaving many actions unordered in the �nal plan. Partial-order planning was

�rst introduced in NOAH [22], with the motivation that less commitment would leadto less backtracking and, thus, e�ciency gains. Most planners since NOAH have beenpartial-order planners and it has generally been assumed that partial-order planning ismore e�cient than total-order planning. For simple action languages this assumptionseems to hold, in principle, [16, 17], although choosing a good commitment strategy forpartial-order planners is non-trivial [4, 13, 15, 16, 17]. It has further been argued thatpartial-order planning becomes very hard if introducing context-dependent e�ects, insome cases leading to a revival of total-order planning.At least two examples [20, 25] can be found in the literature where this argumentmotivates using a total-order planner and then convert the resulting plan into a partial-order plan|the purpose being to exploit possible parallelism according to some furthercriteria. In both these cases algorithms are presented for converting a total-order planinto a partial-order plan, claimed to be a least constrained plan or allowing a shortestparallel execution respectively. However, although often used in the literature, it isunclear what the term least constrained plan means; some candidate criteria for thisconcept are, thus, de�ned and analysed in this paper. Further, a concept of optimalparallel execution of plans is de�ned. The complexity results for these problems aredisappointing, under reasonable optimality criteria, they are NP-hard. In the light ofthis, the algorithms from the literature, mentioned above, are analysed wrt. to thesecriteria. Not surprisingly, they are found not to guarantee optimality wrt. to thesecriteria. Hence, the algorithms are reconsidered as approximation algorithms for thesame problems, unfortunately also with disappointing results. However, this is notonly due to problems with the algorithms themselves, since it is also shown that bothproblems are intrinsically hard to approximate.2. Basic De�nitionsThis section de�nes plans and related concepts. In order to make the de�nitions and re-sults as general and formalism independent as possible, only a minimum of assumptionsabout the underlying formalism will be made. Any planning formalism may be usedthat de�nes some concept of a planning problem, a domain of entities called actionsand a validity test. It will be assumed that the planning problem consists of planningproblem instances (ppi's)1, with no further assumptions about the inner structure ofthese. Given a ppi. � and a sequence of actions ha1; : : : ; ani, the validity test may betrue or false. The intuition behind the validity test is that if the test is true, then theaction sequence ha1; : : : ; ani solves �. The inner structure of the ppi's and the exactde�nition of the validity test are, of course, crucial for any speci�c planning formalism.However, for the results to be proven in this paper it is su�cient to make assumptionsonly about the computational complexity of the validity test. For instance, some re-sults will depend on whether this test is tractable or not. Based on these concepts, thenotion of plans can be de�ned in the usual way.De�nition 2.1 A total-order plan (t.o. plan) is a sequence P = ha1; : : : ; ani of actions,which can alternatively be denoted by the tuple hfa1; : : : ; ang;�i where for 1 � k; l � n,1This is the complexity theoretic terminology for problems. What is called an instance of a planningproblem in this paper is often called a planning problem in the planning literature.

ak � al i� k < l. Given a ppi. �, P is said to be �-valid i� the validity test is true for� and P .A partial-order plan (p.o. plan) is a tuple P = hA;�i where A is a set of actions and� is a strict (ie. irreexive) partial order on A. A t.o. plan hA0;�0i is a linearizationof P i� A0 = A and ���0, ie. �0 is a total order on A obeying the partial order �.The validity test is extended to p.o. plans s.t. given a ppi. �, P is �-valid i� alllinearizations of P are �-valid.The actions of a t.o. plan must be executed in the speci�ed order, while unorderedactions in a p.o. plan may be executed in either order. That is, a p.o. plan canbe viewed as a compact representation for a set of t.o. plans. There is no implicitassumption that unordered actions can be executed in parallel; parallel plans will bede�ned in Section 4. P.o. plans will be viewed as directed acyclic graphs in �gures withthe transitive arcs tacitly omitted to enhance readability.The framework outlined above is very general and abstract and will be used mainlyfor de�nitions and tractability results, in order to make these as generally applicableas possible. Otherwise, the propositional STRIPS framework, sometimes further re-stricted, will be used, especially to make examples simple and to make hardness resultsas strong as possible. The usual propositional STRIPS model (see for instance Bylander[3]) will be used where actions have a precondition, an add-list and a delete-list. In�gures, actions will be shown as boxes. Atoms to the left of an action box are membersof its precondition and atoms to the right are members of its add-list (or the delete-listif negated). Furthermore, all problems considered in this paper concern reordering theactions in plans, not changing the set of actions Hence, a STRIPS ppi. will be writtenas a tuple hI;Gi where I is the initial state and G is the goal state, tacitly omittingthe implicit and, in this context irrelevant, atom and operator sets.3. Least Constrained PlansIt seems to have been generally assumed in the planning community that there is nodi�erence between t.o. plans and p.o. plans in the sense that a t.o. plan can easily beconverted into a p.o. plan and vice versa. However, while a p.o. plan can be triviallyconverted into a t.o. plan in low-order polynomial time by topological sorting, it isless obvious that also the converse holds. At least two polynomial-time algorithms forconverting t.o. plans into p.o. plans have been presented in the literature [20, 25] (boththese algorithms will be analyzed later in this paper). The claim that a t.o. plan caneasily be converted into a p.o. plan is of course, vacuously true since any t.o. plan isalso a p.o. plan, by de�nition. Hence, no computation at all needs to be done. This ishardly what the algorithms were intended to compute, however. In order to be useful,such an algorithm must output a p.o. plan satisfying some interesting criterion, ideallysome optimality criterion. In fact, both algorithms mentioned above are claimed toproduce optimal plans according to certain criteria. For instance, Veloso et al. claim[25, p. 207] their algorithm to produce least constrained plans. They do not de�ne whatthey mean by this term, however, and theirs is not the only paper in the literature usingthis term without further de�nition.Unfortunately, it is by no means obvious what constitutes an intuitive or good cri-terion for when a p.o. plan is least constrained and, to some extent, this also depends

on the purpose of achieving least-constrainment. The major motivation for producingp.o. plans instead of t.o. plans (see for instance Tate [24]) is that a p.o. plan can bepost-processed by a scheduler according to further criteria, such as release times anddeadlines or resource limits. Either the actions are ordered into an (ideally) optimal se-quence or, given criteria for parallel execution, into a parallel plan that can be executedfaster than if the actions were executed in sequence. In both cases, the less constrainedthe original plan is, the greater is the chance of arriving at an optimal schedule oroptimal parallel execution respectively. Both of the algorithms mentioned above aremotivated by the goal of exploiting possible parallelism to decrease execution time.There is, naturally, an in�nitude of possible de�nitions of least-constrainment. Someseem more reasonable than others, however. Five intuitively reasonable candidates arede�ned and analyzed below. Although other de�nitions are possible, it is questionablewhether considerably better de�nitions, with respect to the purposes mentioned above,can be de�ned without using more information than is usually present in a t.o. or p.o.plan.Given a p.o. plan P = hA;�i, let the relation ? be implicitly de�ned s.t. for distincta; b 2 A, a?b i� neither a � b nor b � a. Further, let the function length be de�neds.t. length(P) is the number of actions in the longest action chain in P . The notationP v� P 0, will be used to denote that a p.o. plan P is less constrained than another p.o.plan P 0 wrt. a ppi. �. In particular, the following �ve de�nitions of least constrainmentwill be considered.De�nition 3.1 Given a ppi. � and two �-valid p.o. plans P = hA;�i and P 0 =hA0;�0i:LC1: P v�1 P 0 i� A = A0 and ���0,LC2: P v�2 P 0 i� A = A0 and j � j � j �0 j,LC3: P v�3 P 0 i� A = A0 and ?0 � ?,LC4: P v�4 P 0 i� A = A0 and j?0j � j?j,LC5: P v�5 P 0 i� A = A0 and length(P) � length(P 0).Obviously, the criteria LC3 and LC4 are redundant since P v�1 P 0 i� P v�3 P 0 andP v�2 P 0 i� P v�4 P 0. Furthermore, v2 is likely to be a reasonable substitute for v5since when computing v2 the `cost' of chains will be quadratic in their length and along chain can, thus, dominate over many shorter chains. Hence, this paper will focuson least constrainment de�ned as minimality wrt. either LC1 or LC2.De�nition 3.2 Given a ppi. � and a �-valid p.o. plan P = hA;�i,1. P is v�;A1 -minimal i� there is no other �-valid plan P 0 = hA;�0i s.t. P 0 v�1 P ;2. P is v�;A2 -minimal i� P v�2 P 0 for all �-valid p.o. plans P 0 = hA;�0i.The de�nitions for v1-minimality and v2-minimality look di�erent since v1 is a(reexive) partial order while v2 is a pre-order. It should also be noted that the v�1 -minimal plans for some plan P are incomparable wrt. v1, while all v2-minimal plansform an equivalence class under v2. Furthermore, v2-minimality is a stronger criterionthan v1-minimality, but is harder to compute.

Theorem 3.3 v2-minimality implies v1-minimality, but not vice versa.Proof: Trivial. 2Theorem 3.4 If validity can be tested in polynomial time for p.o. plans, then any �-valid p.o. plan hA;�i for some ppi. � can be converted into a v�;A1 -minimal �-validp.o. plan hA;�0i in polynomial time.Proof sketch: Given a p.o. plan hA;�i, repeatedly select some non-transitive `arc' in� that can be removed without making the plan invalid and remove this arc. Terminatewhen no more such arc exists in �. 2De�nition 3.5 The problem LC2-MINIMAL PLAN (LC2MP) is de�ned as follows:Given a ppi. �, a �-valid p.o. plan hA;�i and a positive integer k, decide whetherthere exists some �-valid p.o. plan P 0 = hA;�0i s.t. j �0 j � k.Theorem 3.6 The problem LC2-MINIMAL PLAN is NP-hard if the action languageis at least as expressive as propositional STRIPS with empty delete lists and it is furtherNP-complete if also p.o. plans can be tested for validity in polynomial time.Proof: Proof by transformation from the MINIMUM COVER problem [7, p. 222],which is NP-complete. Let S = fp1; : : : ; png be a set of atoms, C = fC1; : : : ; Cmg aset of subsets of S and k � jCj a positive integer. A cover of size k for S is a subsetC 0 � C s.t. jC 0j � k and S � [T2C0T . Using propositional STRIPS, construct, inpolynomial time, the ppi. � = h?; frgi and the �-valid t.o. plan P = ha1; : : : ; am; aSiwhere addlist(ak) = Ck for 1 � k � m, precond(aS) = S and addlist(aS) = frg.Obviously, S has a minimum cover of size k i� there exists some �-valid p.o. planP 0 = hfa1; : : : ; am; aSg;�i s.t. j � j = k. Membership in NP is immediate in the casewhere p.o. plans can be tested for validity in polynomial time. 2It follows immediately that the corresponding search problem, that is, the problem ofgenerating an v�;A2 -minimal plan is also NP-hard (and even NP-equivalent [7] if validitytesting is tractable).4. Parallel PlansMost of the results in this paper are about or are motivated by the problem of �ndinge�cient parallel executions of plans. Hence, the concept of parallel plans must be addedto the previous planning framework.De�nition 4.1 A parallel t.o. plan is a sequence P = hS1; : : : ; Sni, where S1; : : : ; Snare disjoint sets of actions. For 1 � k � n, the set Sk is referred to as the kth sliceof P . A linearization of P is a t.o. plan P 0 = �1;: : : ;�n, where the symbol ; denotessequence concatenation and for 1 � k � n, �k is a permutation sequence of Sk. Thereis assumed to exist a validity test also for parallel t.o. plans with the restriction that ifa parallel t.o. plan P is �-valid for some ppi. �, then all linearizations of P are also�-valid.

The intuition behind the de�nition of parallel t.o. plans is that the actions within aslice can be executed yielding the same result independently of whether the actionsare executed in sequence, overlapping or in any other temporal order (more precisely,the intervals occupied by the actions may be related by any set of relations in Allen'sinterval algebra [2]).De�nition 4.2 A parallel p.o. plan is a triple P = hA;�;#i, where hA;�i is ap.o. plan and # is an irreexive, symmetric relation on A. A parallel t.o. planP 0 = hS1; : : : ; Sni is an n-step parallel execution of P i� S1; : : : ; Sn is a partitioningof A and for any two actions a 2 Sk and b 2 Sl, where 1 � k; l � n, if a � b, thenk � l and if a#b, then k 6= l. P 0 is further an optimal parallel execution of P if itis a parallel execution of P and P has no parallel execution in less than n steps. Thevalidity test is extended to parallel p.o. plans s.t. given a ppi. �, P is �-valid i� allparallel executions of P are �-valid.Intuitively, a parallel p.o. plan is a p.o. plan extended with an extra relation, #,(a non-concurrency relation) expressing which of the unordered actions must not beexecuted in parallel, ie. must not belong to the same slice in any parallel execution.There are no restrictions on the relation # in addition to those in De�nition 4.2. Forinstance, a � b does not imply that a#b.This framework for parallel plans admits expressing possible parallelism only; neces-sary parallelism is out of the scope of this paper and requires a planner having access toand being able to make use of additional information. It will be further assumed thatall actions take unit time and that all actions within a slice are executed perfectly inparallel, that is, each slice takes unit time. Since this is a special case of more generalparallelism, the hardness results in this paper carry over implicitly to more generalformalisms.An interesting computation for a parallel plan is to �nd its shortest parallel execution.If the ultimate goal for �nding a least-constrained plan is to exploit possible parallelismto minimize the execution time, then it is better to �nd the plan admitting the shortestparallel execution rather than the least-constrained plan. This is the only way toguarantee optimality, but it requires access to the additional information supplied bythe non-concurrency relation.De�nition 4.3 Given a ppi. �, a parallel p.o. plan P = hA;�;#i is �-reorderingof a parallel p.o. plan P 0 = hA0;�0;#0i i� A = A0, # = #0 and both P and P 0 are�-valid. P is further an n-step �-reordering of P 0 if it also admits a parallel executionin n steps and it is an optimal �-reordering of P 0 if no other �-reordering of P 0 admitsa parallel execution in fewer steps.De�nition 4.4 The decision problem OPTIMAL PARALLEL PLAN (OPP) is de�nedas follows. Given a ppi. �, a parallel p.o. plan P and an integer k, decide whether Phas a k-step �-reordering.Theorem 4.5 The problem OPTIMAL PARALLEL PLAN is NP-hard and it is furtherNP-complete if parallel t.o. plans can be tested in polynomial time.Proof: Hardness is proven by transformation from the GRAPHK-COLOURABILITYproblem (GC) [7, p. 191], which is NP-complete. Let G = hV;Ei be an arbitrary

undirected graph. Construct, in polynomial time,2 the parallel plan P = hV;?; Eithat is valid for some ppi. �. It is obvious that G is k-colourable i� P has a k-step�-reordering since each colour of G will correspond to a unique slice in the parallelexecution of P (note that hV;�0; Ei could not have a shorter execution than P forany order �0). It remains to prove membership in NP in the case parallel t.o. planscan be validated in polynomial time. Given a ppi. � and a �-valid parallel p.o. planP = hA;�;#i, P has a k-step �-reordering i� there exists a �-valid parallel t.o. planhS1 [: : : Ski satisfying the # relation and having S1 [: : : Sk = A. Since such a plancan be guessed and validated in polynomial time, it follows that OPP is in NP. 25. Analysis of the VPC AlgorithmVeloso et al. [25] have presented an algorithm (called VPC below) for converting t.o.plans into p.o. plans. The algorithm is used in the following context: �rst a total-orderplanner is used to produce a t.o. plan, then the VPC algorithm converts this plan intoa p.o. plan and, �nally, the resulting p.o. plan is analyzed to determine which actionscan be executed in parallel. The action language used is a STRIPS-style languageallowing quanti�ers and context-dependent e�ects. However, the plans input to theVPC algorithm must be fully instantiated and they can hardly be allowed to containcontext-dependent e�ects either,3 thus being propositional STRIPS plans. The VPCalgorithm is presented in Figure 1.4VPC is a greedy algorithmwhich constructs an entirely new partial order by analysingthe action conditions, using the original total order only to guide the greedy strategy.The algorithm is claimed [25, p. 207] to produce a least-constrained p.o. plan, although2It is assumed that the formalism at hand use reasonable encoding schemes [7].3At least, there is nothing in the paper or the algorithm suggesting that context-dependent ef-fects can be handled by VPC. Furthermore, it is questionable whether the algorithm would still bepolynomial, were this the case; plan validation is NP-hard for conditional plans in the general case[5, 18, 19].4Veloso (personal communication, Oct. 1993) has pointed out that the published version of theVPC algorithm is incorrect and that a corrected version exists. This does not a�ect the problemanalysed in this paper, however.1 procedure VPC;2 Input: a ppi. � and a �-valid t.o. plan ha1; : : : ; ani3 Output: A �-valid p.o. plan4 for 1 � i � n do5 for p 2 precond(ai) do6 Find max k < i s.t. p 2 addlist(ak);7 if such a k exists then8 order ak � ai;9 for p 2 deletelist(ai) do10 for 1 � k < n s.t. p 2 precond(ak) do11 Order ak � ai;12 return hfa1; : : : ; ang;�i; Figure 1: The VPC algorithm

a bcpq p qrq s������1PPPPPPqP1 a b cpq p qr q s- -P2Figure 2: The p.o. plans in the failure example for VPC.no de�nition is given of what this means.5 In the absence of such a de�nition from its au-thors, the algorithm will be analysed with respect to v1-minimality and v2-minimality.It is then immediate from Theorem 3.6 that VPC cannot produce v2-minimal plans,unless P=NP. What is more surprising is that it does not even produce v1-minimalplans although this is a trivial tractable problem.To see this, consider the following propositional STRIPS example. Suppose a total-order planner is given the ppi. � = h?; fr; sgi as input. It may then return either of the�-valid t.o. plans ha; b; ci and ha; c; bi, with action conditions as shown in Figure 2. Ifgiven as input to the VPC algorithm, the two t.o. plans will give quite di�erent results.VPC will convert the plan ha; c; bi into the p.o. plan P1 in Figure 2, a plan which isboth v1-minimal and v2-minimal. If instead given the plan ha; b; ci, it will output thep.o. plan P2 in Figure 2, a plan which is neither v1-minimal nor v2-minimal (note thattransitive arcs are not shown in the �gure). The reason that VPC is not guaranteedto �nd v1-minimal plans is that it is greedy; whenever it needs to �nd an operator aachieveing an e�ect required by the precondition of another operator b it chooses thelast such action ordered before b in the input t.o. plan. However, there may be otheractions having the same e�ect and being a better choice.6. Analysis of the RF AlgorithmBased on the motivation that it is easier to generate a t.o. plan than a p.o. planwhen using complex action representations, Regnier and Fade [20, 21] have presentedan algorithm (called RF below) for converting a t.o. plan into a p.o. plan. Theresulting plan has the property that all unordered actions can be executed in parallel.The authors of the algorithm further claim that the algorithm �nds all pairs of actionsthat can be executed in parallel and, hence, the plan can be post-processed to �ndan optimal parallel execution. The RF algorithm is presented in Figure 3, with allimplementation-dependent details irrelevant to analyzing the algorithm removed. Theoriginal algorithm returns a p.o. plan hA;�i, but since this plan has the property thatall unordered actions can be executed in parallel it corresponds to the parallel p.o. planhA;�;?i.It seems that the RF algorithm is intended to compute a restriction of the problemOPTIMAL PARALLEL PLAN, with the non-concurrency relation implicitly de�nedby the predicate parallelizable. This predicate determines whether two actions may be5Veloso (personal communication, Oct. 1993) has con�rmed that the term \least constrained plan"was used in a \loose sense" and no optimality claim was intended. However, if this term is not de�ned,then we do not even know what problem the algorithm is supposed to solve.

1 procedure RF;2 Input: a ppi. � and a �-valid t.o. plan ha1; : : : ; ani3 Output: A �-valid parallel p.o. plan4 for 1 � i < j � n do5 if not parallelizable(ai; aj) then6 Order ai � aj;7 return hA;�;?i; Figure 3: The RF algorithmexecuted in parallel or not, that is, whether they interfere or not. Regnier and Fade useSTRIPS operators where the conditions are sets of possibly negated object-attribute-value triples. For the results in this paper it is su�cient to consider the special case ofground triples, ie. propositional literals. Two sets S and T of atoms are contradictoryi� there exists some atom p s.t. p 2 S and :p 2 T . Regnier and Fade de�ned theparallelizability criterion to be true of two actions ai; aj in a t.o. plan ha1; : : : ; ani i�1. both pre(ai) and pre(aj) hold in the state preceding the execution of ai and aj,2. all the pairs (pre(ai); pre(aj)); (pre(ai); post(aj)); (post(ai); pre(aj)) and(post(ai); post(aj)) are non-contradictory,3. if i < j + 2, then for some i � k < j, ak and ak+1 are parallelizable.Unfortunately, there is a serious problem with this de�nition, viz. that, because ofthe third requirement, it can only be applied to t.o. plans. Hence, it is not possibleto use this criterion to decide whether two actions in a p.o. plan can be executed inparallel or not. This implies that the parallelizability criterion cannot be used to de�nea non-concurrency relation. It is, thus, impossible to decide whether a parallel p.o. planis an optimal reordering according to this criterion. The claim that the RF algorithm�nds all pairs of parallel actions is, thus, somewhat questionable since it can only referto the actions that are parallelizable according to a criterion on the original t.o. plan;it is not possible to verify that no ordered actions in the output plan can be executedin parallel, which seems a more reasonable interpretation of the claim.The third condition in the parallelizability criterion is not really necessary for decid-ing whether two actions can be executed in parallel, however. Conditions one and twotogether coincide with Horz' [9] independence criterion, which is intended to expresswhen two actions in a p.o. plan can be executed in parallel. This criterion is triviallyextendible to sets of unordered actions. Furthermore, any two unordered actions in aparallel p.o. plan output by the RF algorithm are independent. It thus follows thatthe parallelizability criterion is stronger than independence, but is only applicable tot.o. plans. Even for the purpose of deciding whether two actions in a t.o. plan can beexecuted in parallel or not the independence criterion seems the more appropriate ofthe two; the parallelizability criterion is simply over-restrictive.In the plan input to the RF algorithm, all pairs of actions are ordered since it is a t.o.plan. It is easy to see that the algorithm can only remove orderings. That is, it can maketwo previously ordered actions unordered if these are parallelizable. However, it cannotreorder actions, something which is necessary for producing an optimal reordering, aswill be seen in the following example.

ad b cp:q; s p q q rHHHHj����* -P1 a b c dp p q q r s:q- - -P2Figure 4: Plans in the RF failure example (the relation # is not shown).Let the STRIPS ppi. � = h?; fr; sgi be given. A total-order planner may returneither of the three �-valid t.o. plans, ha; b; c; di, ha; d; b; ci and hd; a; b; ci with actionconditions as shown in Figure 4. A total-order planner may output either of theseplans. If RF is given either of the two latter plans as input, it will produce the parallelp.o. plan P1 in Figure 4 since actions a and d are parallelizable. On the other hand,if given the �rst plan as input, then it will return this plan unchanged, that is, theplan P2 in Figure 4. This is because neither of the action pairs (a; b); (b; c) and (c; d) isparallelizable and, hence, they remain in the same order as in the input plan. P1 admitsa 3-step parallel execution and is an optimal reordering of each of the possible inputplans. P2, on the other hand, admits no shorter execution than 4 steps, and is thus notan optimal reordering of any of the input plans. The reason that the algorithm fails toproduce an optimal plan in the second case is that it never considers reordering actiond wrt the actions b and c. Since d is ordered after b and c in the input, it can eitherremain ordered after these or be unordered wrt to them in the output; the algorithmcan never order d before b and c, unless this was already the case in the input.It is obvious from this example that the RF algorithm is intrinsically dependent on inwhich order the actions appear in the input plan. This is a problem with the algorithm,however, not with the parallelizability criterion, since it would give the same result ifusing the independence criterion instead. Nevertheless, there are important di�erencesbetween the two criteria. Any algorithm using the parallelizability criterion wouldreturn the plan P2, while there can exist algorithms (not necessarily polynomial ones)using the independence criterion which �nd the plan P1 on input ha; b; c; di. Further,P1 in Figure 4 is an optimal parallel version of the t.o. plan ha; b; c; di under theindependence criterion. No similar claim can be made if using the parallelizabilitycriterion, however, since the concept optimal reordering is then unde�ned. As remarkedby Regnier and Fade [20], it is trivial to �nd an optimal parallel execution of the planoutput by the RF algorithm using standard algorithms. However, this is somethingvery di�erent from optimality wrt. the t.o. plan input to the algorithm.What is positive about the RF algorithm, however, is that it runs in polynomial time,while the problem of �nding an optimal reordering is NP-complete (Theorem 4.56).That is, no polynomial-time algorithm can exist that �nds an optimal reordering. TheRF algorithm should, thus, be viewed as some kind of approximation algorithm forOPP. However, it is unclear what it computes and to be useful as an approximationalgorithm, it should give some kind of guarantee on its output|which is the topic ofthe next section.6It is easy to see that the theorem holds also for propositional STRIPS even if the plan P is restricteds.t. � is a total order on A and the # relation is de�ned via the independence criterion.

7. ApproximationSince v2-minimality seems to be a reasonable least-constrainment criterion and is NP-hard to compute, it is interesting to ask whether VPC may at least serve as an approx-imation algorithm for �nding v2-minimal plans.The terminology for approximation of minimization problems can be briey recastas follows (for a more elaborate discussion, see Garey and Johnson [7]). Given somecost function cost on candidate solutions, the performance ratio of an algorithm A on aproblem instance � is de�ned as RA(�) = costA(�)=costopt(�), where costA(�) is thecost of the solution returned by algorithm A on instance � and costopt(�) is the costof the optimal solutions to the instance �. The absolute performance ratio RA is thevalue of RA(�) in the worst case, measured over all instances � of the problem. Theasymptotic performance ratio R1A is the value of RA(�) in the worst case, measuredover all instances � s.t. costopt(�) > c for some constant c. Finally, the best achievableperformance ratios RMIN(�), RMIN and R1MIN denote the minimum values for RA(�),RA and R1A respectively, measured over all possible algorithms.Let the cost of a p.o. plan hA;�i be de�ned as j � j, which is the parameter tominimize. The question, then, is whether there exists some constant c s.t. RV PC < cor, at least, R1V PC < c. Unfortunately, this turns out not to be the case and, hence,VPC gives no constant performance guarantee, even asymptotically.Theorem 7.1 There exists no constant c s.t. R1V PC � c.Proof: For arbitrary n > 0 let the set A = fa0; : : : ; ang of actions be de�ned s.t.addlist(a0) = fp1; : : : ; png and for 1 � k � n, precond(ak) = fpkg and addlist(ak) =fpk; qkg. Consider the ppi. � = h?; fq1; : : : ; qngi and the t.o. plan P = ha0; : : : ; ani =hA;�i. Anyv�;A2 -minimal �-valid plan P 0 = hA;�0i obviously satis�es j �0 j = n, whileVPC would `rediscover' and output the plan P , ie. the input. Since j � j = (n2 � n)=2it follows that R1V PC is O(n). 2Since the RF algorithm fails to solve optimally the problem it was designed for itis interesting to ask also for this algorithm whether it may serve as an approximationalgorithm. The cost for a parallel p.o. plan in this case is de�ned as the number of stepsin its shortest parallel execution. Unfortunately, the situation is just as bad as for theVPC algorithm; the RF algorithm does not exhibit a constant performance guarantee,even asymptotically.Theorem 7.2 There exists no constant c s.t. R1RF � c.Proof: For arbitrary n > 0, construct the ppi. �n = h?; fr1; r2; : : : ; rngi and thet.o. plan P = ha1; b1; c1; a2; b2; c2; : : : ; an; bn; cni, where for 1 � i � n, pre(ai) = ?,post(ai) = fpi;:qi�1g, pre(bi) = fpig, post(bi) = pre(ci) = fqig and post(ci) = frig.Obviously there exists a parallel version of P admitting the 3-step execution hS1; S2; S3i,where for 1 � i � n, ai 2 S1, bi 2 S2 and ci 2 S3 (see Figure 5). The RF algorithm,on the other hand, will fail to reorder the actions and will return its input, ie. theplan P , admitting no parallel execution in fewer than 3n steps. Hence, the absoluteperformance guarantee for RF is � n. For the asymptotic performance guarantee itis su�cient to observe that the above construction can be repeated s.t. for arbitrarym;n > 0, there exists a t.o. plan P 0 = �1;: : : ;�m where each �i is isomorphic to the

a1 b1 c1a2 b2 c2a3 b3 c3p1:q0 p1 q1 q1 r1p2:q1 p2 q2 q2 r2p3:q2 p3 q3 q3 r3- -- -- -����>����>Figure 5: Optimal reordering of the input plan for n = 3 in the proof of Theorem 7.2.plan P above, but extended with extra conditions s.t. for 1 � i < m, all actions in �imust be executed before the actions in �i+1. Obviously, the shortest parallel executionfor P 0 is of length 3m, while RF may return the plan P 0 having no shorter parallelexecution than length 3mn. It follows that R1RF � m and the theorem follows. 2Neither of the two results above are surprising, however, since there can exist noalgorithms solving these problems with constant performance guarantee.Theorem 7.3 There exists no constant c s.t. R1MIN (LC2MP) � c, unless NP 2DTIME(npoly log n) and there exists no constant c s.t. R1MIN(OPP) � c, unlessP=NP.Proof: Suppose there exists a polynomial-time approximation algorithmA for LC2MP(OPP) and there exists a constant c s.t. R1A � c. It is then immediate from the proofof Theorem 3.6 (4.5) that it is possible to construct an approximation algorithm A0for MINIMUM COVER (GRAPH K-COLOURABILITY) s.t. R1A0 � c. However, itwas proven by Lund and Yannakakis [14] that no such algorithm can exist, unlessNP 2 DTIME(npoly log n) (P=NP). The theorem follows by contradiction. 28. DiscussionIn this paper, the problems of reordering a plan to become least constrained or havingan optimal (shortest) parallel execution were considered. For the �rst problem, two cri-teria called v1-minimality and v2-minimality were de�ned. v1-minimality is tractable,but gives no reasonable guarantee of optimality, while v2-minimality is NP-hard, butpossibly has some useful avour of optimality. The problem of �nding a reordering ofa plan admitting an optimal parallel execution was also proven NP-hard. Both theseproblems may seem somewhat related to precedence constrained scheduling, but thereis an important di�erence. While a scheduler is only allowed to add ordering relations,the problems considered in this paper allow any reordering of the actions in a plan.Hence, these problems are closer related to planning than to scheduling, since theyrequire reasoning about the validity of plans.Two algorithms have been presented in the literature for converting a total-order planinto a least-constrained plan [25] and into a parallel plan having an optimal parallelexecution [20] respectively. In the absence of a de�nition of least-constrainment fromits authors, the �rst algorithm was analysed wrt. the least-commitment criteria de�ned

in this paper. Obviously it cannot produce v2-minimal plans, unless P=NP, sincethis is an NP-hard problem. More surprisingly, however, it does not even guarantee�nding v1-minimal plans. It is unclear what the algorithm computes, but is unlikely tocompute anything signi�cantly stronger than v1-minimality, which is a very weak least-constrainment criterion. The second algorithm was similarly found not to guaranteeproducing a plan having an optimal parallel execution, which is obvious in the lightof the NP-hardness result for this problem. Also here it remains unclear what thealgorithm really computes. Both algorithms were then reconsidered as approximationalgorithms for �nding v2-minimal plans and plans with optimal parallel executionsrespectively. However, it was shown that neither algorithm gives a constant performanceguarantee|both algorithms occasionally return the worst possible solution, namely theinput unchanged (when far better solutions exist).The results in this paper do, however, not necessarily imply that the method of usinga total-order planner and convert its output into a partial-order plan is bad. Few, ifany, partial-order planners in the literature produce plans that are optimal wrt. to anyof the criteria de�ned in this paper, so the conversion problem remains. Furthermore,a partial-order planner guaranteeing such optimality for its solution could not escapefrom the complexity problem, it would be inherent in the already di�cult planningprocess.To summarize, there are tractable least-commitment criteria, but no such criterionis likely to give any useful guarantee for putting a scheduler in a better position toarrive at an optimal schedule. The v2-minimality criterion gives a considerably betterresult, although still not giving any such guarantee|yet it is NP-hard to compute. Theproblem of �nding an reordered plan having an optimal parallel execution, however,goes one step further by producing a parallel plan with optimality guarantees for theexecution time. Since this problem is of the same complexity as v2-minimality itis probably better to attack it directly than to �rst try achieveing v2-minimality oranything similar. However, because of the NP-hardness of the problem nothing but anapproximation can be computed. Even worse, it was shown in this paper that neitherthis problem nor the problem of �nding v2-minimal plans can be approximated withina constant ratio. If insisting on approximations with worst-case guarantees, it could beworthwhile to exploit the intimate relationship between graph colouring and parallelexecutions. The best known graph colouring approximation algorithm to date is dueto Halld�orsson [8], giving a performance guarantee of O(n(log log n)2= log3 n). If notrequiring completeness or worst-case guarantees there is also the possibility of usinglocal search methods for graph colouring [12, 23], sometimes giving good results inpractice.AcknowledgementsBernhard Nebel, Erik Sandewall and the anonymous referees provided helpful comments on this paper.The research was supported by the Swedish Research Council for Engineering Sciences (TFR) undergrant Dnr. 92-143.References[1] Proc. 10th (US) Nat'l Conf. on Artif Intell. (AAAI-92), San Jos�e, CA, USA, July 1992.[2] J. F. Allen. Maintaining knowledge about temporal intervals. Comm. ACM, 26(11):832{843, 1983.

[3] T. Bylander. Complexity results for planning. In IJCAI [11], pages 274{279.[4] D. Chapman. Planning for conjunctive goals. Artif. Intell., 32:333{377, 1987.[5] T. Dean and M. Boddy. Reasoning about partially ordered events. Artif. Intell., 36:375{399, 1988.[6] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem provingto problem solving. Artif. Intell., 2:189{208, 1971.[7] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York, 1979.[8] M. Halld�orsson. A still better performance guarantee for approximate graph coloring. Inf. Process.Lett., 45:19{23, Jan. 1993.[9] A. Horz. Relating classical and temporal planning. In C. B�ackstr�om and E. Sandewall, editors,2nd Eur. WS. Planning, Vadstena, Sweden, Dec. 1993. IOS Press. This volume.[10] Proc. 4th Int'l Joint Conf. on Artif. Intell. (IJCAI-75), Tbilisi, USSR, Sept. 1975.[11] Proc 12th Int'l Joint Conf. on Artif. Intell. (IJCAI-91), Sydney, Australia, Aug. 1991.[12] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by simulatedannealing: An experimental evaluation; part II, graph coloring and number partitioning. Oper.Res., 39(3):378{406, May{June 1991.[13] S. Kambhampati. On the utility of systematicity: Understanding tradeo�s between redundancyand commitment in partial-order planning. In Proc 13th Int'l Joint Conf. on Artif. Intell. (IJCAI-93), Chamber�y, France, Aug.{Sept. 1993.[14] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. In 25thACM Symp. Theory Comput. (STOC-93), pages 286{293. ACM, 1993.[15] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proc. 9th (US) Nat'l Conf.on Artif. Intell. (AAAI-91), pages 634{639, Anaheim, CA, USA, July 1991.[16] S. Minton, J. Bresina, and M. Drummond. Commitment strategies in planning: A comparativeanalysis. In IJCAI [11], pages 259{265.[17] S. Minton, M. Drummond, J. L. Bresina, and A. B. Philips. Total order vs. partial order planning:Factors inuencing performance. In Proc. 3rd Int'l Conf. on Principles of Knowledge Repr. andReasoning (KR-92), pages 83{92, Cambridge, MA, USA, Oct. 1992.[18] B. Nebel and C. B�ackstr�om. On the computational complexity of temporal projection and planvalidation. In AAAI [1], pages 748{753.[19] B. Nebel and C. B�ackstr�om. On the computational complexity of temporal projection, planningand plan validation. Artif. Intell., 65(2), 1994. To appear.[20] P. Regnier and B. Fade. Complete determination of parallel actions and temporal optimization inlinear plans of action. In Eur. WS. Planning, volume 522 of Lecture Notes in Arti�cial Intelligence,pages 100{111, Sankt Augustin, Germany, Mar. 1991.[21] P. Regnier and B. Fade. D�etermination du parall�elisme maximal et optimisation temporelle dansles plans d'actions lin�eaires. Rev. Intell. Artif., 5(2):67{88, 1991.[22] E. D. Sacerdoti. The non-linear nature of plans. In IJCAI [10].[23] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satis�ability problems.In AAAI [1], pages 440{446.[24] A. Tate. Interacting goals and their use. In IJCAI [10], pages 215{218.[25] M. M. Veloso, M. A. P�erez, and J. G. Carbonell. Nonlinear planning with parallel resourceallocation. In WS. Innovative Approaches to Planning, Scheduling and Control, pages 207{212,San Diego, CA, USA, Nov. 1990.

