Executing Parallel Plans Faster

by Adding Actions

Christer Backstrom'®

Abstract. If considering only sequential execution of plans,
the execution time of a plan will increase if adding actions
to it. However, if also considering parallel execution of plans,
then the addition of actions to a plan may sometimes decrease
the execution time. It is further shown that plans which are
sub-optimal in this way are likely to be frequently generated
by standard partial-order planners. Unfortunately, optimizing
the execution time of a plan by adding actions is NP-hard and
cannot even be approximated within a constant ratio.

1 INTRODUCTION

In many applications where plans, made by man or by com-
puter, are executed, it is important to find plans that are op-
timal with respect to some cost measure, typically execution
time. Examples of such applications are manufacturing and
error-recovery for industrial processes. Many different kinds
of computations can be made to improve the cost of a plan—
only a few of which have been extensively studied in the lit-
erature. The most well-known and frequently used of these is
scheduling.

Scheduling typically takes a set of actions® and some tem-
poral constraints on these, for instance, their durations, ear-
liest release times and deadlines. The problem can either be
to order these actions into an optimal sequence or to find a
schedule allowing also parallel execution of actions, subject
to some constraint like resource limitations. The first of these
problems is usually referred to as the sequencing problem and
the latter as the (multi-processor) scheduling problem. The
parameter to optimize is typically the total execution time or
some penalty function for actions missing their deadlines. The
precedence constrained scheduling problem additionally takes
a partial order on the actions which must be satisfied by the
resulting schedule, that is, essentially it takes a partial-order
plan as input.

The scheduling problem concerns only computing the ex-
act release times for the given actions; changing the set of ac-
tions or the given partial order on these is never considered.
Planning, on the other hand, is the problem of finding the
set of actions and an execution order on this set. Scheduling
can be viewed as a post-processing step to planning, although
these two computations are often more intimately connected

1 Department of Computer and Information Science, Link&ping
University, S-581 83 Link&ping, Sweden

2 The scheduling literature typically uses the term task, while the
planning literature typically uses the term plan step or action,
the latter being used in this paper.

© 1994 C. Backstrom

in practice. The execution order on a plan may be either a to-
tal order or a partial order. In a total order plan (linear plan)
the actions have to be executed in the specified total order—
making scheduling a meaningless computation. In a partial
order plan (non-linear plan) the actions may be executed in
any sequence satisfying the partial order. Such a plan may be
interpreted either as a sequential plan or as a parallel plan—
in the first case two unordered actions may be executed in
either order but not in parallel, while also parallel execution
is allowed in the second case. In contrast to total-order plans,
partial-order plans may be post-processed to find an optimal
execution sequence or schedule.

Scheduling is a rather restricted way of optimizing plans
since both the set of actions and the execution order are taken
for granted and must not be changed. Nevertheless, saying
that the scheduling problem has received much attention in
the literature would be an understatement—scheduling is an
important way of optimizing plans. However, more dramatic
improvements are possible if also the execution order and/or
the set of actions may be modified. Plan optimization of this
type has not received much attention in the literature, though.

There are basically three ways of modifying the execution
order of a plan: adding ordering constraints, deleting ordering
constraints and a combination of these (mixed modification).
The first of these three operations is hardly viable for opti-
mizing plans, but both the latter are. Algorithms for these
problems have been presented in the literature, but optimiz-
ing parallel plans by mixed modification of the execution order
or even approximating this problem within a constant ratio
is NP-hard [2].

The set of actions of a plan may similarly be modified by
adding actions, deleting actions or both. However, while the
actions can be reordered without modifying the action set it
is not possible to modify the action set without also mod-
ifying the execution order. Optimizing a plan by removing
actions is possible only if it contains redundant actions, since
it will otherwise not remain valid. The problem of finding such
redundant actions is NP-hard although some polynomial ap-
proximation algorithms have been suggested in the literature
[4]. The complexity of mixed modification of sequential plans
for the purpose of refitting a plan to solve another problem
instance has been investigated by Nebel and Koehler [9]. How-
ever, no analysis seems to exist for mixed modification with
the purpose of optimizing the execution time of a plan. Fi-
nally, modifying a plan by adding actions only is obviously
not a viable operation for sequential plans since the total ex-
ecution time of the plan is the sum of the execution times

ECAI 94. 11th Furopean Conference on Artificial Intelligence Edited by A. Cohn

Published in 1994 by John Wiley & Sons, Ltd.

for the actions in the plan. However, if considering also par-
allel execution of plans, then the execution time can, perhaps
somewhat counter to intuition, be improved by adding actions
to it, as will be shown in the next section. After that, Section 3
introduces a formal framework for parallel plans, Section 4 an-
alyzes the complexity of optimizing plans by action addition
and Section 5 presents some results on approximation. The
paper ends by a discussion of the practical relevance of the
results and the conclusions.

2 OPTIMIZING EXECUTION TIME BY
ADDING ACTIONS

When considering only sequential execution of plans it is ob-
vious that adding actions to a plan must increase its execu-
tion time since this equals the sum of the execution times of
its constituent actions.” In contrast to this, adding actions
to a parallel plan can improve its execution time. To under-
stand why this somewhat counter-intuitive claim is true, con-
sider the plan in Figure 1. This example assumes the ‘stan-
dard’ propositional STRIPS framework (see Definition 3.2).
The plan in Figure 1 consists of m + n + 1 actions, named
a,b1,...,bm,c1,...,cn respectively. Each action is shown as
a box labelled with the name of the action. The partial execu-
tion order is indicated by arrows (transitive arcs are omitted).
The preconditions of an action are shown to the left of its box
and the effects are shown to the right of the box, preceded by
a + or — depending on whether they are added or deleted
respectively. The actions b1,...,b,, are intended to form a
chain s.t. each action b produces a necessary precondition,
qi, for the succeeding action br41 in the chain and the ac-
tions ¢y, ..
is assumed to be empty and the goal state to be {gm, 7}

., ¢n form a similar chain. Finally, the initial state

Figure 1.

A partial-order plan.

Any sequential execution of the plan is a total ordering,
that is, a permutation sequence of its actions that satisfies the
given partial order. In this case the only ordering choice is the
.y bm. The
only requirement is that @ be executed before b,,, so there
are m possible execution sequences for the plan. However,

relative position of action a wrt. the actions b1, ..

all these execution sequences take the same time to execute,
m 4+ n + 1 time units if assuming that all actions take unit
time. A parallel execution could not do much better, on the
other hand. In the best case, action & can be executed in
parallel with some of the actions b1,...,bys_1, resulting in
a total execution time of m + n time units—quite a modest
improvement.

Now, make the somewhat optimistic assumption that two
actions may be executed in parallel whenever their add- and

3 This assumes that the execution time of an action is not context
dependent, as in Sandewall’s furniture assembly scenario [10], for
instance.

Planning, Scheduling and Reasoning about Actions 616

delete-lists are not conflicting. Under this interpretation all
the actions by, ...
actions a,c1,...

,bm—1 can be executed in parallel with the
,cn. Obviously, the plan could be executed
much faster, in parallel, if it were not for the bottleneck that
action b, must precede action c¢;. This can be exploited by
breaking the bottleneck, if actions may be added to the plan.
A new action a’ of the same type as a can be inserted and
the partial order be modified as shown in Figure 2. This plan
is a minor modification of the previous one. Yet, it can be
executed in max{4,m,n + 1} time units—quite a dramatic
improvement if m and n are large. Although such dramatic
speed-ups should not be expected in practice, since many ac-
tions would probably not be executable in parallel, consider-
able improvements could still be expected in many cases.

Figure 2. Modified version of the previous plan.

Even greater speed-up is possible for plans containing sev-
eral structures of the kind shown in Figure 1. For instance, for
arbitrary k& > 0, it is possible to construct a plan consisting
of k subplans of the type in Figure 1 cascaded in series. Such
a plan can be made to execute k times faster by inserting k
new actions. That is, there exist plans which can be modified
to execute faster by an arbitrary factor.

Although a greater number of subplans of the type in Fig-
ure 1 may make it possible to reduce the execution time by
a greater factor, this is not always the case; local improve-
ment need not imply global improvement of the overall plan.
Suppose, for instance, that the plan in Figure 1 is a subplan
of another plan. If considering only this subplan, the modifi-
cation in Figure 2 is obviously an improvement. However, if
considering the whole plan, there may be further constraints
forcing this subplan to be executed sequentially, resulting in
a longer execution time, m + n + 2 time units. Further, two
action additions which both improve the total execution time
if considered in isolation may interfere and increase the exe-
cution time when considered together. Not surprisingly, this
leads to computational difficulties, as will be shown in Sec-
tion 4.

It is currently not known whether also other types of plan
structures than the one shown in Figure 1 give similar oppor-
tunities for improving the parallel execution time of plans.

3 BASIC DEFINITIONS

This section will formally define planning problems; plans
and related concepts. In order to make the definitions and
results as general and formalism independent as possible, an
axiomatic framework will be used. This framework makes only
a minimum of assumptions about the underlying formalism.

Definition 3.1 A planning formalism és defined as a triple
F = {0,8,V), where O is a domain of operators, S is a

C. Backstrom

domain of plan specifications and V' s a a validity test, de-
fined as a binary relation V- C Seqs(O) x 8, where Seqs(0) =
{0} U {{o)sw]o € O,w € Seqs(O)} is the set of all sequences
over O and ; denotes sequence concatenation. A parallel plan-
ning problem instance (parallel ppi.) over F is a triple II =
(O, #,5) s.t. O € O, S € § and # is a reflexive and sym-

metric binary relation on O.

The relation # in parallel ppi’s is referred to as a non-
concurrency relation and it indicates which operators may
not be executed in parallel. Furthermore, the inner structure
of the ppi’s and the exact definition of the validity test are, of
course, crucial for any specific planning formalism. However,
by not making any further assumptions—except, maybe, for
the time complexity of the validity test—it will be possible
to prove widely applicable upper bounds on complexity in
the next section. For hardness proofs, however, it is better
to use a very restricted formalism—in this case, the Simple
Propositional STRIPS formalism.

Definition 3.2 The Simple Propositional STRIPS formal-
ism (SPS) is defined as follows. Let P = {p1,p2,...} be the
set of propositional atoms. The SPS formalism is a triple
Fsps ={0,8,V), where V C Seqs(O) x S is recursively de-
fined s.t. for arbitrary {o1,...,0n) € Seqs(O) and (I,G) € S,
{{o1,...,0n),{I,GYy €V iff either

1. n=0and GCI or
2. n >0, 01 = {pre, add, dely, pre C I and
{{oz2,...,0n), (I U add — del, G}Y € V.

A parallel ppi. I = (O, #,5) over Fsps is said to use the
effect conflict criterion of # is defined s.t. for all operators
o = {pre, add, dely and o' = {pre', add’, del'} in O, o#to’ iff
(add N del') U (add' N del) £ .

For partial-order plans, it is necessary to distinguish the
different occurrences of an operator, motivating the introduc-
tion of actions.

Definition 3.3 Given an operator domain O, an instantia-
tion (or occurrence) of an operator in O is called an action.
Given an action a, the notion type(a) denotes the operator
that a instantiates. A set {a1,...,an} or sequence{as, ..., an)
of actions s said to be over a set O of operators iff

{type(ai),. .., type(an)} C O.

Considering only sequential execution, the notion of plans
can be defined in the usual way as follows.

Definition 3.4 Let II = (O, #,S) be a parallel ppi. over
some formalism F = {O,S,V). A total-order plan (t.o. plan)
over O is a sequence P = {ai1,...,an) of actions over O.
P can alternatively be denoted by the tuple {{a1,..., an}, <)
where for all1 < k1< n, ax < a; iff K <l. The t.o. plan P is
-valid ff ({type(ai),..., type(an)), S} € V. A partial-order
plan (p.o. plan) over O is a tuple P' = {A, <) where A is a
set of actions over O and < is a strict (ie. irreflexive) par-
tial order on A. The p.o. plan P' is ll-valid iff all topological
sortings of it are Il-valid.

The actions of a t.o. plan must be executed in the specified
order, while unordered actions in a p.o. plan may be executed

Planning, Scheduling and Reasoning about Actions 617

in either order. That is, a p.o. plan can be viewed as a com-
pact representation for a set of t.o. plans. There is no implicit
assumption that unordered actions can be executed in paral-
lel, however. Parallel execution of plans is defined as follows,
assuming that two unordered actions @ and b in a valid p.o.
plan can be executed in parallel unless type(a)#type(b)

Definition 3.5 Let II = {(O,#,S) be a parallel ppi. over
some formalism F and let P = (A, <) be a l-valid p.o.
plan over O. An n-step parallel execution of P is a sequence
(A1,..., An) of subsets, referred to as slices, of A satisfying
the following conditions

1. Ai,..., Ay is a partitioning of A;
2, ifa € Ag, b€ Ay and a < b, then k < [.
3. ifa € Ar, b € A;, a # b and type(a)#type(d), then k # 1.

A parallel execution of P is a shortest parallel execution of P
of there s no parallel execution of P in fewer steps.

This framework admits expressing possible parallelism only;
necessary parallelism is out of the scope of this paper and it
requires a planner having access to and being able to make use
of additional information. Further, it will be assumed that all
actions take unit time and that all actions within a slice are
executed exactly in parallel, that is, each slice takes unit time.
Since this is a special case of more general parallelism, the
hardness results in the following sections carry over implic-
itly to more general formalisms, like metric time and Allen’s
interval algebra [1].

4 COMPLEXITY RESULTS

In this section it will be proven that it is computationally hard
to optimize the execution time of parallel plans by adding ac-
tions. The closely related problem of reordering the actions
in a plan to optimize the parallel execution time—the OPTI-
MAL PARALLEL PLAN REORDERING problem—has pre-
viously been analyzed by Backstrom [2] and proven compu-
tationally difficult.*

Definition 4.1 The decision problem OPTIMAL PARAL-
LEL PLAN REORDERING (OPPR) is defined as follows for
arbitrary planning formalism F.

Given: A parallel ppi. Il = (O, #, S} over F, a l-valid p.o.
plan P = (A, <) over O and an integer k < |A|.

Question: Is there an order <’ over A s.t. (A, <"} is a II-
valid p.o. plan having a k-step parallel execution?

Theorem 4.2 (Bickstrom [2, Theorem 4.5]) The prob-
lem OPTIMAL PARALLEL PLAN REORDERING is NP-
hard, even when restricted to the SPS formalism with opera-
tors restricted to have empty preconditions, the effect conflict
criterion is used and all actions take unit time.

The more general problem, discussed in Section 2, where
also the addition of actions to the plan is allowed can be
defined analogously.

4 This problem was originally called OPTIMAL PARALLEL
PLAN (OPP), but is here specialized to OPTIMAL PARALLEL
PLAN REORDERING since different ways of optimizing plans
are considered. Furthermore, the formalism is slightly changed
in this paper, but the theorems recapitulated below still hold,
requiring only minor changes to their proofs.

C. Backstrom

Definition 4.3 The decision problem OPTIMAL PARAL-
LEL PLAN EXTENSION (OPPE) is defined as follows for
arbitrary planning formalism F.

Given: A parallel ppi. Il = (O, #, S} over F, a l-valid p.o.
plan P = (A, <) over O and two integers k < |A| and 1 > 0.
Question: Is there a T-valid p.o. plan P' = (A’ <"} over
O s.t. AC A, |A| <|A|+1 and P' has a k-step parallel

execution?

The special case where I = 0 coincides with the OPPR
problem, so the NP-hardness result for OPPR carries over im-
mediately to OPPE. Furthermore, the problem is NP-complete
if plans can be validated in polynomial time.

Theorem 4.4 The problem OPTIMAL PARALLEL PLAN
EXTENSION s NP-hard, even if the formalism is SPS with
operators restricted to have empty preconditions, the effect
conflict criterion is used, all actions take unit time andl = 0.
The problem is furthermore NP-complete if p.o. plans can be
validated for parallel ppi’s in polynomial time and all actions
take unit time.

Proof: Hardness is immediate from Theorem 4.2 by choos-
ing ! = 0. For membership in NP, first note that since # is
reflexive, no slice in a parallel execution of a p.o. plan can con-
tain more than |O| actions. Hence, no plan of length |A| + 1
can contain more than |O|(|A| + {) actions. It follows that a
solution can be guessed and verified in polynomial time so
membership in NP follows. a

This gives little hope for computing efficiently the length
of the optimal parallel execution for a plan in the worst case,
even if not adding any actions. An alternative question to ask
then is whether the shortest parallel execution of a plan can
be decreased at all by adding some number of actions,” which
can be formalized as follows.

Definition 4.5 The problem SHORTER PARALLEL PLAN
EXTENSION (SPPE) is defined as follows:

Given: A parallel ppi. Il = (O, #, S} over F, a l-valid p.o.
plan P = (A, <) over O and an integer | > |A|.

Question: Is there a T-valid p.o. plan P' = (A’ <"} over
O st. ACA, |A| <|A|+1 and P’ has a strictly shorter

shortest parallel execution than P has?

Unfortunately, even this problem is very difficult.

Theorem 4.6 The problem SHORTER PARALLEL PLAN
EXTENSION s NP-hard, even if the formalism is SPS with
operators restricted to have empty preconditions, the effect
conflict criterion s used and all actions take unit time. The
problem is furthermore NP-complete if p.o. plans can be vali-
dated for parallel ppi’s in polynomial time and all actions take
untt time.

Proof: For hardness it is sufficient to prove the restricted
special case. Proof by transformation from the MINIMUM
COVER problem [5, p. 322], which is NP-complete. Let S =
{p1,...,pn} be a set of atoms, C = {S1,...,5m} a set of
subsets of S and k < |C| a positive integer. A cover of size k
for S is a subset C' C C' s.t. |[C'] =k and S C UpeciT.

5 Note that this does not imply knowing the length of the optimal
parallel execution either before or after adding actions.

Planning, Scheduling and Reasoning about Actions 618

Construct the operator set
O: {0?""’02}U{0§’0; | 1 SZS n}’

with operators defined according to Table 1. Also define the

Table 1. Operators for the proof of Theorem 4.6.
operator pre add del
0(1) (0] {q1} 2
05 {a} {a2})
05 {2} {as})
2 SU{ga} {aa} 2
ol J Siu{ri} @
o %) Spu{rp} O
ol {r1} {rl} S1
ol {r*} {r2} Sn

plan specification S = (&, {qa,73,...,75}). The triple 1T =
(0,3, S} is obviously a parallel SPS instance. Now, define the
action set A = {a9,...,a8} U{al,ab |1 < i< n} containing
one action for each operator in O in the obvious way. Further,
define the order < on A s.t.

1. ai < al < ab for 1 <i < m;
2. a?<a?+1for1§i<4

and < is transitive. The tuple P = (A, <) is obviously a II-
valid plan having a shortest parallel execution of 5 steps.

It remains to prove that the shortest parallel execution for
P can be decreased by adding k actions to P iff S has a cover
of size k.

If: Suppose C' = {Si,,...,Si, } is a cover for S of size k.
Modify the plan P as follows. Reorder al after a} for 1 <k <
n. Further, create a new instance b} of operator o} for each
Si, € C' and order ay < b < a9. This new plan is II-valid
and has a parallel execution in 4 steps.

Only if: Suppose P can be modified to have a shorter paral-
lel execution than 5 steps by adding actions. This must then
be a 4-step execution since the actions aJ,...,ad must be
executed in sequence. This further requires that all a§ are or-
dered before af (they cannot be unordered). The only way to
make this plan valid is to insert actions of types oil, s, 00k
s.t. pre(o3) C {°}U (Ui, <i<iy add(o}')) between the actions
a3,...,a% and aj. This, however, implies that {Si,..., Si, }
is a cover of size k for 5.

Finally, membership in NP is immediate in the case of
tractable validity testing, since there can never be any rea-
son to add more than n new actions. a

5 APPROXIMATION RESULTS

Now that all three problems considered in the previous sec-
tion are known to be NP-hard, one may ask whether they can,
at least, be approximated. Unfortunately, it turns out that it
is hard even to compute good approximations for these prob-
lems. The OPPR problem is already known to be impossible
to approximate within a constant ratio.

C. Backstrom

Theorem 5.1 (Bickstrom [2, Theorem 7.3]) OPPR can-
not be approximated within a constant ratio ¢ for any ¢ > 0,

unless P = NP.

Since the special case of OPPE where I = 0 coincides with
the OPPR problem, the result carries over immediately also

to OPPE.

Corollary 5.2 OPPFE cannot be approximated within a con-
stant ratio ¢ for any ¢ > 0, unless P = NP.

It turns out that even the SPPE problem is difficult to
approximate, however.

Theorem 5.3 SPPE cannot be approximated within a con-
stant ratio ¢ for any ¢ > 0, unless NP C DTIME (n poly log ny.

Proof: Suppose there exists a polynomial-time algorithm A
approximating SPPE within some constant ratio c. It is then
immediate from the proof of Theorem 4.6 that this algorithm
can be used to approximate SET COVER within ratio ¢. How-
ever, this is impossible unless NP C DTIME (n Pl 87 [7],
which contradicts the existence of A. a

6 PRACTICAL RELEVANCE

It has been shown in this paper that there exist plans which
are optimal for sequential execution, but not for parallel ex-
ecution. A question which remains to be addressed then is
how frequent such plans are in practice. Although this ques-
tion may be hard to answer in general, a partial answer is that
standard partial-order planners like TWEAK [3] or McAllester
and Rosenblitt’s planner [8] can easily produce such plans.

When planning for the conjunctive goal {g¢m,7»} such a
planner will attempt solving the two subgoals separately. At
some point in the search space it is likely to encounter the
plan in Figure 1, but with actions b,, and ¢1 yet unordered.
Such a plan arises from generating separately the two sub-
plans a,c1,...,cn and b1, ..., b, solving the subgoals ¢, and
ry, respectively, reusing a to produce preconditions both for
b and for ¢;. In this plan the actions a, b, and ¢; form a
right-fork conflict [6], which can only be resolved by ordering
c1 after b,, (unless new actions are inserted), resulting in the
plan in Figure 1.

For the planners mentioned above, all valid plans appear in
the search space, so they could, in principle, just as well hap-
pen to return the optimal plan in Figure 2. Further, in the case
above, TWEAK may choose to solve the right-fork conflict by
inserting a white knight between ¢1 and b,,. However, typi-
cal termination criteria for planners prefer plans with fewer
actions, making the planner return the suboptimal plan in
Figure 1. The termination criterion could, of course, be cho-
sen to favour plans having optimal parallel executions, but, as
was shown in the previous sections, this criterion is NP-hard
to compute and it is, thus, probably too costly to use as ter-
mination criterion. Thus, although a planner can be tuned to
return optimal parallel plans, this is not necessarily any bet-
ter than post-processing a plan that is optimal for sequential
execution—it just moves the computational problem from the
post-processing step to the termination criterion.

Planning, Scheduling and Reasoning about Actions

619

7 CONCLUSIONS

It has been shown in this paper that while the sequential
execution time of a plan necessarily increases when adding
actions to it, the parallel execution time may occasionally
decrease. That is, a plan that is optimal for sequential execu-
tion need not be optimal for parallel execution. Furthermore,
standard partial-order planners are likely to return such plans
not infrequently. Post-processing plans by adding actions to
optimize the parallel execution time thus seems to be an oper-
ation which is not only of theoretical interest, but also useful
in practice; quite dramatic improvement may occur in the
ideal case. Unfortunately, determining how fast a plan can be
executed by adding actions to it or how many actions need
be added to give any improvement at all is NP-hard. Even
worse, these problems cannot even be approximated within
a constant ratio. To make practical use of the speed-up phe-
nomenon reported, one must, thus, probably turn to other
methods, either settling for approximation with weaker per-
formance guarantees or use randomized methods like simu-
lated annealing or randomized local search.

ACKNOWLEDGEMENTS

The author would like to thank the anonymous referees for
their comments. The research presented in this paper was
supported by the Swedish Research Council for Engineering
Sciences (TFR) under grant Dnr. 92-143.

REFERENCES

[1] James F Allen, ‘Maintaining knowledge about temporal in-
tervals’, Comm. ACM, 26(11), 832-843, (1983).

[2] Christer Backstrom, ‘Finding least constrained plans and op-
timal parallel executions is harder than we thought’, in Cur-
rent Trends in AI Planning: EWSP’98—2nd Eur. WS. Plan-
ning, pp. 46-59, Vadstena, Sweden, (December 1993). 10S
Press.

[3] David Chapman, ‘Planning for conjunctive goals’, Artif. In-
tell., 32, 333-377, (1987).

[4] Eugene Fink and Qiang Yang, ‘Formalizing plan justifica-
tions’, in Proc. 9th Conf. of the Can. Soc. Comput. Stud.
Intell. (CSCSI’92), pp. 9-14, Vancouver, BC, Canada, (May
1992).

[5] Michael Garey and David Johnson, Computers and In-
tractability: A Guide to the Theory of NP-Completeness,
Freeman, New York, 1979.

[6] Joachim Hertzberg and Alexander Horz, ‘Towards a theory of
conflict detection and resolution in nonlinear plans’, in Proc.
11th Int’l Joint Conf. on Artif. Intell. (IJCAI-89), pp. 937—
942, Detroit, MI, USA, (August 1989).

[7] Carsten Lund and Mihalis Yannakakis, ‘On the hardness of
approximating minimization problems’, in 25th ACM Symp.
Theory Comput. (STOC-93), pp. 286-293. ACM, (1993).

[8] David McAllester and David Rosenblitt, ‘Systematic nonlin-
ear planning’, in Proc. 9th (US) Nat’l Conf. on Artif. Intell.
(AAAI-91), pp. 634-639, Anaheim, CA, USA, (July 1991).

[9] Bernhard Nebel and Jana Koehler, ‘Plan modification versus
plan generation: A complexity-theoretic perspective’, in Proc
13th Int’l Joint Conf. on Artif. Intell. (IJCAI-93), pp. 1436—
1441, Chambery, France, (August—September 1991).

[10] Erik Sandewall, Features and Fluents, Oxford University
Press, 1994. To appear.

C. Backstrom

