
Executing Parallel Plans Fasterby Adding ActionsChrister B�ackstr�om1Abstract. If considering only sequential execution of plans,the execution time of a plan will increase if adding actionsto it. However, if also considering parallel execution of plans,then the addition of actions to a plan may sometimes decreasethe execution time. It is further shown that plans which aresub-optimal in this way are likely to be frequently generatedby standard partial-order planners. Unfortunately, optimizingthe execution time of a plan by adding actions is NP-hard andcannot even be approximated within a constant ratio.1 INTRODUCTIONIn many applications where plans, made by man or by com-puter, are executed, it is important to �nd plans that are op-timal with respect to some cost measure, typically executiontime. Examples of such applications are manufacturing anderror-recovery for industrial processes. Many di�erent kindsof computations can be made to improve the cost of a plan|only a few of which have been extensively studied in the lit-erature. The most well-known and frequently used of these isscheduling.Scheduling typically takes a set of actions2 and some tem-poral constraints on these, for instance, their durations, ear-liest release times and deadlines. The problem can either beto order these actions into an optimal sequence or to �nd aschedule allowing also parallel execution of actions, subjectto some constraint like resource limitations. The �rst of theseproblems is usually referred to as the sequencing problem andthe latter as the (multi-processor) scheduling problem. Theparameter to optimize is typically the total execution time orsome penalty function for actions missing their deadlines. Theprecedence constrained scheduling problem additionally takesa partial order on the actions which must be satis�ed by theresulting schedule, that is, essentially it takes a partial-orderplan as input.The scheduling problem concerns only computing the ex-act release times for the given actions; changing the set of ac-tions or the given partial order on these is never considered.Planning, on the other hand, is the problem of �nding theset of actions and an execution order on this set. Schedulingcan be viewed as a post-processing step to planning, althoughthese two computations are often more intimately connected1 Department of Computer and Information Science, Link�opingUniversity, S-581 83 Link�oping, Sweden2 The scheduling literature typically uses the term task, while theplanning literature typically uses the term plan step or action,the latter being used in this paper.

in practice. The execution order on a plan may be either a to-tal order or a partial order. In a total order plan (linear plan)the actions have to be executed in the speci�ed total order|making scheduling a meaningless computation. In a partialorder plan (non-linear plan) the actions may be executed inany sequence satisfying the partial order. Such a plan may beinterpreted either as a sequential plan or as a parallel plan|in the �rst case two unordered actions may be executed ineither order but not in parallel, while also parallel executionis allowed in the second case. In contrast to total-order plans,partial-order plans may be post-processed to �nd an optimalexecution sequence or schedule.Scheduling is a rather restricted way of optimizing planssince both the set of actions and the execution order are takenfor granted and must not be changed. Nevertheless, sayingthat the scheduling problem has received much attention inthe literature would be an understatement|scheduling is animportant way of optimizing plans. However, more dramaticimprovements are possible if also the execution order and/orthe set of actions may be modi�ed. Plan optimization of thistype has not received much attention in the literature, though.There are basically three ways of modifying the executionorder of a plan: adding ordering constraints, deleting orderingconstraints and a combination of these (mixed modi�cation).The �rst of these three operations is hardly viable for opti-mizing plans, but both the latter are. Algorithms for theseproblems have been presented in the literature, but optimiz-ing parallel plans by mixed modi�cation of the execution orderor even approximating this problem within a constant ratiois NP-hard [2].The set of actions of a plan may similarly be modi�ed byadding actions, deleting actions or both. However, while theactions can be reordered without modifying the action set itis not possible to modify the action set without also mod-ifying the execution order. Optimizing a plan by removingactions is possible only if it contains redundant actions, sinceit will otherwise not remain valid. The problem of �nding suchredundant actions is NP-hard although some polynomial ap-proximation algorithms have been suggested in the literature[4]. The complexity of mixed modi�cation of sequential plansfor the purpose of re�tting a plan to solve another probleminstance has been investigated by Nebel and Koehler [9]. How-ever, no analysis seems to exist for mixed modi�cation withthe purpose of optimizing the execution time of a plan. Fi-nally, modifying a plan by adding actions only is obviouslynot a viable operation for sequential plans since the total ex-ecution time of the plan is the sum of the execution timesc 1994 C. B�ackstr�omECAI 94. 11th European Conference on Arti�cial Intelligence Edited by A. CohnPublished in 1994 by John Wiley & Sons, Ltd.

for the actions in the plan. However, if considering also par-allel execution of plans, then the execution time can, perhapssomewhat counter to intuition, be improved by adding actionsto it, as will be shown in the next section. After that, Section 3introduces a formal framework for parallel plans, Section 4 an-alyzes the complexity of optimizing plans by action additionand Section 5 presents some results on approximation. Thepaper ends by a discussion of the practical relevance of theresults and the conclusions.2 OPTIMIZING EXECUTION TIME BYADDING ACTIONSWhen considering only sequential execution of plans it is ob-vious that adding actions to a plan must increase its execu-tion time since this equals the sum of the execution times ofits constituent actions.3 In contrast to this, adding actionsto a parallel plan can improve its execution time. To under-stand why this somewhat counter-intuitive claim is true, con-sider the plan in Figure 1. This example assumes the `stan-dard' propositional STRIPS framework (see De�nition 3.2).The plan in Figure 1 consists of m + n + 1 actions, nameda; b1; : : : ; bm; c1; : : : ; cn respectively. Each action is shown asa box labelled with the name of the action. The partial execu-tion order is indicated by arrows (transitive arcs are omitted).The preconditions of an action are shown to the left of its boxand the e�ects are shown to the right of the box, preceded bya + or � depending on whether they are added or deletedrespectively. The actions b1; : : : ; bm are intended to form achain s.t. each action bk produces a necessary precondition,qk , for the succeeding action bk+1 in the chain and the ac-tions c1; : : : ; cn form a similar chain. Finally, the initial stateis assumed to be empty and the goal state to be fqm; rng.b1 bma c1 cn- -@@@R -���� - -+q1 +p;+r0pqm�1 +qmr0 +r1�p rn�1 +rnFigure 1. A partial-order plan.Any sequential execution of the plan is a total ordering,that is, a permutation sequence of its actions that satis�es thegiven partial order. In this case the only ordering choice is therelative position of action a wrt. the actions b1; : : : ; bm. Theonly requirement is that a be executed before bm, so thereare m possible execution sequences for the plan. However,all these execution sequences take the same time to execute,m + n + 1 time units if assuming that all actions take unittime. A parallel execution could not do much better, on theother hand. In the best case, action a can be executed inparallel with some of the actions b1; : : : ; bm�1, resulting ina total execution time of m + n time units|quite a modestimprovement.Now, make the somewhat optimistic assumption that twoactions may be executed in parallel whenever their add- and3 This assumes that the execution time of an action is not contextdependent, as in Sandewall's furniture assembly scenario [10], forinstance.

delete-lists are not conicting. Under this interpretation allthe actions b1; : : : ; bm�1 can be executed in parallel with theactions a; c1; : : : ; cn. Obviously, the plan could be executedmuch faster, in parallel, if it were not for the bottleneck thataction bm must precede action c1. This can be exploited bybreaking the bottleneck, if actions may be added to the plan.A new action a0 of the same type as a can be inserted andthe partial order be modi�ed as shown in Figure 2. This planis a minor modi�cation of the previous one. Yet, it can beexecuted in maxf4;m; n + 1g time units|quite a dramaticimprovement if m and n are large. Although such dramaticspeed-ups should not be expected in practice, since many ac-tions would probably not be executable in parallel, consider-able improvements could still be expected in many cases.a +p+r0- c1r0 +r1�p- - cnrn�1 +rnb1 +q1- - bmpqm�1 +qma0 +p;+r0ZZZ~ ZZZ~Figure 2. Modi�ed version of the previous plan.Even greater speed-up is possible for plans containing sev-eral structures of the kind shown in Figure 1. For instance, forarbitrary k > 0, it is possible to construct a plan consistingof k subplans of the type in Figure 1 cascaded in series. Sucha plan can be made to execute k times faster by inserting knew actions. That is, there exist plans which can be modi�edto execute faster by an arbitrary factor.Although a greater number of subplans of the type in Fig-ure 1 may make it possible to reduce the execution time bya greater factor, this is not always the case; local improve-ment need not imply global improvement of the overall plan.Suppose, for instance, that the plan in Figure 1 is a subplanof another plan. If considering only this subplan, the modi�-cation in Figure 2 is obviously an improvement. However, ifconsidering the whole plan, there may be further constraintsforcing this subplan to be executed sequentially, resulting ina longer execution time, m+ n + 2 time units. Further, twoaction additions which both improve the total execution timeif considered in isolation may interfere and increase the exe-cution time when considered together. Not surprisingly, thisleads to computational di�culties, as will be shown in Sec-tion 4.It is currently not known whether also other types of planstructures than the one shown in Figure 1 give similar oppor-tunities for improving the parallel execution time of plans.3 BASIC DEFINITIONSThis section will formally de�ne planning problems, plansand related concepts. In order to make the de�nitions andresults as general and formalism independent as possible, anaxiomatic framework will be used. This framework makes onlya minimum of assumptions about the underlying formalism.De�nition 3.1 A planning formalism is de�ned as a tripleF = hO;S; V i, where O is a domain of operators, S is aPlanning, Scheduling and Reasoning about Actions 616 C. B�ackstr�om

domain of plan speci�cations and V is a a validity test, de-�ned as a binary relation V � Seqs(O)�S, where Seqs(O) =fhig [fhoi;!jo 2 O; ! 2 Seqs(O)g is the set of all sequencesover O and ; denotes sequence concatenation. A parallel plan-ning problem instance (parallel ppi.) over F is a triple � =hO;#; Si s.t. O 2 O, S 2 S and # is a reexive and sym-metric binary relation on O.The relation # in parallel ppi's is referred to as a non-concurrency relation and it indicates which operators maynot be executed in parallel. Furthermore, the inner structureof the ppi's and the exact de�nition of the validity test are, ofcourse, crucial for any speci�c planning formalism. However,by not making any further assumptions|except, maybe, forthe time complexity of the validity test|it will be possibleto prove widely applicable upper bounds on complexity inthe next section. For hardness proofs, however, it is betterto use a very restricted formalism|in this case, the SimplePropositional STRIPS formalism.De�nition 3.2 The Simple Propositional STRIPS formal-ism (SPS) is de�ned as follows. Let P = fp1; p2; : : :g be theset of propositional atoms. The SPS formalism is a tripleFSPS = hO; S; V i, where V � Seqs(O) � S is recursively de-�ned s.t. for arbitrary ho1; : : : ; oni 2 Seqs(O) and hI;Gi 2 S,hho1; : : : ; oni; hI;Gii 2 V i� either1. n = 0 and G � I or2. n > 0, o1 = hpre; add; deli, pre � I andhho2; : : : ; oni; hI [add � del;Gii 2 V .A parallel ppi. � = hO;#; Si over FSPS is said to use thee�ect conict criterion if # is de�ned s.t. for all operatorso = hpre; add; deli and o0 = hpre0; add 0; del 0i in O, o#o0 i�(add \ del 0) [(add 0 \ del) 6= ?.For partial-order plans, it is necessary to distinguish thedi�erent occurrences of an operator, motivating the introduc-tion of actions.De�nition 3.3 Given an operator domain O, an instantia-tion (or occurrence) of an operator in O is called an action.Given an action a, the notion type(a) denotes the operatorthat a instantiates. A set fa1; : : : ; ang or sequence ha1; : : : ; aniof actions is said to be over a set O of operators i�ftype(a1); : : : ; type(an)g � O.Considering only sequential execution, the notion of planscan be de�ned in the usual way as follows.De�nition 3.4 Let � = hO;#; Si be a parallel ppi. oversome formalism F = hO; S; V i. A total-order plan (t.o. plan)over O is a sequence P = ha1; : : : ; ani of actions over O.P can alternatively be denoted by the tuple hfa1; : : : ; ang;�iwhere for all 1 � k; l � n, ak � al i� k < l. The t.o. plan P is�-valid i� hhtype(a1); : : : ; type(an)i; Si 2 V . A partial-orderplan (p.o. plan) over O is a tuple P 0 = hA;�i where A is aset of actions over O and � is a strict (ie. irreexive) par-tial order on A. The p.o. plan P 0 is �-valid i� all topologicalsortings of it are �-valid.The actions of a t.o. plan must be executed in the speci�edorder, while unordered actions in a p.o. plan may be executed

in either order. That is, a p.o. plan can be viewed as a com-pact representation for a set of t.o. plans. There is no implicitassumption that unordered actions can be executed in paral-lel, however. Parallel execution of plans is de�ned as follows,assuming that two unordered actions a and b in a valid p.o.plan can be executed in parallel unless type(a)#type(b)De�nition 3.5 Let � = hO;#; Si be a parallel ppi. oversome formalism F and let P = hA;�i be a �-valid p.o.plan over O. An n-step parallel execution of P is a sequencehA1; : : : ; Ani of subsets, referred to as slices, of A satisfyingthe following conditions1. A1; : : : ; An is a partitioning of A;2. if a 2 Ak, b 2 Al and a � b, then k < l.3. if a 2 Ak, b 2 Al, a 6= b and type(a)#type(b), then k 6= l.A parallel execution of P is a shortest parallel execution of Pif there is no parallel execution of P in fewer steps.This framework admits expressing possible parallelism only;necessary parallelism is out of the scope of this paper and itrequires a planner having access to and being able to make useof additional information. Further, it will be assumed that allactions take unit time and that all actions within a slice areexecuted exactly in parallel, that is, each slice takes unit time.Since this is a special case of more general parallelism, thehardness results in the following sections carry over implic-itly to more general formalisms, like metric time and Allen'sinterval algebra [1].4 COMPLEXITY RESULTSIn this section it will be proven that it is computationally hardto optimize the execution time of parallel plans by adding ac-tions. The closely related problem of reordering the actionsin a plan to optimize the parallel execution time|the OPTI-MAL PARALLEL PLAN REORDERING problem|has pre-viously been analyzed by B�ackstr�om [2] and proven compu-tationally di�cult.4De�nition 4.1 The decision problem OPTIMAL PARAL-LEL PLAN REORDERING (OPPR) is de�ned as follows forarbitrary planning formalism F .Given: A parallel ppi. � = hO;#; Si over F , a �-valid p.o.plan P = hA;�i over O and an integer k � jAj.Question: Is there an order �0 over A s.t. hA;�0i is a �-valid p.o. plan having a k-step parallel execution?Theorem 4.2 (B�ackstr�om [2, Theorem 4.5]) The prob-lem OPTIMAL PARALLEL PLAN REORDERING is NP-hard, even when restricted to the SPS formalism with opera-tors restricted to have empty preconditions, the e�ect conictcriterion is used and all actions take unit time.The more general problem, discussed in Section 2, wherealso the addition of actions to the plan is allowed can bede�ned analogously.4 This problem was originally called OPTIMAL PARALLELPLAN (OPP), but is here specialized to OPTIMAL PARALLELPLAN REORDERING since di�erent ways of optimizing plansare considered. Furthermore, the formalism is slightly changedin this paper, but the theorems recapitulated below still hold,requiring only minor changes to their proofs.Planning, Scheduling and Reasoning about Actions 617 C. B�ackstr�om

De�nition 4.3 The decision problem OPTIMAL PARAL-LEL PLAN EXTENSION (OPPE) is de�ned as follows forarbitrary planning formalism F .Given: A parallel ppi. � = hO;#; Si over F , a �-valid p.o.plan P = hA;�i over O and two integers k � jAj and l � 0.Question: Is there a �-valid p.o. plan P 0 = hA0;�0i overO s.t. A � A0, jA0j � jAj + l and P 0 has a k-step parallelexecution?The special case where l = 0 coincides with the OPPRproblem, so the NP-hardness result for OPPR carries over im-mediately to OPPE. Furthermore, the problem is NP-completeif plans can be validated in polynomial time.Theorem 4.4 The problem OPTIMAL PARALLEL PLANEXTENSION is NP-hard, even if the formalism is SPS withoperators restricted to have empty preconditions, the e�ectconict criterion is used, all actions take unit time and l = 0.The problem is furthermore NP-complete if p.o. plans can bevalidated for parallel ppi's in polynomial time and all actionstake unit time.Proof: Hardness is immediate from Theorem 4.2 by choos-ing l = 0. For membership in NP, �rst note that since # isreexive, no slice in a parallel execution of a p.o. plan can con-tain more than jOj actions. Hence, no plan of length jAj+ lcan contain more than jOj(jAj+ l) actions. It follows that asolution can be guessed and veri�ed in polynomial time somembership in NP follows. 2This gives little hope for computing e�ciently the lengthof the optimal parallel execution for a plan in the worst case,even if not adding any actions. An alternative question to askthen is whether the shortest parallel execution of a plan canbe decreased at all by adding some number of actions,5 whichcan be formalized as follows.De�nition 4.5 The problem SHORTER PARALLEL PLANEXTENSION (SPPE) is de�ned as follows:Given: A parallel ppi. � = hO;#; Si over F , a �-valid p.o.plan P = hA;�i over O and an integer l � jAj.Question: Is there a �-valid p.o. plan P 0 = hA0;�0i overO s.t. A � A0, jA0j � jAj + l and P 0 has a strictly shortershortest parallel execution than P has?Unfortunately, even this problem is very di�cult.Theorem 4.6 The problem SHORTER PARALLEL PLANEXTENSION is NP-hard, even if the formalism is SPS withoperators restricted to have empty preconditions, the e�ectconict criterion is used and all actions take unit time. Theproblem is furthermore NP-complete if p.o. plans can be vali-dated for parallel ppi's in polynomial time and all actions takeunit time.Proof: For hardness it is su�cient to prove the restrictedspecial case. Proof by transformation from the MINIMUMCOVER problem [5, p. 322], which is NP-complete. Let S =fp1; : : : ; png be a set of atoms, C = fS1; : : : ; Smg a set ofsubsets of S and k � jCj a positive integer. A cover of size kfor S is a subset C 0 � C s.t. jC 0j = k and S � [T2C0T .5 Note that this does not imply knowing the length of the optimalparallel execution either before or after adding actions.

Construct the operator setO = fo01; : : : ; o04g [foi1; oi2 j 1 � i � ng;with operators de�ned according to Table 1. Also de�ne theTable 1. Operators for the proof of Theorem 4.6.operator pre add delo01 ? fq1g ?o02 fq1g fq2g ?o03 fq2g fq3g ?o04 S [fq3g fq4g ?o11 ? S1 [fr11g ?...on1 ? Sn [frn1 g ?o12 fr11g fr12g S1...on2 frn1 g frn2 g Snplan speci�cation S = h?; fq4; r12 ; : : : ; rn2 gi. The triple � =hO;?; Si is obviously a parallel SPS instance. Now, de�ne theaction set A = fa01; : : : ; a04g [fai1; ai2 j 1 � i � ng containingone action for each operator in O in the obvious way. Further,de�ne the order � on A s.t.1. ai1 � a04 � ai2 for 1 � i � n;2. a0i � a0i+1 for 1 � i < 4and � is transitive. The tuple P = hA;�i is obviously a �-valid plan having a shortest parallel execution of 5 steps.It remains to prove that the shortest parallel execution forP can be decreased by adding k actions to P i� S has a coverof size k.If: Suppose C 0 = fSi1 ; : : : ; Sikg is a cover for S of size k.Modify the plan P as follows. Reorder a04 after ak2 for 1 � k �n. Further, create a new instance bil1 of operator oil1 for eachSil 2 C 0 and order ail2 � bil1 � a04. This new plan is �-validand has a parallel execution in 4 steps.Only if: Suppose P can be modi�ed to have a shorter paral-lel execution than 5 steps by adding actions. This must thenbe a 4-step execution since the actions a01; : : : ; a04 must beexecuted in sequence. This further requires that all ak2 are or-dered before a04 (they cannot be unordered). The only way tomake this plan valid is to insert actions of types oi11 ; : : : ; oik1s.t. pre(o04) � fq3g [([i1�l�ikadd(oil1)) between the actionsa12; : : : ; an2 and a04. This, however, implies that fSi1 ; : : : ; Sikgis a cover of size k for S.Finally, membership in NP is immediate in the case oftractable validity testing, since there can never be any rea-son to add more than n new actions. 25 APPROXIMATION RESULTSNow that all three problems considered in the previous sec-tion are known to be NP-hard, one may ask whether they can,at least, be approximated. Unfortunately, it turns out that itis hard even to compute good approximations for these prob-lems. The OPPR problem is already known to be impossibleto approximate within a constant ratio.Planning, Scheduling and Reasoning about Actions 618 C. B�ackstr�om

Theorem 5.1 (B�ackstr�om [2, Theorem 7.3]) OPPR can-not be approximated within a constant ratio c for any c > 0,unless P = NP .Since the special case of OPPE where l = 0 coincides withthe OPPR problem, the result carries over immediately alsoto OPPE.Corollary 5.2 OPPE cannot be approximated within a con-stant ratio c for any c > 0, unless P = NP .It turns out that even the SPPE problem is di�cult toapproximate, however.Theorem 5.3 SPPE cannot be approximated within a con-stant ratio c for any c > 0, unlessNP � DTIME (n poly log n).Proof: Suppose there exists a polynomial-time algorithm Aapproximating SPPE within some constant ratio c. It is thenimmediate from the proof of Theorem 4.6 that this algorithmcan be used to approximate SET COVER within ratio c. How-ever, this is impossible unless NP � DTIME (n poly logn) [7],which contradicts the existence of A. 26 PRACTICAL RELEVANCEIt has been shown in this paper that there exist plans whichare optimal for sequential execution, but not for parallel ex-ecution. A question which remains to be addressed then ishow frequent such plans are in practice. Although this ques-tion may be hard to answer in general, a partial answer is thatstandard partial-order planners like TWEAK [3] or McAllesterand Rosenblitt's planner [8] can easily produce such plans.When planning for the conjunctive goal fqm; rng such aplanner will attempt solving the two subgoals separately. Atsome point in the search space it is likely to encounter theplan in Figure 1, but with actions bm and c1 yet unordered.Such a plan arises from generating separately the two sub-plans a; c1; : : : ; cn and b1; : : : ; bm solving the subgoals qm andrn respectively, reusing a to produce preconditions both forbm and for c1. In this plan the actions a, bm and c1 form aright-fork conict [6], which can only be resolved by orderingc1 after bm (unless new actions are inserted), resulting in theplan in Figure 1.For the planners mentioned above, all valid plans appear inthe search space, so they could, in principle, just as well hap-pen to return the optimal plan in Figure 2. Further, in the caseabove, TWEAK may choose to solve the right-fork conict byinserting a white knight between c1 and bm. However, typi-cal termination criteria for planners prefer plans with feweractions, making the planner return the suboptimal plan inFigure 1. The termination criterion could, of course, be cho-sen to favour plans having optimal parallel executions, but, aswas shown in the previous sections, this criterion is NP-hardto compute and it is, thus, probably too costly to use as ter-mination criterion. Thus, although a planner can be tuned toreturn optimal parallel plans, this is not necessarily any bet-ter than post-processing a plan that is optimal for sequentialexecution|it just moves the computational problem from thepost-processing step to the termination criterion.

7 CONCLUSIONSIt has been shown in this paper that while the sequentialexecution time of a plan necessarily increases when addingactions to it, the parallel execution time may occasionallydecrease. That is, a plan that is optimal for sequential execu-tion need not be optimal for parallel execution. Furthermore,standard partial-order planners are likely to return such plansnot infrequently. Post-processing plans by adding actions tooptimize the parallel execution time thus seems to be an oper-ation which is not only of theoretical interest, but also usefulin practice; quite dramatic improvement may occur in theideal case. Unfortunately, determining how fast a plan can beexecuted by adding actions to it or how many actions needbe added to give any improvement at all is NP-hard. Evenworse, these problems cannot even be approximated withina constant ratio. To make practical use of the speed-up phe-nomenon reported, one must, thus, probably turn to othermethods, either settling for approximation with weaker per-formance guarantees or use randomized methods like simu-lated annealing or randomized local search.ACKNOWLEDGEMENTSThe author would like to thank the anonymous referees fortheir comments. The research presented in this paper wassupported by the Swedish Research Council for EngineeringSciences (TFR) under grant Dnr. 92-143.REFERENCES[1] James F Allen, `Maintaining knowledge about temporal in-tervals', Comm. ACM, 26(11), 832{843, (1983).[2] Christer B�ackstr�om, `Finding least constrained plans and op-timal parallel executions is harder than we thought', in Cur-rent Trends in AI Planning: EWSP'93|2nd Eur. WS. Plan-ning, pp. 46{59, Vadstena, Sweden, (December 1993). IOSPress.[3] David Chapman, `Planning for conjunctive goals', Artif. In-tell., 32, 333{377, (1987).[4] Eugene Fink and Qiang Yang, `Formalizing plan justi�ca-tions', in Proc. 9th Conf. of the Can. Soc. Comput. Stud.Intell. (CSCSI'92), pp. 9{14, Vancouver, BC, Canada, (May1992).[5] Michael Garey and David Johnson, Computers and In-tractability: A Guide to the Theory of NP-Completeness,Freeman, New York, 1979.[6] Joachim Hertzberg and Alexander Horz, `Towards a theory ofconict detection and resolution in nonlinear plans', in Proc.11th Int'l Joint Conf. on Artif. Intell. (IJCAI-89), pp. 937{942, Detroit, MI, USA, (August 1989).[7] Carsten Lund and Mihalis Yannakakis, `On the hardness ofapproximating minimization problems', in 25th ACM Symp.Theory Comput. (STOC-93), pp. 286{293. ACM, (1993).[8] David McAllester and David Rosenblitt, `Systematic nonlin-ear planning', in Proc. 9th (US) Nat'l Conf. on Artif. Intell.(AAAI-91), pp. 634{639, Anaheim, CA, USA, (July 1991).[9] Bernhard Nebel and Jana Koehler, `Plan modi�cation versusplan generation: A complexity-theoretic perspective', in Proc13th Int'l Joint Conf. on Artif. Intell. (IJCAI-93), pp. 1436{1441, Chamber�y, France, (August{September 1991).[10] Erik Sandewall, Features and Fluents, Oxford UniversityPress, 1994. To appear.Planning, Scheduling and Reasoning about Actions 619 C. B�ackstr�om

