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is NP-hard. Considering these results, there are twoobvious questions.The �rst question is to what extent the result onpolynomial planning can be extended to less restrictedproblems. It follows immediately from Bylander'sresult [3] that this does not extend to the class of allunconditional plans, as was the case with plan valida-tion. However, by re-expressing the restrictions of theSAS-PUS planning problem [1] in the same notationas Dean and Boddy use it is possible to show thatderivation of optimal plans is polynomial for a moreinteresting problem.The second question is whether the complexity re-sults for temporal projection carry over to story un-derstanding. Once again, this turns out not to bethe case. Story understanding is polynomial underthe restrictions for which we �rst found planning tobe polynomial, if we add the reasonable assumptionsthat stories are coherent and non-repeating. Story un-derstanding for the class of all unconditional plans isNP-hard, however.2 Temporal ProjectionThe formalization of the temporal projection problemfor partially ordered events given below closely followsthe presentation by Dean and Boddy [4, Sect. 2]. Theproblem of temporal projection is to decide whether agiven propositional atom holds, possibly or necessar-ily, after a given event in an event system.De�nition 1 A causal structure is given by a tuple� = hP; E;Ri, where� P = fp1; : : : ; png is a set of propositional atoms,the conditions,� E = f�1; : : : ; �mg is a set of event types,



� R = fr1; : : : ; rog is a set of causal rules of theform ri = h�i; 'i; �i; �ii, where{ �i 2 E is the triggering event type,{ 'i � P is a set of preconditions,{ �i � P is the add list,{ and �i � P is the delete list.In order to talk about sets of concrete events andtemporal constraints over them, the notion of a par-tially ordered event set is introduced.1De�nition 2 Assuming a causal structure � =hP; E;Ri, a partially ordered event set (POE)over � is a pair �� = hA�;�i consisting of a set ofactual events A� = fe1; : : : ; epg such that type(ei) 2E, and a strict partial order2 � over A�.POEs denote sets of possible sequences of eventssatisfying the partial order. A partial event se-quence of length m over such a POE hA;�i is a se-quence f = hf1; : : : ; fmi such that (1) ff1; : : : ; fmg �A, (2) fi 6= fj if i 6= j, and (3) for each pair fi; fjof events appearing in f , if fi � fj then i < j. Ifthe event sequence is of length jAj, it is called a com-plete event sequence over the POE. The set of allcomplete event sequences over a POE � is denotedby CS(�). If f = hf1; : : : ; fk; : : : ; fmi is an event se-quence, then f=fk denotes hf1; : : : ; fki Further, wewrite f ; g to denote hf1; : : : ; fm; gi.Each event maps states (subsets of P) to states. LetS � P denote a state and let e be an event. Then wesay that the causal rule r is applicable in state Si� r = htype(e); '; �; �i and ' � S. Given e and S,app(S; e) denotes the set of all applicable rules fore in state S. An event e is said to be admissiblew.r.t. a state S i� app(S; e) 6= ?. In order to simplifynotation, we write '(r), �(r), �(r) to denote the sets', �, and �, respectively, appearing in the rule r =h�;'; �; �i. Based on this notation, we de�ne what wemean by the result of a sequence of events relative toa state S.De�nition 3 The result function \R" from statesand event sequences to states is de�ned recursively by:R(S; hi) = SR(S; (f ; g)) =(R(S; f) � f�(r)j r 2 app(R(S; f); g)g) [f�(r)j r 2 app(R(S; f); g)g:1This notion is similar to the notion of a nonlinear plan.2A strict partial order is a transitive and irreexiverelation.

Given a state S, we will often restrict our attentionto event sequences such that all events are admissiblew.r.t. the states in which they are applied. Thesesequences are called admissible event sequencesrelative to the state S. The set of all complete eventsequences over � that are admissible relative to S aredenoted by ACS(�; S). If CS(�) = ACS(�; S), wewill say that � is coherent relative to S.In the following, we will often talk about which con-sequences a POE will have on some initial state. Forthis purpose, the notion of an event system is intro-duced.De�nition 4 An event system � is a pair h��;Ii,where �� is a POE over the causal structure � =hP; E;Ri, and I � P is the initial state.In order to simplify notation, the functions CSand ACS are extended to event systems with theobvious meaning, i.e., CS(h�; Si) = CS (�) andACS(h�; Si) = ACS(�; S). Further, if CS (�) =ACS(�), � is called coherent.The problem of temporal projection as formulatedby Dean and Boddy [4] is to determine whether somecondition holds, possibly or necessarily, after a partic-ular event of an event system.De�nition 5 Given an event system �, an event e 2A, and a condition p 2 P:p 2 Poss(e;�) i� 9f 2 CS(�): p 2 R(I; f=e)p 2 Nec(e;�) i� 8f 2 CS(�): p 2 R(I; f=e):In the general case, temporal projection is quite dif-�cult. Dean and Boddy [4] show that the decisionproblems p 2 Poss(e;�) and p 2 Nec(e;�) are NP-complete and co-NP-complete, respectively, even un-der some severe restrictions, such as restricting � or� to be empty for all rules, or requiring that there isonly one causal rule associated with each event type.De�nition 6 A causal structure� = hP;E;Ri is un-conditional i� for each � 2 E, there exists only onecausal rule with the triggering event type �. An eventsystem h��;Ii is unconditional i� �� is uncondi-tional. An event system is called simple i� it isunconditional, I is a singleton, and for each causalrule r = h�;';�; �i, the sets ', �, and � are singletonsand ' = �.Dean and Boddy conjectured that temporal projec-tion is easy for simple event systems. This turns outto be false, however.2



Theorem 1 For simple event systems �, decidingp 2 Poss(e;�) is NP-complete and deciding p 2Nec(e;�) is co-NP-complete.3This result only strengthens the claim that tempo-ral projection is a hard problem. On the other hand,applying the same restrictions to the planning prob-lem turns out to give a more surprising result, as willbe shown below.In the context of planning, events as introducedabove are usually called actions and POEs are callednonlinear plans, or simply plans. In the following,we use these terms interchangeably.De�nition 7 A planning task � is given byh�;I;Gi, where � = hP; E;Ri is a causal structureas de�ned above, and I � P and G � P are the ini-tial state and goal state, respectively. A plan ��solves � i� (1) G � R(I; f) for all f 2 CS(��),and (2) ACS(��;I) = CS (��). A plan hA�;�iis unconditional i� � is unconditional. A solu-tion � = hA;�i for � is minimal i� for all othersolutions �0 = hA0;�0i, it holds that jAj � jA0j.Furthermore, we say that a planning problem is sim-ple if it obeys the same restrictions as simple event sys-tems. Using Bylander's [3] Theorem 8, the tractabilityof the solution existence problem for the simple plan-ning problem follows immediately. In this case, alsoplan derivation is tractable, however.Proposition 2 For simple planning tasks, it can bedecided in polynomial time whether there exists a so-lution. Further, a minimal valid plan can be derivedin polynomial time.4This result is somewhat surprising since temporalprojection, which was supposed to be the underly-ing problem in plan validation and planning, is harderthan planning itself in this case. Starting from this ob-servation, we have earlier found that plan validationis, in fact, solvable in polynomial time for the broadand important class of unconditional plans [9, 10].The reason for this is that a planner has no reasonto construct a plan that is not coherent. That is, planvalidation is more realistically de�ned as �rst testingwhether the plan is coherent, and reject if it is not,and then test whether it achieves its goal. In contrastto temporal projection as de�ned by Dean and Boddy[4], this task is tractable for unconditional plans.3The proof [9, pp. 7{10] uses a transformation from thepath with forbidden pairs problem [6, p. 203].4The proof [9, p. 11] shows that the problem can betransformed to �nding a shortest path in a graph of sizepolynomial in the size of the original problem.

3 PlanningStarting with the observation that planning istractable for simple problems it is interesting to askthe question whether there are other, less restricted,planning problems that are also tractable. The resultsof Bylander [3] show that this does not hold for all un-conditional plans, for example. However, he has foundthree planning problems for which the plan existenceproblem is tractable. On the other hand, B�ackstr�omand Klein has reported a planning problem called theSAS-PUS problem [1] for which optimal plans can bederived in polynomial time. Any direct comparisonswith the simple problem or Bylanders tractable prob-lems is, unfortunately, non-trivial since the SAS-PUSproblem is de�ned using another formalism called thesimpli�ed action structures (SAS) [1, 2].The purpose of this section is to re-express the re-strictions of the SAS-PUS problem in the formalismfrom Section 2 in order to facilitate such a comparison.De�nition 8 A planning task � = hhP; E;Ri;I;Giis SAS-PUS equivalent i� it satis�es the followingrestrictions:1. hP; E;Ri is unconditional;2. P can be partitioned into m disjoint subsetsP1; : : : ; Pm s.t. jPij > 1 for 1 � i � m and forall causal rules h�; ';�; �i 2 R(a) � � ',(b) j�j = 1;(c) j' \ Pij � 1 for all i,(d) j� \ Pij = j� \ Pij � 1 for all i,(e) � \ � =?, and(f) jI \ Pij = jG \ Pij = 1 for all i.3. for all pairs of causal rulesh�; ';�; �i; h�0; '0; �0; �0i 2 R(a) if ' = '0, � = �0, and � = �0, then � = �0;(b) if � 6= �0, then � \ �0 =?; and(c) for all 1 � i � m, if (' � �) \ Pi 6= ?and ('0 � �0) \ Pi 6= ? then (' � �) \ Pi =('0 � �0) \ Pi.The restrictions can be understood as follows. Eachpartition Pi can be viewed as the value domain of astate variable xi, an action can change the value of astate variable only if it already has a de�ned value, anaction can only change the value of one state variable,3



there must be no two di�erent action types chang-ing the same state variable to the same value, andthe initial state and the goal state are fully speci�ed.Finally, restriction (3c) captures the notion of single-valuedness [1, 2].Theorem 3 Minimal nonlinear plans for SAS-PUSequivalent planning tasks can be derived in polynomialtime.Proof Sketch. De�ne a transformation between setsof propositions and partial states in the SAS formalismand also map action conditions in the obvious way.Prove that a SAS-PUS equivalent problem � can betransformed into a SAS-PUS problem �0 in this ways.t. the solutions for �0 are exactly the solutions for�.Although the SAS-PUS equivalent problem does notproperly subsume the simple problem5 it is most likelyof more practical interest. For example, the blocksworld problem which Bylander [3, Theorem 10] provedtractable can be encoded as a SAS-PUS equivalentplanning task, using the same encoding as Bylander,if restricted to total goal states. Hence, not only planexistence but also plan generation is tractable for thisproblem.4 Story UnderstandingBesides plan validation, Dean and Boddy [4, p. 375]also mention story understanding as one domainwhere temporal projection is important:\: : : an author may not provide the readerwith the exact time of all events mentionedin a narrative, knowing that it is not criti-cal that the reader have such information inorder to follow the story."Theorem 1, however, tells us that we are lost, as au-thors or readers. Even in the simplest case, the authorhas better to provide complete information or there isthe danger that the reader gets lost in �guring outwhat is the case.6 However, if we place some reason-able restrictions on the problem, the computationalproblems vanish.First of all, it seems reasonable that we consideronly admissible event sequences. It simply makes no5The simple problem does not necessarily satisfy restric-tion 3b.6Note that NP-completenessmeans that we (most prob-ably) cannot hope to solve the problem e�ortlessly. In-stead, \puzzle mode" reasoning is necessary to arrive at aconclusion [7].

sense that an author tells a reader that an event takesplace that does not have any e�ect on the world. Con-versely, one could argue that an author does not tellthe exact time of events if the reader is able to re-cover the sequential information by other means, forinstance, by the coherence of the events. Secondly, wewill assume that a story is non-repeating, i.e., all statesare di�erent. Otherwise, the story would contain morethan once the same situation|which is rather un-likely. In order to capture this formally, we introducethe notion of non-repeating sequences of an eventsystem, written NCS(h�;Ii), with the intention thatfor all events g; h, where g 6= h, appearing in an eventsequence f , we have R(I; f=g) 6= R(I; f=h). Evidently,it is the case that NCS(�) � ACS(�) because the oc-currence of an event e that is not admissible leads tothe same state as before the occurrence of e. Usingthis formalization of story-understanding, a variant oftemporal projection is de�ned.De�nition 9 Given an event system �, an event e 2A, and a condition p 2 P:p 2 Poss+(e;�) i� 9f 2 NCS(�): p 2 R(I; f=e)p 2 Nec+(e;�) i� 8f 2 NCS(�): p 2 R(I; f=e):Proposition 4 For simple event systems �, p 2Nec+(e;I) and p 2 Poss+(e;�) can be decided in poly-nomial time.Proof Sketch. The restriction to non-repeating se-quences over simple event systems implies that thee�ects of all events are unique, and it follows thatjNCS(�)j � 1. Reconstructing the (only) admissableevent sequence, or �nding out that there is none, canbe done in polynomial time.Thus story understanding (in the highly abstractform as de�ned here) is easier than temporal projec-tion in the case of simple event systems. The questionis, in how far this result can be generalized.If we remove the restriction that the event sequenceis non-repeating and require only that the course ofevents is admissible, the complexity of story under-standing for simple event systems is not obvious [9,p. 31]. However, as we remarked above, the non-repeating restriction seems to be quite reasonable.Generalizing the problem to general conditionalevent systems leads immediately to NP-completenessbecause we can design the causal rules in a way suchthat all sequences are non-repeating. A more interest-ing question is, whether we can solve the problem forgeneral unconditional event systems. Because plan-validation is easy in this case, one may suspect that4



this also holds for temporal projection in an story un-derstanding context. Unfortunately, this is not true,though.Theorem 5 For unconditional event systems �, de-ciding p 2 Poss+(e;�) is NP-complete.Proof Sketch. Membership in NP is obvious. For thehardness part we use the problem of directed Hamiltonpath, which is NP-complete [6, p. 199].Assuming that story understanding is an easy (i.e.,tractable) task, this result implies that the formaliza-tion of the problem is still too general to account forthe structure of the domain. It is desirable to iden-tify restrictions that lead to polynomial algorithms fortemporal projections in this domain, but there do notseem to be natural and obvious such conditions.However, it should be noted that story understand-ing most probably involves more than can be ex-pressed in our formalism. It seems plausible that planrecognition is one crucial part in story understand-ing and that abduction in general plays a vital rolein such a task. Since we cannot express any of thesephenomena, it seems to make not much sense to spec-ulate about the complexity of this task. What seemsto be clear, however, is that story understanding ismore than temporal projection and that most prob-ably other mechanisms than temporal projection areresponsible for inferring the outcome of a story.5 ConclusionsWe have previously observed that plan validation ispolynomial for the class of coherent, unconditionalplans although temporal projection is NP-hard forsuch plans. We have also observed that planning isalso polynomial in a severly restricted case where tem-poral projection is NP-hard. Continuing from theseresults we have shown that there is at least one moreinteresting planning problem for which optimal planscan be derived in polynomial time, namely the SAS-PUS equivalent problem. This also implies that op-timal planning is tractable for a simple setting of theblocks world problem. We have also found that storyunderstanding is polynomial in some cases where tem-poral projection is NP-hard. Although this positive re-sult does not apply to important generalizations likeunconditional event systems, it is most likely the casethat there is more to story understanding than justtemporal projection. Consequently, adding to our pre-vious �ndings that temporal projection does not seemto be the basis of plan validation this seems to beequally true of planning and story understanding.

As a �nal remark, it should be noted that the criti-cisms expressed in this paper are possible only becauseDean and Boddy [4] made their ideas and claims veryexplicit and formal.AcknowledgementsWe would like to thank Bart Selman, whoprovided helpful comments on an earlier ver-sion of this paper.References[1] Christer B�ackstr�om and Inger Klein. Parallel non-binary planning in polynomial time. In Mylopoulosand Reiter [8], pages 268{273. An extended version ofthis paper is available as Research Report LiTH-IDA-R-91-11, Department of Computer and InformationScience, Link�oping University, Link�oping, Sweden.[2] Christer B�ackstr�om and Inger Klein. Planning inpolynomial time: The SAS-PUBS class. Computa-tional Intelligence, 7(3):181{197, August 1991.[3] Tom Bylander. Complexity results for planning.In Mylopoulos and Reiter [8], pages 274{279.[4] Thomas L. Dean and Mark Boddy. Reasoningabout partially ordered events. Arti�cial Intelligence,36(3):375{400, October 1988.[5] Richard E. Fikes and Nils Nilsson. STRIPS: Anew approach to the application of theorem provingas problem solving. Arti�cial Intelligence, 2:198{208,1971.[6] Michael R. Garey and David S. Johnson. Comput-ers and Intractability|AGuide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.[7] Hector J. Levesque. Logic and the complexity ofreasoning. Journal of Philosophical Logic, 17:355{389, 1988.[8] John Mylopoulos and Ray Reiter, editors. Proceed-ings of the Twelfth International Joint Conference onArti�cial Intelligence (IJCAI-91), Sydney, Australia,August 1991. Morgan Kaufmann.[9] Bernhard Nebel and Christer B�ackstr�om. Onthe computational complexity of temporal projec-tion and some related problems. Technical re-port, November 1991. DFKI research report RR-91-34, German Research Center for Arti�cial Intel-ligence (DFKI), Saarbr�ucken, Germany, and reser-ach report LiTH-IDA-R-91-34, Department of Com-puter and Information Science, Link�oping University,Link�oping, Sweden.[10] Bernhard Nebel and Christer B�ackstr�om. Onthe computational complexity of temporal projectionand plan validation. In Proceedings of the Tenth Na-tional Conference on Arti�cial Intelligence (AAAI-92), San Jos�e, CA, July 1992.5


