
Parameterising the Complexity of Planning by the
Number of Paths in the Domain-transition Graphs

Christer Bäckström 1

Abstract. We apply the theory of parameterised complexity to plan-
ning, using the concept of fixed-parameter tractability (fpt) which is
more relaxed than the usual tractability concept. The parameter we
focus on is the maximal number of paths in the domain-transition
graphs, and we show that for this parameter, optimal planning is
fpt for planning instances with polytree causal graphs and acyclic
domain-transition graphs. If this parameter is combined with the ad-
ditional parameters of domain size for the variables and the treewidth
of the causal graph, then planning is fpt also for instances with arbi-
trary causal graphs. Furthermore, all these parameters are fpt to test
in advance. These results also imply that delete-relaxed planning is
fpt, even in its recent generalisation to non-binary variables.

1 INTRODUCTION
Early papers on the complexity of planning focussed on analysing
subclasses defined by various combinations of (primarily) syntactical
properties like the number of preconditions and effects [4, 9]. Later
research has often focussed on the properties of the casusal graph
of a planning instance, usually in combination with other properties.
For instance, it is known that planning remains NP-hard even when
the causal graph is a directed star (fork or inverted fork) [12], a di-
rected path (chain) [21], a fence or a polypath [3] or a polytree [20].
Tractability results exist in all these cases, usually with restrictions
on the variable domains to two or three values and/or restrictions on
the degree of the graph. Identifying tractable fragments of planning
is important for the theoretical understanding of when planning is
hard and when it is easy, which can be exploited also for designing
algorithms. It has also proven very useful for designing heuristics, as
pointed out by Katz and Domshlak [25]:

Computational tractability can be an invaluable tool even for
dealing with problems that fall outside all the known tractable
fragments of planning. For instance, tractable fragments of
planning provide the foundations for most (if not all) rigorous
heuristic estimates employed in planning as heuristic search.

For instance, Helmert [22] used a planning algorithm for a simpler
restricted problem to compute heuristic values for subproblems and
then combine these values. Similarly, the highly successful delete-
relaxation heuristic (h+) [23] exploits that planning is simpler with
only positive effects and uses this as a relaxation for computing a
heuristic value. Also Katz and Domshlak [26] exploit tractable frag-
ments to build pattern database heuristics.

We will analyse some cases of planning using parameterised com-
plexity analysis rather than standard complexity analysis. Param-

1 Department of Computer and Information Science, Linköping University,
SE-58183 Linköping, Sweden. Email: christer.backstrom@liu.se

eterised complexity analysis was invented to enable a more fine-
grained analysis than standard complexity analysis allows, by treat-
ing some selected parameter(s) as independent of the instance rather
than being a part of it. Somewhat simplified, the idea is as follows.
Consider an instance of some problem and let n denote the instance
size. We usually consider a problem as tractable if it can be solved
by some algorithm in O(nc) time, that is, in polynomial time. For
many problems, like the NP-hard problems, we do not know of any
significantly faster way to solve them than doing brute-force search,
which typically requires exponential, or at least super-polynomial,
time in n. In practice the search is often not exponential in the size of
the whole instance, but only in some smaller hard part of it. Then the
complexity may rather be something like O(2knc) where k is a pa-
rameter that is typically independent of the instance size n. The com-
binatorial explosion is thus confined to the parameter k. A problem
is fixed-parameter tractable (fpt) if it can be solved in this way. This
is the essence of parameterised complexity theory and it provides a
more relaxed tractability concept than the usual one, while correlat-
ing better with tractability in practice for real-world problems. The
theory also offers various classes for problems that are not fpt, for ex-
ample W[1] and W[2]. Parameterised complexity analysis has con-
tributed fundamental new insights into complexity theory [15, 19].
It is nowadays a very common technique in many areas of com-
puter science, including many subareas of AI, like non-monotonic
reasoning, constraints, social choice and argumentation. There has
also been an increasing interest in parameterised complexity within
planning. Some early results on STRIPS appeared in Downey, Fel-
lows and Stege [14]. Bäckström et. al. [2] used plan length as param-
eter and studied the complexity of planning under various restric-
tions previously considered for classical complexity analysis in the
literature. Kronegger et. al. [28] provided an extensive analysis of
the complexity of planning for all combinations of a number of pa-
rameters, mostly parameters based on previously studied restrictions.
De Hahn et. al. [10] applied parameterised analysis to plan reuse.

In this paper we study planning instances where the domain-
transition graphs (DTGs) of the variables are acyclic and focus pri-
marlily on a parameter k, which denotes the maximum number of
paths in a DTG. This is a natural parameter that appears in the litera-
ture (cf. Katz and Keyder [27]), but it has never been used in param-
eterised analysis. Most other parameters previously used are either
straightforward syntactical parameters, e.g the number of precondi-
tions or the size of the variable domains, or implicit properties of the
actual solution, e.g the length of an optimal plan or the local work
parameter (∆) [8]. The value for parameters of the first type are usu-
ally trivial to test, while parameters of the second type are typically as
hard to test as planning itself. For instance, we show in this paper that
testing the ∆ parameter is PSPACE-complete under classical analy-

sis and W[2]-complete under parameterised analysis, which makes it
moderately interesting to use as a parameter. In contrast, our parame-
ter k is not an immediate explicit property of a planning instance, but
an implicit one. Yet, it is fixed-parameter tractable to test. Further-
more, Brafman and Domshlak [6] studied the complexity of planning
when the number of paths in the causal graph is restricted. Since both
the causal graph and the DTG are important tools for describing and
analysing planning, it is interesting to consider the same restrictions
for both graph types, even though they model different things.

Our main results are: (1) planning with acyclic DTGs and polytree
causal graphs is fpt in parameter k and (2) planning with acyclic
DTGs and no restrictions on the causal graph is fpt if parameter k is
combined with the domain size d of the variables and the treewidth
w of the causal graph. These results still hold even if we ask for
the length of an optimal plan. The proofs are based on translating
planning to constraint satisfaction (CSP) instances since parameter k
has favourable properties that makes this translation natural without
blowing up the domain sizes exponentially in the instance size.

The rest of the paper is organised as follows. Section 2 provides
some necessary definitions from graph theory, parameterised com-
plexity and planning. Section 3 discusses the parameters and assump-
tions used for the results. Section 4 presents the main fpt results
for planning with arbitrary causal graphs and with polytree causal
graphs. Section 5 shows that these fpt results still hold if we ask for
an optimal plan. Finally, Section 6 contains a discussion on the re-
strictions, on the relations to some other work in the literature and on
how to go forward from these results.

2 PRELIMINARIES
This section provides some basic definitions for graph theory, param-
eterised complexity and the planning framework used in this paper.

2.1 Graphs
Given a directed graph G = 〈V,E〉, the notation U(G) refers to
the undirected version of G, that is, U(G) = 〈V,EU 〉 where EU =
{{v, w} | 〈v, w〉 ∈ E}. Although many special types of graphs ap-
pear in the literature on causal graphs, there is only one that is of
particular interest in this paper, the polytree graph. A directed graph
G is a polytree if U(G) is a tree, i.e. if we ignore the direction of the
edges then G must be connected and contain no cycles.

The treewidth of a graph is a concept that is commonly used, es-
pecially in parameterised analysis of problems.

Definition 1. A tree decomposition of a graphG = 〈V,E〉 is a tuple
〈N,T 〉 whereN = {N1, . . . , Nn} is a family of subsets of V and T
is a tree with nodes N1, . . . , Nn, satisfying the following properties
(the term node is used to refer to a vertex of T to avoid confusion
with vertices of G):

1. The union of all sets Ni equals V . That is, each graph vertex is
contained in at least one tree node.

2. For each vertex v ∈ V , the tree nodes of N containing vertex v
form a connected subtree of T .

3. For every edge {v, w} in the graph, there is a subset Ni that con-
tains both v and w. That is, vertices are adjacent in the graph only
when the corresponding subtrees have a node in common.

The width of a tree decomposition is the size of its largest set Ni

minus one. The treewidth of a graph G is the minimum width among
all possible tree decompositions ofG. Perhaps not surprisingly, every
tree has treewidth 1.

2.2 Parameterised complexity

We define the basic notions of parameterised complexity and refer
to other sources [15, 19] for an in-depth treatment. A parameterised
problem is a set of pairs 〈I, k〉, the instances, where I is the main
part and k the parameter. The parameter is usually one or more
non-negative integers. A parameterised problem is fixed-parameter
tractable (fpt) if there exists an algorithm that solves any instance
〈I, k〉 of size n in time f(k) · nc where f is an arbitrary computable
function and c is a constant independent of both n and k. That is, the
expression can be separated into a function f(k) that depends only
on the parameter(s) and a polynomial function nc that depends only
on the instance size. FPT is the class of all fixed-parameter tractable
decision problems. A parameter is not the same thing as assuming
that the value is a constant. For instance, althoughO(nk) is tractable
in the classical sense if k is a constant, the expression is not fpt when
k is the parameter since it is not separable. Although the parame-
ter value is often assumed much smaller than the instance size, it
need not even be polynomially bounded in the instance size. Param-
eterised complexity offers a completeness theory, similar to the the-
ory of NP-completeness, based on a hierarchy of complexity classes
FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ · · · , where the class W[1] is usu-
ally considered as a parameterised analogue of NP, although neither
class is included in the other. We will not go further into this since
we primarily prove tractability results in this paper.

2.3 Planning framework

We use the SAS+ planning framework [4]. Let V = {v1, . . . , vn}
be a finite set of variables, with an implicit order v1, . . . , vn. A
domain function D for V assigns a finite domain D(vi) to each
variable vi ∈ V . The state space for V and D is S(V,D) =
D(v1)× . . .×D(vn) and the members of S(V,D) are called (total)
states. The value of a variable vi in a state s is called the projection
of s onto vi and is denoted s[vi]. This can be viewed as a total func-
tion over V such that s[vi] ∈ D(vi) for all vi ∈ V . A partial state is
similarly a partial function over V such that for each vi ∈ V , either
s[vi] is undefined or s[vi] ∈ D(vi). The notation vars(s) denotes
the set of variables vi ∈ V such that s[vi] is defined. Projection is
extended to sets of variables such that if V ′ ⊆ V , then s[V ′] is a
partial state that agrees with s on all variables in vars(s) ∩ V ′ and is
otherwise undefined.

A planning instance is a tuple P = 〈V,D,A, sI , sG〉 where V
is a set of variables, D is a domain function for V and A is a set
of actions. The initial state sI and the goal sG are total states over
S(V,D). Each action a ∈ A has two associated partial states, the
precondition pre(a) and the effect eff(a). Let a ∈ A and let s be
a total state. Then a is valid in s if pre(a)[v] = s[v] for all v ∈
vars(pre(a)). Furthermore, the result of a in s is a state t ∈ S(V,D)
such that for all v ∈ V , t[v] = eff(a)[v] if v ∈ vars(eff(a)) and
t[v] = s[v] otherwise.

Let s0, s` ∈ S(V,D) and let ω = 〈a1, . . . , a`〉 be a sequence
of actions. Then ω is a plan from s0 to s` if either (1) ω = 〈〉 and
` = 0 or (2) there are states s1, . . . , s`−1 ∈ S(V,D) such that for
all i (1 ≤ i ≤ `), ai is valid in si−1 and si is the result of ai in si−1.
An action sequence ω is a plan for P if it is a plan from sI to sG.

We will study the following problems, where C is some class of
planning instances and π is a list of parameters. PLANSAT(C, π)
takes a planning instance P in C and values for the parameters in
π as input and answers yes if P has a plan and otherwise answers no.
PLANOPT(C, π) has the same input but its output is either the length

of the shortest plan for P or no if there is no plan.
Projections are extended as follows. Let P = 〈V,D,A, sI , sG〉

be a planning instance and let V ′ ⊆ V . Then, for each ac-
tion a ∈ A, define a[V ′] as the restriction a′ of a where
pre(a′) = pre(a)[V ′] and eff(a′) = eff(a)[V ′]. That is, we treat
a and a[V ′] as different variants of the same action. Also de-
fine A[V ′] = {a[V ′] | a ∈ A and eff(a[V ′]) 6= ∅}. Then P[V ′] =
〈V ′, A[V ′], sI [V ′], sG[V ′]〉. The projection of an action sequence
ω = 〈a1, . . . , a`〉 over A onto V ′ is denoted ω[V ′] and defined
as follows. First define the sequence ω′ = 〈a′1, . . . , a′`〉 such that
a′i = ai[V

′] for all i (1 ≤ i ≤ `). Then define ω[V ′] as the subse-
quence of ω′ that contains only those a′i where eff(a′i) 6= ∅. Also
here, we consider ω[V ′] to be a subsequence of ω, i.e. it consists of
actions from ω although in a restricted variant. For all cases, we also
define projection onto a single variable v such that a[v] = a[{v}] etc.
The following result is known in the literature (cf. Helmert [22]).

Proposition 2. Let P = 〈V,D,A, sI , sG 〉 be a planning instance
and let V ′ ⊆ V . If ω is a plan for P, then ω[V ′] is a plan for P[V ′].

We define the transition graph for a planning instance P =
〈V,D,A, sI , sG〉 as the labelled directed graph TG(P) = 〈S,E〉,
where S = S(V,D) and E ⊆ S × A× S such that for all s, t ∈ S
and a ∈ A, 〈s, a, t〉 ∈ E if a is valid in s and t is the result of
a in s. Obviously, the paths from sI to sG in TG(P) correspond to
the plans for P. In particular, we define the domain transition graph
(DTG) for a variable v ∈ V as DTG(v) = TG(P[v]), i.e. the paths
from sI [v] to sG[v] in DTG(v) describe all possible ways to go from
the initial state to the goal for this particular variable treated in iso-
lation. DTGs are sometimes ornamented with further information in
the literature, but this definition is sufficient for our needs. Both the
transition graph and the DTGs are multigraphs since different actions
can induce different edges between the same pair of vertices.

The causal graph for a planning instance describes how the vari-
ables of the instance depend on each other, as implicitly defined
by the actions. Let P = 〈V,D,A, sI , sG〉 be a planning instance.
Then the causal graph of P is the directed graph CG(P) = 〈V,E〉
where E contains the edge 〈v, w〉 for every pair of distinct vertices
v, w ∈ V such that (1) v ∈ vars(pre(a)) ∪ vars(eff(a)) and (2)
w ∈ vars(eff(a)) for some action a ∈ A.

3 PARAMETERS AND ASSUMPTIONS
We will consider the following parameters in this paper:

d: The maximum domain size of the variables.
k: The maximum number of paths in each DTG.
w: The treewidth of the causal graph.

Let P = 〈V,D,A, sI , sG〉 be a planning instance. Then param-
eter d is defined as d = maxv∈V |D(v)|, which can be computed
in polynomial time. For each v, let Paths(v) be the set of all paths
in DTG(v) from sI [v] to sG[v]. Then parameter k is defined as
k = maxv∈V |Paths(v)|. Computing k is fixed parameter tractable.

Lemma 3. Let P = 〈V,D,A, sI , sG 〉 be a planning instance such
that DTG(v) is acyclic for all v ∈ V and let k > 0 be an integer.
Checking if |Paths(v)| ≤ k for all v ∈ V is fpt in k.

Proof. Eppstein [16] has presented an algorith that finds the k short-
est paths in a directed acyclic graph in time O(m + k), where m is
the number of edges. This algorithm works also for multigraphs and
is thus applicable to DTGs. To check if |Paths(v)| ≤ k for a variable

v, apply this algorithm but ask for the k+1 shortest paths. Obviously,
|Paths(v)| ≤ k if and only if the algorithm returns fewer than k + 1
paths. Checking this for all n variables takes timeO((m+k)n). This
is fpt in parameter k since (m + k)n = mn + kn ≤ (k + 1) ·mn
and both m and n are upper bounded by the instance size.

We define parameter w as the treewidth of U(CG(P)) since there
is no generally accepted concept of treewidth for directed graphs.
Deciding the treewidth of a graph is NP-complete [1], but fpt under
parameterised analysis [5].

Our results will concern planning instances where all variables
have acyclic DTGs and we make the following observations.

Lemma 4. Let DTG(v) be an acyclic DTG with d vertices and at
most k paths from sI [v] to sG[v]. Then (1) each path has length at
most d − 1, (2) if we remove all edges that are not on any of the
paths, then at most k(d− 1) edges remain and (3) for any path ω in
Paths(v), no action occurs more than once along the path.

Proof. (1) and (2) are straightforward. For (3), note that if an action
a occurs twice in a path in DTG(v), then it must visit the vertex
eff(a)[v] twice, implying that DTG(v) is not acyclic.

The restriction to total goal states is not necessary but simplifies
the proofs. Besides, if partial goals were allowed, then the number
of paths would be at least the same as the number of reachable ver-
tices in the DTG. Similarly, the restriction to acyclic DTGs is not
necessary either. If paths are taken to mean non-simple paths that
may have cycles, as in Eppsteins algorithm, then the number of paths
will immediately be unbounded if any of the paths has a cycle. The
acyclicity is thus rather a consequence of the bound.

4 PLAN SATISFIABILITY

This section provides the complexity results for two cases of the
PLANSAT problem. We first prove the more general result for ar-
bitrary causal graphs (Theorem 9) and then show that the result for
polytrees (Corollary 10) follows. Before that, we first recapitulate the
concept of CSP, since it will be central to the forthcoming proofs.

Definition 5. An instance of the constraint satisfaction problem
(CSP) is a triple C = 〈X,D,C〉, where X is a finite set of vari-
ables, D is a domain function assigning a finite domain to each vari-
able and C is a finite set of constraints. Each constraint in C is a
tuple 〈t, R〉 where t is a sequence 〈xi1 , . . . , xir 〉 of variables from
X and R is a relation R ⊆ D(xi1) × . . . × D(xir). An instantia-
tion of C is a mapping α that maps each xi ∈ X to an element in
D(xi). A solution for C is an instantiation α that satisfies all con-
straints in C, i.e. R(α(xi1), . . . , α(xir)) holds for every constraint
〈〈xi1 , . . . , xir 〉, R〉 in C. When all constraint relations are binary,
the constraint graph for C is the graph G = 〈X,E〉 where E con-
tains the edge {xi, xj}whenever there is some constraint 〈t, R〉 such
that t = 〈xi, xj〉 or t = 〈xj , xi〉.

Dechter and Pearl [11] have shown that a CSP instance C =
〈X,D,C〉 where all constraints are binary and the constraint graph
is a tree can be solved in time O(d2n), where d is the maximum
domain size and n is the number of variables.

The main theorem of this section is based on the following con-
struction, which defines a CSP instance with certain properties for
every planning instance.

Construction 6. Let P = 〈V,D,A, sI , sG〉 be a planning instance
and let 〈N,T 〉 be a tree decomposition of CG(P). Define a cor-
responding CSP instance C = 〈X,D,C〉 as follows. The set X
contains one variable xi for each node Ni ∈ N where the do-
main D(xi) for xi is the set of plans for P[Ni]. For each pair of
adjacent nodes Ni, Nj in T such that i < j, define the relation
Ri,j ⊆ D(xi)×D(xj) such that Ri,j contains exactly those tuples
〈ωi, ωj〉 where ωi[Ni ∩Nj] = ωj [Ni ∩Nj], i.e. those tuples where
ωi and ωj agree on the actions affecting the common variables.

A solution for C is a set of subplans for the projected instances
and we want to guarantee that it is possible to merge these subplans
into one single action sequence without any ordering conflicts.

Lemma 7. Let P = 〈V,D,A, sI , sG 〉 be a planning instance such
that DTG(v) is acyclic for all v ∈ V , let 〈N,T 〉 be a tree decom-
position of CG(P) and let C = 〈X,C〉 be the corresponding CSP
instance according to Construction 6. If C has a solution with value
ωi for each xi ∈ X , then there is an action sequence ωT such that
(1) ωT [Ni] = ωi for each xi ∈ X and (2) every action a in ωT

occurs in ωi for some xi ∈ X .

Proof. Suppose C has a solution with value ωi for each xi ∈ X .
According to Lemma 4 no action occurs more than once in each ωi,
but the same action a can occur in more than one ωi if two or more
variables in eff(a) occur in different tree nodes. We can thus merge
all the subplans ωi into a new action sequence ωT which contains
all action of the subplans, but all occurences of the same action in
different ωi are merged into one, thus synchronizing the subplans.
It remains to prove that the action ordering of all subplans can be
respected in ωT . Proof by induction over the number of nodes in T .

Base case: If there is only one node N0, then ωT = ω0.
Induction: Suppose the claim holds for p nodes and let N =
{N0, . . . , Np}. Without losing generality, assume that N0 is a leaf
node in T and that N1 is its only adjacent node. By assumption,
ω1, . . . , ωp can be merged into a plan ω′ such that ω′[Ni] = ωi for
1 ≤ i ≤ p and every action a in ω′ occurs in some of the subplans
ω1, . . . , ωp. It remains to prove that also ω0 can be merged with ω′.

The subplan ω0[N0 ∩N1] can trivially be merged with ω′ since
the constraints of C guarantee that it is identical to ω1[N0 ∩N1],
which must be a subsequence of ω′. Suppose v ∈ N0 \ N1, i.e.
v ∈ N0 but v 6∈ N1. The node N0 is a leaf so v cannot occur in
any other node than N0 since the definition of tree decompositions
requires that all nodes containing v form a subtree of T . That is,
(N0 \N1) ∩Ni = ∅ for 1 ≤ i ≤ p.

Let a be an action in ω0 and let v be a variable such that v ∈
vars(eff(a)). Suppose v ∈ N0 \N1, i.e. v occurs only in N0. Let u
be a variable such that u ∈ vars(pre(a)). Then the edge 〈u, v〉 must
be in CG(P) so there must be some node Ni such that {u, v} ⊆ Ni.
However, then Ni = N0 since v only occurs in N0. Since this holds
for all such actions it follows that ω0[N0 \N1] only needs to be or-
dered with respect to ω0[N0 ∩N1]. However, this is trivial since ω0

is a plan for P[N0] and ω0[N0 \N1] and ω0[N0 ∩N1] thus already
have consistent action orders. This ends the induction.

We thus conclude that all subplans ω0, . . . , ωp can be merged into
a single sequence ωT such that ωT [Ni] = ωi for 0 ≤ i ≤ p and
every action a in ωT occurs in some ωi (0 ≤ i ≤ p).

We can now prove that Construction 6 is indeed a reduction from
planning to CSP.

Lemma 8. Let P = 〈V,D,A, sI , sG 〉 be a planning instance such
that DTG(v) is acyclic for all v ∈ V , let 〈N,T 〉 be a tree decom-
position of CG(P) and let C = 〈X,C〉 be the corresponding CSP

instance according to Construction 6. Then P has a solution if and
only if C has a solution.

Proof. if: Suppose C has a solution with value ωi for each xi ∈ X .
Let ωT be a corresponding merged plan, which must exist according
to Lemma 7. We first prove by induction over all prefixes of ωT that
ωT is valid in sI .

Base case: The empty prefix is always valid in sI .
Induction: Suppose all prefixes of ωT of length at most p are

valid in sI and let 〈a1, . . . , ap+1〉 be a prefix of ωT . The sequence
〈a1, . . . , ap〉 is valid in sI by assumption, so there is a sequence
of states s0, . . . , sp, where s0 = sI , such that si is the result of
〈a1, . . . , ai〉 in sI for all i (1 ≤ i ≤ p). We must thus prove that
ap+1 is valid in sp. This trivially holds if ap+1 has an empty pre-
condition, so assume that vars(pre(ap+1)) is not empty. Let u and
v be two arbitrary variables such that u ∈ vars(pre(ap+1)) and
v ∈ vars(eff(ap+1)). Also let x ∈ D(u) and y ∈ D(v) be val-
ues such that pre(ap+1)[u] = x and eff(ap+1)[v] = y. We must
prove that sp[u] = x. We do this by proving (1) that sq[u] = x for
some q ≤ p and (2) that there is no r such that q < r ≤ p and
u ∈ vars(eff(ar)) but eff(ar)[u] 6= x

Condition (1) trivially holds if sI [u] = x, so assume this is not
the case. Obviously, CG(P) contains the edge 〈u, v〉 so there must
be some node Ni in T such that {u, v} ⊆ Ni. The action ap+1[Ni]
must thus occur in ωi and ωi is a plan for P[Ni], so there must be
some action a′ such that eff(a′)[u] = x and a′ is ordered before
ap+1[Ni] in ωi. It follows from Lemma 7 that there is some aq in
ωT such that 1 ≤ q ≤ p and eff(aq)[u] = x. Hence, sq[u] = x.

For condition (2), assume the opposite, that there is also some r
such that q < r ≤ p and eff(ar) = z for some value z ∈ D(u)
where z 6= x. It follows from Lemma 7 that ωi must contain all ac-
tions in ωT that affect u or v. Hence, the actions aq[Ni], ar[Ni] and
ap+1[Ni] must occur in ωi in that order. However, this contradicts
that ωi is a plan for P[Ni] so we conclude that there can be no r
satisfying the assumption.

It follows that sp[u] = pre(ap+1)[u]. Since u was choosen arbi-
trarily in vars(pre(ap+1)) it follows that ap+1 must be valid in sp
and, thus, that 〈a1, . . . , ap+1〉 is valid in sI , ending the induction.

By definition each ωi is a plan from sI [Ni] to sG[Ni]. Since ωT

is valid in sI also every subplan ωi is valid in sI . Hence, each ωi is a
plan from sI to sG[Ni]. Furthermore,N1∪ . . .∪N|N| = V so since
the merge ωT of all ωi is valid in sI , it follows that ωT is a plan from
sI to sG.

only if: Suppose ω is a plan for P. Let Ni and Nj be two arbitrary
adjacent nodes in T . Also let ωi = ω[Ni] and ωj = ω[Nj]. It is a
property of projections that ωi is a plan for P[Ni] and ωj is a plan
for P[Nj]. Obviously, ωi[Ni ∩Nj] = ωj [Ni ∩Nj]. It follows that
C must have a solution with value ω[Ni] for each xi ∈ X .

This leads to the main theorem.

Theorem 9. Let C be a class of planning instances such that
for every instance P ∈ C, all DTGs of P are acyclic. Then
PLANSAT(C, 〈d, k, w〉) is fixed-parameter tractable.

Proof. First compute an optimal tree decomposition 〈X,T 〉 for
CG(P), which has width w by assumption. This is fpt in w [5].

Then for each Ni ∈ N , construct the transition graph TGi =
TG(P[Ni]) from the DTGs DTG(v) for v ∈ Ni. The set of paths
from sI [Ni] to sG[Ni] in TGi corresponds directly to the set of plans
for P[Ni], so this set of paths is the domain D(xi) for the corre-
sponding CSP variable xi. Since |Ni| ≤ w + 1, there are at most

dw+1 vertices in TGi. We can assume that all irrelevant edges have
been removed from the DTGs so all edges appear along some path.
Since there are at most k paths in each DTG, there can be at most
kw+1 paths in TGi. Each of these paths is of length dw+1 − 1 at
most, so TGi has at most (kd)w+1 edges. The set of paths can thus
be computed in time O((kd)w+1 + kw+1) = O((kd)w+1), using
Eppsteins algorithm [16]. If there are n variables in V then there are
at most n nodes in T so computing the sets of paths for all nodes
takes time O((kd)w+1 ·n), which is fpt in 〈k, d, w〉 since n is upper
bounded by the instance size.

For each pair of adjacent nodes Ni, Nj ∈ N , there are at
most (kd)2(w+1) pairs of paths for TGi and TGj . Since the path
length is bounded by dw+1 two paths can be compared in time
O(dw+1). It follows that the relation Ri,j can be computed in time
O((kd)2(w+1)dw+1) ⊆ O((kd)3(w+1)). There are at most n such
relations since T is a tree, so computing all relations takes time
O((kd)3(w+1) · n), which is fpt in 〈k, d, w〉.

The relations are precomputed and explicitly represented, so it suf-
fices to use indices instead of actual paths, i.e. the relations of C can
be over N × N. All relations are binary and the constraint graph of
C is a tree. As previously noted, the domain size of each variable is
at most kw+1 and there are at most n variables. Hence, using the re-
sult by Dechter and Pearl [11] it follows that C can be solved in time
O((kw+1)2n) = O(k2(w+1) · n), which is fpt in 〈k,w〉.

This whole construction is thus fpt in the parameter 〈k, d, w〉 so
it follows from Lemma 8 that PLANSAT is fpt in the parameter
〈k, d, w〉 for this case.

The special case of polytree causal graphs follows.

Corollary 10. Let C be a class of planning instances such that for
every instance P ∈ C, all DTGs are acyclic andCG(P) is a polytree.
Then PLANSAT(C, 〈k〉) is fixed-parameter tractable.

Proof. If CG(P) is a polytree, then it has treewidth w = 1 since
U(CG(P)) is a tree. We will also use the fact that the domain size
is upper bounded by the instance size. Each graph TGi has at most
dw+1 = d2 vertices and at most kw+1 = k2 paths, each of length
d2 − 1 at most. Hence, the set of paths can be computed in time
O(kd)w+1n) = O((kd)2n) = O(k2 ·d2n), which is fpt in k since d
is upper bounded by the instance size. Computing the relations takes
time O((kd)3(w+1)n) = O(k6 · d 6n), which is fpt in k. Solving C
takes time O(k2(w+1)n) = O(k4 · n), which is fpt in k. Hence, the
whole computation is fpt in k.

In the general case, d must be a parameter since it occurs in ex-
pressions on the form dw+1 and cannot be separated from parameter
w. In the polytree case, this no longer holds since w is constant.

5 PLAN OPTIMISATION

In this section, we will show that the two previous fpt results hold
also for finding the length of an optimal plan.

Definition 11. An instance of the constraint satisfaction optimiza-
tion problem (CSOP) is a CSP instance C = 〈X,D,C,W 〉 with the
additional parameter W which contains a weight (or cost) function
w : D(x)→ Q≥0 for each x ∈ X . The weight of an instantiation α
is defined as w(α) =

∑
x∈X w(α(x)). A solution to C is either the

answer ’no’, if there is no satisfying instantiation, or the minimum
value of w(α) over all satisfying instantiations α.

Färnqvist [18, Corollary 13]) has shown that solving CSOP is fpt
if the parameters are the maximum domain size of the variables and
the treewidth of the constraint graph.

The optimisation variant of our main theorem relies on the same
construction as previously, but with some additional details.

Theorem 12. Let C be a class of planning instances such
that for every instance P ∈ C, all DTGs are acyclic. Then
PLANOPT(C, 〈d, k, w〉) is fixed-parameter tractable.

Proof sketch. The subplans for the nodes in Construction 6 can over-
lap so we must avoid counting an action multiple times. Identify a
subset Ai ⊆ A with each node Ni ∈ N , defined as follows. For
each action a ∈ A, arbitrarily choose one variable v ∈ vars(eff(a))
and arbitrarily choose one node Ni ∈ N such that v ∈ Ni and let
a belong to Ai. Obviously, {Ai | Ni ∈ N} is a partition on A. For
each constraint variable xi, define the weight function such that the
weight of a solution ωi for P[Ni] is the number of actions in ωi that
belong to Ai. This guarantees that every action that is used in some
subplan in a solution is counted exactly once. Since the domain size
of this CSOP is upper bounded by kw+1, it follows from the proof
of the previous theorem and Färnqvists Corollary that computing the
optimal plan length is fpt in the parameter 〈k, d, w〉.

The polytree case follows also here.

Corollary 13. Let C be a class of planning instances such that for
every instance P ∈ C, all DTGs are acyclic andCG(P) is a polytree.
Then PLANOPT(C, 〈k〉) is fixed-parameter tractable.

6 DISCUSSION
Requiring acyclic DTGs may seem very restrictive, yet it is suffi-
cient for certain important cases. For instance, some of the most suc-
cessful heuristics for STRIPS planning are based on the delete re-
laxation heuristic (h+) [23]. This method first removes all negative
effects of actions and then takes the length of an optimal plan for
this relaxed problem as the heuristic measure for the real plan length.
However, even delete relaxed planning is NP-complete so it needs to
be somehow approximated in practice. Generalisations of delete re-
laxed planning to non-binary variables have received attention in the
literature recently [13, 24] and our parameter k seems more useful
in this case, than in the STRIPS case. The DTGs are always acyclic
for delete-relaxed instances but they may have loops, i.e. one-vertex
cycles consisting of a single edge 〈v, a, v〉. The method described in
this paper is still applicable, with a minor modification. First use Epp-
steins algorithm as previously described, ignoring the loops. Then
split each path into different paths whenever the loops give a choice,
as follows. A loop 〈v, a, v〉 at a vertex v can only occur if there is
an incoming edge 〈u, a, v〉. Furthermore, no action is required more
than once in an optimal plan, so there is no need to follow a loop la-
belled with an action that already occurs in the path. Hence, for each
vertex along the path where there is a choice of following loops or
not, split the path into different paths for all possible choices, obey-
ing that each action occurs at most once. During this process, ignore
duplicates and keep track of the number of paths and break if a split
results in a total number of paths larger than k. The trick here is that
we never need to follow a loop more than once. Hence, our results
imply that delete relaxed planning is fpt even in the generalised case,
even though it is NP-complete already for binary domains.

Although not the topic of this paper, there are connections with so-
called factored planning, which is the idea of partitioning the vari-
ables, solving the subproblems independently and then using CSP

techniques for finding a global solution. Our approach is clearly re-
lated since we use CSP techniques for the proofs, although CSP is
just a tool that happens to be useful in our case. There is also the
difference that papers on factored planning typically focus on al-
gorithms that are intended to solve planning in general by employ-
ing CSP techniques [7], although there are also attempts to identify
tractable subcases [17], in the classical sense. Brafman and Domsh-
lak [8] provide more detailed complexity figures, using treewidth and
other parameters, although not attempting a parameterised analysis
and the expressions they arrive at are not fpt in these parameters.
Some of the parameters are also difficult to test in advance. For in-
stance, their local work parameter ∆ is defined as

∆ = min
ω∈Plans(P)

max
v∈V
|ω[v]|

in our notation, where Plans(P) denotes the set of plans for P. Find-
ing the value of ∆ is unfortunately as hard as planning itself.

Theorem 14. Deciding the value of ∆ is PSPACE-complete and
W[2]-complete.

Proof sketch. Let P be an arbitrary planning instance. Construct a
new instance P′ by adding a new variable v that every action switches
from 0 to 1. Also add a new action that can switch v back to 0. Any
plan for P′ must have twice as many actions as the corresponding
plan for P and the value of ∆ for P′ equals the length of an optimal
plan for P′. Hence, deciding ∆ is as hard as deciding the optimal plan
length, which is PSPACE-complete [9] and W[2]-complete [2].

Since we have an fpt result for planning with arbitrary causal
graphs, future work should focus on non-acyclic DTGs. The k pa-
rameter may still be useful, but additional parameters must be used.
Katz and Keyder [27] also use the number of paths in a DTG, but
consider general DTGs and first collapse all strongly connected com-
ponents (SCCs) of the graph and then count the paths in the resulting
graph. This can be applied also in our case, but it would be necessary
to find additional parameters also for the SCCs, since different cycles
in an SCC may require different preconditions for the actions, caus-
ing intricate interplay between the variables. Parameters that imme-
diately come to mind are the maximum size of an SCC and the maxi-
mum number of cycles in an SCC. Another interesting approach is to
allow paths to contain cycles under certain restrictions and then still
count the number of such paths. It may then be beneficial to model
the paths as regular expressions or even model the DTGs as automata,
as is sometimes done in factored planning [17]. Yet another possibil-
ity is to allow restricted appearance of cycles in the DTGs and use a
parameter to bound the number of times a cycle may be followed. In
that case, a very simple straightforward method could be to replace
each cycle with a path corresponding to this number of turns through
the cycle, somewhat similar to loop unrolling in compilers.

REFERENCES
[1] Stefan Arnborg, Derek Corneil, and Andrzej Proskurowski, ‘Complex-

ity of finding embeddings in a k-tree’, SIAM J. Alg. Disc. Meth., 8(2),
277–284, (1987).

[2] Christer Bäckström, Yue Chen, Peter Jonsson, Sebastian Ordyniak, and
Stefan Szeider, ‘The complexity of planning revisited - a parameterized
analysis’, in Proc. 26th AAAI Conf. Artif. Intell. (AAAI 2012), Toronto,
ON, Canada, pp. 1735–1741, (2012).

[3] Christer Bäckström and Peter Jonsson, ‘A refined view of causal graphs
and component sizes: SP-closed graph classes and beyond’, J. Artif.
Intell. Res., 47, 575–611, (2013).

[4] Christer Bäckström and Bernhard Nebel, ‘Complexity results for SAS+

planning’, Computat. Intell., 11, 625–656, (1995).
[5] Hans L. Bodlaender, ‘A linear-time algorithm for finding tree-

decompositions of small treewidth’, SIAM J. Comput., 25(6), 1305–
1317, (1996).

[6] Ronen I. Brafman and Carmel Domshlak, ‘Structure and complexity
in planning with unary operators’, J. Artif. Intell. Res., 18, 315–349,
(2003).

[7] Ronen I. Brafman and Carmel Domshlak, ‘Factored planning: How,
when, and when not’, in Proc. 21st Nat’l Conf. Artif. Intell. (AAAI
2006), Boston, MA, USA, pp. 809–814, (2006).

[8] Ronen I. Brafman and Carmel Domshlak, ‘On the complexity of plan-
ning for agent teams and its implications for single agent planning’,
Artif. Intell., 198, 52–71, (2013).

[9] Tom Bylander, ‘The computational complexity of propositional
STRIPS planning’, Artif. Intell., 69(1–2), 165–204, (1994).

[10] Ronald de Haan, Anna Roubı́cková, and Stefan Szeider, ‘Parameterized
complexity results for plan reuse’, in Proc. 27th AAAI Conf. Artif. Intell.
(AAAI 2013), Bellevue, WA, USA, (2013).

[11] Rina Dechter and Judea Pearl, ‘Tree clustering for constraint networks’,
Artif. Intell., 38(3), 353–366, (1989).

[12] Carmel Domshlak and Yefim Dinitz, ‘Multi-agent off-line coordina-
tion: Structure and complexity’, in Proc. 6th Eur. Conf. Planning
(ECP’01), Toledo, Spain, (2001).

[13] Carmel Domshlak and Adeline Nazarenko, ‘The complexity of optimal
monotonic planning: The bad, the good, and the causal graph’, J. Artif.
Intell. Res., 48, 783–812, (2013).

[14] R. Downey, M. Fellows, and U. Stege, Parameterized Complexity: A
Framework for Systematically Confronting Computational Intractabil-
ity, volume 49 of DIMACS Series in Disc. Math. Theor. Comput. Sci.,
49–99, 1999.

[15] R. G. Downey and M. R. Fellows, Parameterized Complexity, Mono-
graphs in Computer Science, Springer, New York, 1999.

[16] David Eppstein, ‘Finding the k shortest paths’, SIAM J. Comput., 28(2),
652–673, (1998).

[17] Eric Fabre, Loı̈g Jezequel, Patrik Haslum, and Sylvie Thiébaux, ‘Cost-
optimal factored planning: Promises and pitfalls’, in Proc. 20th Int’l
Conf. Automated Planning and Scheduling (ICAPS 2010), Toronto, ON,
Canada, May 12-16, 2010, pp. 65–72, (2010).

[18] Tommy Färnqvist, ‘Constraint optimization problems and bounded
tree-width revisited’, in Proc. 9th Int’l Conf. Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimzation
Problems (CPAIOR 2012), Nantes, France., pp. 163–179, (2012).

[19] Jörg Flum and Martin Grohe, Parameterized Complexity Theory, vol-
ume XIV of Texts in Theoretical Computer Science. An EATCS Series,
Springer, Berlin, 2006.

[20] Omer Giménez and Anders Jonsson, ‘The complexity of planning prob-
lems with simple causal graphs’, J. Artif. Intell. Res., 31, 319–351,
(2008).

[21] Omer Giménez and Anders Jonsson, ‘Planning over chain causal graphs
for variables with domains of size 5 is NP-hard’, J. Artif. Intell. Res.,
34, 675–706, (2009).

[22] Malte Helmert, ‘A planning heuristic based on causal graph analysis’,
in Proc. 14th Int’l Conf. Automated Planning and Scheduling (ICAPS
2004), Whistler, BC, Canada, pp. 161–170, (2004).

[23] Jörg Hoffmann, ‘Where ’ignoring delete lists’ works: Local search
topology in planning benchmarks’, J. Artif. Intell. Res., 24, 685–758,
(2005).

[24] Jörg Hoffmann, ‘Analyzing search topology without running any
search: On the connection between causal graphs and h+’, J. Artif. In-
tell. Res., 41, 155–229, (2011).

[25] Michael Katz and Carmel Domshlak, ‘New islands of tractability of
cost-optimal planning’, J. Artif. Intell. Res., 32, 203–288, (2008).

[26] Michael Katz and Carmel Domshlak, ‘Implicit abstraction heuristics’,
J. Artif. Intell. Res., 39, 51–126, (2010).

[27] Michael Katz and Emil Keyder, ‘Structural patterns beyond forks: Ex-
tending the complexity boundaries of classical planning’, in Proc. 26th
AAAI Conf. Artif. Intell. (AAAI 2012), Toronto, ON, Canada, pp. 1779–
1785, (2012).

[28] Martin Kronegger, Andreas Pfandler, and Reinhard Pichler, ‘Parame-
terized complexity of optimal planning: A detailed map’, in Proc. 23rd
Int’l Joint Conf. Artif. Intell. (IJCAI 2013), Beijing, China, pp. 954–
961, (2013).

