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Abstract

The industry wants provably correct and fast formal
methods for handling combinatorial dynamical sys-
tems. One example of such problems is error recov-
ery in industrial processes. We have used a prov-
ably correct, polynomial-time planning algorithm to
plan for a miniature assembly line, which assembles
toy cars. Although somewhat limited, this process has
many similarities with real industrial processes. By ex-
ploring the structure of this assembly line we have ex-
tended a previously presented algorithm, thus extend-
ing the class of problems that can be handled in poly-
nomial time. The planning tool presented here con-
tains general-purpose algorithms that generate plans
in the form of GRAFCET charts that are automati-
cally translated into PLC code using a commercial PLC
compiler.

Keywords: Planning, GRAFCET, sequential control,
automated manufacturing

1 Introduction

The majority of all hardware and software developed
for industrial control purposes is devoted to sequential
control and only a minority to classical, linear control.
Typically, the sequential parts of the controller are in-
voked during startup and shut-down to bring the sys-
tem into its normal operating region and into some safe
standby region, respectively. Despite its importance,
not much theoretical research has been devoted to this
area, and sequential control programs are therefore still
created manually without much theoretical support to
obtain a systematic approach.

We propose a method to create sequential control pro-
grams automatically and on-line upon request. The
main idea is to spend some effort off-line modeling the
plant, and from this model generate the control strat-
egy, that is, the plan.

The process industry is one example of application ar-
eas where automatic generation of control programs
can be useful. The problem is not primarily to find the
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plan for normal operation of the plant. This is usually
done once and for all and can probably be done better
manually, since time is not critical in this case. Auto-
mated planning is more likely to enter the scene when
something goes wrong. Since there are many ways in
which a large process may go wrong, we can end up in
any of a very large number of states. It is not realis-
tic to have pre-compiled plans for recovering from any
such state so it would be useful to find a plan automat-
ically for how to get back to a safe state, where normal
operation can resume. It is important that such a plan
be correct and we also want to find it fast since the
costs accumulate very quickly when large-scale indus-
trial processes are non-operational.

Automated plan generation is also important if the ini-
tial state is not fully specified until the plan is needed.
As in the error recovery case it is important that the
plan be correct and that it be found reasonably fast.
Another situation where automated plan generation
may be useful is for operator support, ie., a form of
semi-automated planning. In this case the operator
request OpenValveA may result in an automatically
generated plan which brings about the desired effect.
Another possibility is that a supervisor checks if the
wished-for action is allowed in the present state, and if
not specifies why and how the operator can achieve
what he or she wants. Sometimes new devices are
added to the plant when the control program is already
developed. It can be very difficult and time consum-
ing to find out how such a change affects the original
control program. If using a model-based synthesis ap-
proach, then only the model need to be changed to take
the new devices into account.

Automated generation of plans, action planning, has
been studied for over 25 years within the area of arti-
ficial intelligence. A number of languages for model-
ing planning problems and a number of algorithms for
solving planning problems have been developed. The
traditional planning algorithms are general and search
based, thus suffering from the problems of combina-
torial explosion. This is not only a problem with the
algorithms, however, but also inherent in the problem
since the representation languages allow formulating
very difficult problems. A problem is usually consid-
ered practically solvable if there exists an algorithm



whose running time is bounded in some polynomial in
the size of the problem instance (the number of state
variables, for instance). To the contrary a problem
which can only be solved by algorithms with an expo-
nential running time behavior are infeasible for all but
extremely small problem instances. Action planning,
even in very restricted formalisms like STRIPS [5] re-
stricted to only propositional atoms, is very difficult,
belonging to the class of PSPACE-complete problems,
which are strongly believed to require exponential time.
Real problems in the industry, on the other hand, are
probably not that difficult in practice. This, however,
does not imply that the results from action planning
are useless, it only tells us that real problems have in-
herent structure and restrictions which we could exploit
to plan efficiently.

Hence we propose to study subclasses where we retain
feasibility by exploring the structure of the problems.
We formulate the model using Simplified Action Struc-
tures [4, 7] based on action structures originally in-
troduced by Sandewall and Ronnquist [12]. We have
previously presented algorithms for generating minimal
plans (no plan containing fewer actions exists) for some
restricted classes of planning problems [2, 3, 8, 9]. One
major advantage with this approach is that the com-
plexity of these algorithms only increases polynomially
with the number of state variables. A summary of the
earlier results is presented in Béckstrém and Nebel [4].
Lately we have concentrated on studying certain struc-
tural properties of planning problems that are closer to
reality [7, 10].

This paper reports how we have applied a polynomial
time algorithm to plan for a semi-realistic miniature
version of an industrial process, the LEGO! car fac-
tory [13]. This is a realistic miniature version of real
industrial processes in many respects. Our planning al-
gorithm is very fast, running in polynomial time, which
is made possible by exploiting typical structural prop-
erties of the assembly line. Furthermore, the algorithm
is also provably correct, that is, we have proven math-
ematically that the algorithm will always find a solu-
tion if one exists at all and that it will never return
a faulty solution [10]. This is important for the qual-
ity aspects of production processes. Here we present
the practical results stemming from the LEGO car fac-
tory project. In fact the study of the LEGO car fac-
tory also provided feedback for modifying the theory,
and the class of problems that can be handled is thus
extended. The presented planning tool generates a
plan as a GRAFCET [6] chart, that is automatically
loaded into a commercial tool [1] that translates the
GRAFCET chart into PLC code. The PLC code is
loaded into the PLC which then controls the factory.
Note that neither our algorithm nor the planning tool
is specifically tailored for this assembly line, but is a
general-purpose device.

The rest of the paper is organized as follows. Section 2
presents the LEGO car factory, while the modeling is

ILEGO is a trademark of the LEGO company.

given in section 3. The planning tool is described in
section 4 and the algorithm is given in section 5. Sec-
tion 6 contains the conclusion.

2 The LEGO Car Factory

Our application example is an automated assembly line
for LEGO cars [13], which is used for undergraduate
laboratory sessions in digital control at the Depart-
ment of Electrical Engineering at Linkdping Univer-
sity. The students are faced with the task of writing a
program to control this assembly line using the graph-
ical language GRAFCET [6]. Being an IEC standard,
GRAFCET is becoming increasingly popular in indus-
trial applications. There is commercially available soft-
ware for editing GRAFCET charts and compiling them
to PLC (Programmable Logical Controller) programs.
The LEGO car factory is a realistic miniature version
of a real industrial process in many respects. Hence,
being able to model and automatically generate control
programs for this factory has been one of our goals.

The main operations for assembling a LEGO car are
shown in Figure 1. The assembly line consists of two
similar halves, the first mounting the chassis parts on
the chassis (see Figure 2) and the second mounting the
top (see Figure 3).
Mounting of chassis

Mounting of top Resulting Lego car

ﬁ*w*w

*
—c

Figure 1: Assembling a LEGO car.
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Figure 2: The first half of the LEGO car factory.
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Figure 3: The second half of the LEGO car factory.



The first half of the LEGO car factory is presented in
Figure 2. The chassis is initially stored up-side down
in the chassis magazine (¢m). It enters the conveyor
belt by using the chassis feeder (c-feeder), and is trans-
ported to the chassis parts magazine (cpm) where the
chassis parts are fed onto the chassis using the chas-
sis parts feeder (cp-feeder). The chassis is then trans-
ported to the chassis press (¢p), where the chassis is
pressed together. It is then transported to the turn
station (¢s) where the chassis is turned upright and en-
ters the second half of the factory (Figure 3) where it
is placed on the chassis lift (¢l). It is lifted up, placed
on the conveyor belt (ocvB) and transported to the top
magazine (tm) where a top is fed onto the chassis by
the top feeder (t-feeder). The chassis is then trans-
ported to the top press (¢p) where the top is pressed
tight onto the chassis. From there it is transported to
the end of the conveyor belt (sf) and placed so that the
storage feeder (st-feeder) can push the chassis into a
buffer storage (st).

The conveyor belt used to transport the chassis runs
continously. Hence, at each work-station a stopper bar
is pushed out in front of the chassis holding the car
fixed, sliding on the belt (see see Figure 2 and Figure 3).
The car cannot pass the work-station until the stopper
bar is withdrawn.

Figure 4: Putting the top onto the chassis.

Figure 4 shows one of the work-stations in more detail,
namely the one where the top is put onto the chassis
(tm in Figure 3). The chassis is held fixed at the top
storage (A) by the stopper bar (B). The tops are stored
in a pile and the feeder (C) is used to push out the
lowermost top onto the chassis. When the top is on the
chassis, the feeder is withdrawn and then the stopper
bar is withdrawn, thus allowing the chassis to move on
to the next work-station.

3 Modeling the LEGO car factory

The main idea is to spend some effort off-line model-
ing the plant, and from this model generate the con-
trol strategy automatically and on-line upon request.
To model the plant we use the SAS™ planning for-
malism [4, 7] which can be viewed as a variation on
the propositional version of the STRIPS [5] formalism.
The process is modeled by a state and a set of opera-

variable values

pos cm, cpm, cp, ts, cl,
ocvB, tm, tp, sf, st

turner A, B

cp-status off, on, pressed

t-status off, on, pressed

c-status prepared, not-prepared

cp-press down, up

t-press down, up

clift down, up

c-feeder, cp-feeder, t-feeder, st-feeder | ext, rtr

cpm-stop, cp-stop, tm-stop, tp-stop ext, rtr

Table 1: State variables V and their associated domains
of values D,.

tors that can change the system state. Each operator
specifies how the operator affects the process (pre- and
post-condition) and a constraint that must be satisfied
when executing the operator (prevail-condition). More
specifically, the pre-condition is a condition that must
be satisfied before executing the operator, and the post-
condition is a condition that will hold after execution.
For example, the operator MoveFromTopMagazine To-
TopPress has as pre-condition that the chassis is at the
top magazine, and as post-condition that it is at the
top press. The prevail-condition is that the stopper
bar at the top magazine and the top feeder must be
retracted, the stopper bar at the top press extended
and the top press in its upper position.

We continue by modeling the LEGO car factory as a
SAST instance. The state variables are shown in Ta-
ble 1. The variable pos gives the position of the chassis,
and the corresponding positions are given in Figure 2
and Figure 3. The stopper bars and the corresponding
variable names are also marked in these figures, as well
as the variable names for the feeders. For the feeders
and the stopper bars the value ext means that the feeder
(or stopper bar) is extended, while rtr means that it is
retracted. The variable turner tells if the turner (¢s in
Figure 2) is turned towards the first half of the factory
(A) or towards the second half of the factory (B). The
two variables cp-status and t-status give the status of
the chassis parts and the top, respectively, while the
variable c-status denotes the status of the chassis and
is mainly needed since we have no sensor detecting if
the chassis is just outside the chassis magazine. The
other variables should be obvious from the table and
the figures.

Using the variables defined in Table 1 we can define op-
erators as in Tables 2 and 3. Additionally there are two
operators for each feeder and each stopper bar for re-
tracting and extending the feeder or stopper bar. The
operators corresponding to the chassis feeder are de-
noted extend-c-feeder and retract-c-feeder. For the op-
erator extend-c-feeder the pre-condition is that c-feeder
= rtr, the post-condition is that c-feeder = ext and
there is no prevail-condition. The other operators cor-
responding to the feeders and stopper bars are denoted
in a similar manner.



Operator | Pre Post Prevail
cm2cpm pos = cm pos = cpm c-feeder = ext,
cp-feeder = rtr,
cpm-stop = ext
cpm2cp pPos = cpm pos = cp cpm-stop = rtr,
cp-stop = ext
Cp-press = up
cp2ts pos = cp pos = ts turner = A,
cp-stop = rtr,
cp-press = up
ts2cl pos = ts pos = cl turner = B,
clift = down
cl2ocvB pos = cl pos = ocvB clift = up
ocvB2tm pos = ocvB pos = tm tm-stop = ext,
t-feeder = rtr
tm2tp pos = tm pos = tp tm-stop = rtr,
tp-stop = ext
t-press = up
tp2sf pos = tp pos = sf tp-stop = rtr,
st-feeder = rtr,
t-press = up
sf2st pos = sf pos = st st-feeder = ext
prepare- c-status = c-status = c-feeder = rtr
chassis not-prepared prepared
put-cp cp-status = off cp-status = pos = cpm,
on cp-feeder = ext
press-cp cp-status = on cp-status = cp-press = down,
pressed pos = cp
put-top t-status = off t-status = on pos = tm,
t-feeder = ext
press-top t-status = on t-status = pos = tp,
pressed t-press = down

Table 2: Operators with prevail-conditions.

Operator Pre Post Prevail
A2B turner = A turner = B -
B2A turner = B turner = A -
cl-down clift = up clift = down -
cl-up clift = down clift = up -

The translation module on the other hand must know
the actual implementation of each action, i.e., which ac-
tuator implements a specific action, and how the pre-,
post- and prevail-conditions are to be translated into
sensor readings. This second view of the model will not
be described in detail here, but an example is shown in
Figure 6. A more thourough description is given in [11].
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cp-press-down

Cp-press = up

cp-press = down

cp-press-up

cp-press = down

cp-press = up

t-press-down

t-press = up

t-press = down

t-press-up

t-press = down

t-press = up

Table 3: Operators without prevail-conditions.

4 Automatic Generation of Control Programs

In figure 5 the basic parts of the planning tool as well
as the information flow is shown.

The base concept used in the planning tool is the model
of the process to be controlled as described in sec-
tion 3. The model is developed off-line and is stored in a
database ready for use (see figure 5). Together with the
actual state of the process and the goal state the model
is used by the planner to develop a plan. Depending
on the properties of the problem, different algorithms
should be used. Which algorithm to use can be decided
off-line by analyzing the model. The algorithm used for
the LEGO car factory is described in section 5. The
plan delivered by the planner is a partially ordered set
of actions. This plan is then automatically translated
to a GRAFCET chart, which in turn is translated to
PLC-code and loaded into the PLC, which controls the
real-world process.

The planner and the module translating the partial or-
der plan into a GRAFCET chart work with different
views of the model. The planner needs to know the
definition of a state and the pre-, post- and prevail-
conditions for each action as described in section 3.

PLC-code

Empty step

Figure 5: Sketch over the planning system. Grey boxes
indicate modules not yet implemented.

5 The planning algorithm

Without putting any further restrictions on the mod-
eled process we still have a complexity problem, and
several subclasses show an exponential complexity. We
have studied this problem for about five years, and have
introduced restrictions to reduce the complexity. This
has resulted in several subclasses of problems where
we have constructed provably correct algorithms with
polynomial complexity, see for example [7]. Recently
we have focussed on structural restrictions on the state
transition graph. By allowing a simple type of loops
in the state transition graph, we have extended the
algorithm given in [7] so that the LEGO car factory
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Figure 6: The translation from partial order plan to
GRAFCET chart. Operator a is an operator
with prevail-condition, while operator b has no
prevail-condition.

problem above can be solved in polynomial time [10].
The resulting plan can be automatically translated into
a GRAFCET chart, which in turn can be compiled
to PLC code which actually controls the plant as de-
scribed above.

The main idea in the algorithm is to split the set of
operators into two sets, thereby splitting the planning
problem into two parts. The result is a process where
several simple planning problems are solved, and the
combined solution is a solution to the original problem.
These simple planning problems fit into the SAST-IAO
class defined in [7], and hence the algorithm given there
can be used. The complexity of the SAST-IAO algo-
rithm increases polynomially with the number of state
variables, and thus each subproblem can be solved in
polynomial time. Since the number of subproblems is
limited by the number of available operators, the re-
sulting complete algorithm is polynomial. The over-all
complexity figure only requires that the algorithm that
is used to solve the subproblems is polynomial, that is,
any polynomial-time algorithm can be used depending
on the problem to be solved.

An outline of the complete algorithm is given in Fig-
ure 7. The algorithm is described in more detail in [10],
while only an informal description is given here. First
the set of operators O is split into two sets O; and
Oy where the operators in the set Oy are indepen-
dent of the operators in the set ;. For the LEGO
car factory, the first set (1) contains all operators
with prevail-conditions, ie. the operators in Table 2,
and the second set (O2) contains all operators without
prevail-conditions, ¢e. the operators in Table 3 and
all operators for extending and retracting feeders and
stopper bars. The set of variables V is split in a similar
manner. The set V; contains all variables affected by

an operator in the set O, and Vs, contains all variables
affected by an operator in the set Oy. Thus ViUV, =V
and O1 U Oy = O. Furthermore sq is the initial state
and s, the desired goal state.

The first step in the algorithm is to find a plan
(01,-..,0pn) from sy to s, when only operators from
the first set and their corresponding state variables are
taken into account (line 2 in Figure 7). This will re-
sult in an incomplete plan that cannot be executed
due to unfulfilled prevail-conditions. The second step
is an interweaving process making the plan executable
(lines 3-7 in Figure 7). In the interweaving process
each operator in the incomplete plan is checked to see
if its prevail-conditions are fulfilled when the opera-
tor is to be executed, ie.if the prevail-condition for the
operator op41 is satisfied in the state s, which is the
state reached when executing the operators in the plan
(Wo; 01; W15 025 . .. ;WE—2; Of—1;Wk—1; 0k) - If the prevail-
condition is not satisfied a plan wy achieving the desired
prevail-condition is searched for in the second set of op-
erators (Oz). In the last step (line 8 in Figure 7) the
plans constructed during the interweaving process are
merged into the original incomplete plan, resulting in
a complete plan that solves the original problem and is
executable.

Since only a part of the problem is considered at each
time point, only a part of the state is considered as
well. In the algorithm in Figure 7 this is not formally
stated, but when planning with variables from V; (
V) the state si is actually a restriction taking only
variables from V; ( V») into account.

procedure Plan(V, O, 59, 5.);
(01,-..,0pn) < PlanTAO(Vy, 01, so, S«)
wo < PlanIAO(Vz, 02, so, prevail(o;))
for k=1,...,n—1do
wg < PlanIAO(Vs, Oa, sk, prevail(og41))
{sr is the state reached when ex-

ecuting the operators in the plan

(w03 01;W13025 .. .5 0p—1;Wk—1;0k)}
7 wp + PlanIAO(Vs, 02, sp, S4)
8 return (wo;01;W1;02;...;Wn_1;0n;Wn)

SO N -

Figure 7: Planning algorithm. PlanIAO is a procedure
realizing the algorithm described in [7].

Depending on how we choose the initial state and the
goal state we can plan for different cases. Here we
show a plan for normal operation, ie. the goal is to
assemble a LEGO car. It is straightforward to modify
this to plan for error recovery or for an initial state
unknown before execution. The goal state is that the
chassis should be in the buffer storage (pos = st and
c-status = not-prepared) and the top and chassis parts
should be pressed onto the chassis (cp-status = pressed
and t-status = pressed). All other state variables are
undefined and can have any value. Suppose that the
initial state is given as follows. The chassis is placed
in the chassis magazine (pos = ¢m), there is no chassis
parts on the chassis (¢p-status = off) and there is no top
on the chassis (t-status = off). Furthermore the turner



is turned towards the first half of the factory (turner =
A), all feeders and stopper bars are retracted and the
chassis press, the top press and the chassis lift are in
their down position.

Applying the algorithm in Figure 7 results in the plan
in Figure 8. The solid arrows denote the incomplete
plan resulting from the first step in the algorithm (line
2 in Figure 7). This plan cannot be executed due to
unfulfilled prevail-conditions. For example the oper-
ator em2cpm cannot be executed because the chassis
feeder is retracted in the initial state, but according to
Table 2 it must be extended when executing cm2cpm.
The result of the interweaving process (lines 3-7 in Fig-
ure 7) is shown as dashed arrows in Figure 8.
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.
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Figure 8: Resulting plan. The solid arrows are the output
from solving the first planning problem, and
the dashed arrows are the result from the in-
terweaving process.

6 Conclusions

Tsatsoulis and Kayshap [14] call planning “one of the
most underused techniques of AI” in the context of
manufacturing. They list a number of areas within in-
dustry where planning could be applied, but where no
or very few attempts have been made at such applica-
tions.

We have applied our previous results on polynomial-
time planning to an application example in automatic
control—an assembly line for LEGO cars, and have pre-
sented a planning tool that can be used to control the
LEGO car factory in reality. The planning tool con-
tains algorithms for generating plans for a restricted
class of problems in polynomial time. The plans are
generated as GRAFCET charts which are automati-
cally translated into PLC code and loaded to the PLC
that controls the LEGO car factory. The result is an
integrated system able to perform planning in reality.

This paper presents the practical results stemming
from the LEGO car factory project. In fact the study-
ing of the LEGO car factory also provided feedback for
modifying the theory [10], and the class of problems
that can be handled is thus extended.
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