
Automatic Synthesis of Control Programs in PolynomialTime for an Assembly LineInger KleinDepartment of Electrical EngineeringLink�oping University,S-581 83 Link�oping, Swedene-mail:inger@isy.liu.sephone: +46 13 281665
Peter Jonsson and Christer B�ackstr�omDepartment of Computer and Information Science,Link�oping UniversityS-581 83 Link�oping, Swedene-mail:fpetej,cbag@ida.liu.sephone: +46 13 282415, +46 13 282429AbstractThe industry wants provably correct and fast formalmethods for handling combinatorial dynamical sys-tems. One example of such problems is error recov-ery in industrial processes. We have used a prov-ably correct, polynomial-time planning algorithm toplan for a miniature assembly line, which assemblestoy cars. Although somewhat limited, this process hasmany similarities with real industrial processes. By ex-ploring the structure of this assembly line we have ex-tended a previously presented algorithm, thus extend-ing the class of problems that can be handled in poly-nomial time. The planning tool presented here con-tains general-purpose algorithms that generate plansin the form of GRAFCET charts that are automati-cally translated into PLC code using a commercial PLCcompiler.Keywords: Planning, GRAFCET, sequential control,automated manufacturing1 IntroductionThe majority of all hardware and software developedfor industrial control purposes is devoted to sequentialcontrol and only a minority to classical, linear control.Typically, the sequential parts of the controller are in-voked during startup and shut-down to bring the sys-tem into its normal operating region and into some safestandby region, respectively. Despite its importance,not much theoretical research has been devoted to thisarea, and sequential control programs are therefore stillcreated manually without much theoretical support toobtain a systematic approach.We propose a method to create sequential control pro-grams automatically and on-line upon request. Themain idea is to spend some e�ort o�-line modeling theplant, and from this model generate the control strat-egy, that is, the plan.The process industry is one example of application ar-eas where automatic generation of control programscan be useful. The problem is not primarily to �nd the

plan for normal operation of the plant. This is usuallydone once and for all and can probably be done bettermanually, since time is not critical in this case. Auto-mated planning is more likely to enter the scene whensomething goes wrong. Since there are many ways inwhich a large process may go wrong, we can end up inany of a very large number of states. It is not realis-tic to have pre-compiled plans for recovering from anysuch state so it would be useful to �nd a plan automat-ically for how to get back to a safe state, where normaloperation can resume. It is important that such a planbe correct and we also want to �nd it fast since thecosts accumulate very quickly when large-scale indus-trial processes are non-operational.Automated plan generation is also important if the ini-tial state is not fully speci�ed until the plan is needed.As in the error recovery case it is important that theplan be correct and that it be found reasonably fast.Another situation where automated plan generationmay be useful is for operator support, ie., a form ofsemi-automated planning. In this case the operatorrequest OpenValveA may result in an automaticallygenerated plan which brings about the desired e�ect.Another possibility is that a supervisor checks if thewished-for action is allowed in the present state, and ifnot speci�es why and how the operator can achievewhat he or she wants. Sometimes new devices areadded to the plant when the control program is alreadydeveloped. It can be very di�cult and time consum-ing to �nd out how such a change a�ects the originalcontrol program. If using a model-based synthesis ap-proach, then only the model need to be changed to takethe new devices into account.Automated generation of plans, action planning, hasbeen studied for over 25 years within the area of arti-�cial intelligence. A number of languages for model-ing planning problems and a number of algorithms forsolving planning problems have been developed. Thetraditional planning algorithms are general and searchbased, thus su�ering from the problems of combina-torial explosion. This is not only a problem with thealgorithms, however, but also inherent in the problemsince the representation languages allow formulatingvery di�cult problems. A problem is usually consid-ered practically solvable if there exists an algorithm1

whose running time is bounded in some polynomial inthe size of the problem instance (the number of statevariables, for instance). To the contrary a problemwhich can only be solved by algorithms with an expo-nential running time behavior are infeasible for all butextremely small problem instances. Action planning,even in very restricted formalisms like STRIPS [5] re-stricted to only propositional atoms, is very di�cult,belonging to the class of PSPACE-complete problems,which are strongly believed to require exponential time.Real problems in the industry, on the other hand, areprobably not that di�cult in practice. This, however,does not imply that the results from action planningare useless, it only tells us that real problems have in-herent structure and restrictions which we could exploitto plan e�ciently.Hence we propose to study subclasses where we retainfeasibility by exploring the structure of the problems.We formulate the model using Simpli�ed Action Struc-tures [4, 7] based on action structures originally in-troduced by Sandewall and R�onnquist [12]. We havepreviously presented algorithms for generatingminimalplans (no plan containing fewer actions exists) for somerestricted classes of planning problems [2, 3, 8, 9]. Onemajor advantage with this approach is that the com-plexity of these algorithms only increases polynomiallywith the number of state variables. A summary of theearlier results is presented in B�ackstr�om and Nebel [4].Lately we have concentrated on studying certain struc-tural properties of planning problems that are closer toreality [7, 10].This paper reports how we have applied a polynomialtime algorithm to plan for a semi-realistic miniatureversion of an industrial process, the LEGO1 car fac-tory [13]. This is a realistic miniature version of realindustrial processes in many respects. Our planning al-gorithm is very fast, running in polynomial time, whichis made possible by exploiting typical structural prop-erties of the assembly line. Furthermore, the algorithmis also provably correct, that is, we have proven math-ematically that the algorithm will always �nd a solu-tion if one exists at all and that it will never returna faulty solution [10]. This is important for the qual-ity aspects of production processes. Here we presentthe practical results stemming from the LEGO car fac-tory project. In fact the study of the LEGO car fac-tory also provided feedback for modifying the theory,and the class of problems that can be handled is thusextended. The presented planning tool generates aplan as a GRAFCET [6] chart, that is automaticallyloaded into a commercial tool [1] that translates theGRAFCET chart into PLC code. The PLC code isloaded into the PLC which then controls the factory.Note that neither our algorithm nor the planning toolis speci�cally tailored for this assembly line, but is ageneral-purpose device.The rest of the paper is organized as follows. Section 2presents the LEGO car factory, while the modeling is1LEGO is a trademark of the LEGO company.

given in section 3. The planning tool is described insection 4 and the algorithm is given in section 5. Sec-tion 6 contains the conclusion.2 The LEGO Car FactoryOur application example is an automated assembly linefor LEGO cars [13], which is used for undergraduatelaboratory sessions in digital control at the Depart-ment of Electrical Engineering at Link�oping Univer-sity. The students are faced with the task of writing aprogram to control this assembly line using the graph-ical language GRAFCET [6]. Being an IEC standard,GRAFCET is becoming increasingly popular in indus-trial applications. There is commercially available soft-ware for editing GRAFCET charts and compiling themto PLC (Programmable Logical Controller) programs.The LEGO car factory is a realistic miniature versionof a real industrial process in many respects. Hence,being able to model and automatically generate controlprograms for this factory has been one of our goals.The main operations for assembling a LEGO car areshown in Figure 1. The assembly line consists of twosimilar halves, the �rst mounting the chassis parts onthe chassis (see Figure 2) and the second mounting thetop (see Figure 3).
Mounting of topMounting of chassis Resulting Lego car

Figure 1: Assembling a LEGO car.
cpmcm

cp-feeder

cp ts

cpm-stop cp-stop

c-feeder

Figure 2: The �rst half of the LEGO car factory.
ocvB tm

st

Storage

cl

t-feeder

tp sf

tm-stop tp-stop

st-feeder

Figure 3: The second half of the LEGO car factory.2

The �rst half of the LEGO car factory is presented inFigure 2. The chassis is initially stored up-side downin the chassis magazine (cm). It enters the conveyorbelt by using the chassis feeder (c-feeder), and is trans-ported to the chassis parts magazine (cpm) where thechassis parts are fed onto the chassis using the chas-sis parts feeder (cp-feeder). The chassis is then trans-ported to the chassis press (cp), where the chassis ispressed together. It is then transported to the turnstation (ts) where the chassis is turned upright and en-ters the second half of the factory (Figure 3) where itis placed on the chassis lift (cl). It is lifted up, placedon the conveyor belt (ocvB) and transported to the topmagazine (tm) where a top is fed onto the chassis bythe top feeder (t-feeder). The chassis is then trans-ported to the top press (tp) where the top is pressedtight onto the chassis. From there it is transported tothe end of the conveyor belt (sf) and placed so that thestorage feeder (st-feeder) can push the chassis into abu�er storage (st).The conveyor belt used to transport the chassis runscontinously. Hence, at each work-station a stopper baris pushed out in front of the chassis holding the car�xed, sliding on the belt (see see Figure 2 and Figure 3).The car cannot pass the work-station until the stopperbar is withdrawn.
A

B

C

Figure 4: Putting the top onto the chassis.Figure 4 shows one of the work-stations in more detail,namely the one where the top is put onto the chassis(tm in Figure 3). The chassis is held �xed at the topstorage (A) by the stopper bar (B). The tops are storedin a pile and the feeder (C) is used to push out thelowermost top onto the chassis. When the top is on thechassis, the feeder is withdrawn and then the stopperbar is withdrawn, thus allowing the chassis to move onto the next work-station.3 Modeling the LEGO car factoryThe main idea is to spend some e�ort o�-line model-ing the plant, and from this model generate the con-trol strategy automatically and on-line upon request.To model the plant we use the SAS+ planning for-malism [4, 7] which can be viewed as a variation onthe propositional version of the STRIPS [5] formalism.The process is modeled by a state and a set of opera-

variable valuespos cm, cpm, cp, ts, cl,ocvB, tm, tp, sf, stturner A, Bcp-status o�, on, pressedt-status o�, on, pressedc-status prepared, not-preparedcp-press down, upt-press down, upclift down, upc-feeder, cp-feeder, t-feeder, st-feeder ext, rtrcpm-stop, cp-stop, tm-stop, tp-stop ext, rtrTable 1: State variables V and their associated domainsof values Dv.
tors that can change the system state. Each operatorspeci�es how the operator a�ects the process (pre- andpost-condition) and a constraint that must be satis�edwhen executing the operator (prevail-condition). Morespeci�cally, the pre-condition is a condition that mustbe satis�ed before executing the operator, and the post-condition is a condition that will hold after execution.For example, the operator MoveFromTopMagazineTo-TopPress has as pre-condition that the chassis is at thetop magazine, and as post-condition that it is at thetop press. The prevail-condition is that the stopperbar at the top magazine and the top feeder must beretracted, the stopper bar at the top press extendedand the top press in its upper position.We continue by modeling the LEGO car factory as aSAS+ instance. The state variables are shown in Ta-ble 1. The variable pos gives the position of the chassis,and the corresponding positions are given in Figure 2and Figure 3. The stopper bars and the correspondingvariable names are also marked in these �gures, as wellas the variable names for the feeders. For the feedersand the stopper bars the value extmeans that the feeder(or stopper bar) is extended, while rtr means that it isretracted. The variable turner tells if the turner (ts inFigure 2) is turned towards the �rst half of the factory(A) or towards the second half of the factory (B). Thetwo variables cp-status and t-status give the status ofthe chassis parts and the top, respectively, while thevariable c-status denotes the status of the chassis andis mainly needed since we have no sensor detecting ifthe chassis is just outside the chassis magazine. Theother variables should be obvious from the table andthe �gures.Using the variables de�ned in Table 1 we can de�ne op-erators as in Tables 2 and 3. Additionally there are twooperators for each feeder and each stopper bar for re-tracting and extending the feeder or stopper bar. Theoperators corresponding to the chassis feeder are de-noted extend-c-feeder and retract-c-feeder. For the op-erator extend-c-feeder the pre-condition is that c-feeder= rtr, the post-condition is that c-feeder = ext andthere is no prevail-condition. The other operators cor-responding to the feeders and stopper bars are denotedin a similar manner.3

Operator Pre Post Prevailcm2cpm pos = cm pos = cpm c-feeder = ext,cp-feeder = rtr,cpm-stop = extcpm2cp pos = cpm pos = cp cpm-stop = rtr,cp-stop = extcp-press = upcp2ts pos = cp pos = ts turner = A,cp-stop = rtr,cp-press = upts2cl pos = ts pos = cl turner = B,clift = downcl2ocvB pos = cl pos = ocvB clift = upocvB2tm pos = ocvB pos = tm tm-stop = ext,t-feeder = rtrtm2tp pos = tm pos = tp tm-stop = rtr,tp-stop = extt-press = uptp2sf pos = tp pos = sf tp-stop = rtr,st-feeder = rtr,t-press = upsf2st pos = sf pos = st st-feeder = extprepare- c-status = c-status = c-feeder = rtrchassis not-prepared preparedput-cp cp-status = o� cp-status = pos = cpm,on cp-feeder = extpress-cp cp-status = on cp-status = cp-press = down,pressed pos = cpput-top t-status = o� t-status = on pos = tm,t-feeder = extpress-top t-status = on t-status = pos = tp,pressed t-press = downTable 2: Operators with prevail-conditions.Operator Pre Post PrevailA2B turner = A turner = B -B2A turner = B turner = A -cl-down clift = up clift = down -cl-up clift = down clift = up -cp-press-down cp-press = up cp-press = down -cp-press-up cp-press = down cp-press = up -t-press-down t-press = up t-press = down -t-press-up t-press = down t-press = up -Table 3: Operators without prevail-conditions.4 Automatic Generation of Control ProgramsIn �gure 5 the basic parts of the planning tool as wellas the information
ow is shown.The base concept used in the planning tool is the modelof the process to be controlled as described in sec-tion 3. The model is developed o�-line and is stored in adatabase ready for use (see �gure 5). Together with theactual state of the process and the goal state the modelis used by the planner to develop a plan. Dependingon the properties of the problem, di�erent algorithmsshould be used. Which algorithm to use can be decidedo�-line by analyzing the model. The algorithm used forthe LEGO car factory is described in section 5. Theplan delivered by the planner is a partially ordered setof actions. This plan is then automatically translatedto a GRAFCET chart, which in turn is translated toPLC-code and loaded into the PLC, which controls thereal-world process.The planner and the module translating the partial or-der plan into a GRAFCET chart work with di�erentviews of the model. The planner needs to know thede�nition of a state and the pre-, post- and prevail-conditions for each action as described in section 3.

The translation module on the other hand must knowthe actual implementation of each action, i.e., which ac-tuator implements a speci�c action, and how the pre-,post- and prevail-conditions are to be translated intosensor readings. This second view of the model will notbe described in detail here, but an example is shown inFigure 6. A more thourough description is given in [11].
Planner

Model of the Plant

State variables

X = (X , ... , X) 1 n

Action types

...

X ,0
X*

Supervisor

Actions

Partial Order
-->

GRAFCET

Verification/
Fault detection

Planner ready

a1

a2

a4

a3

a1

a2 a3

a4

PLC-code

Partial
Order

Plant Controller

Verifier/Fault detector

PLC

From Plant

To Plant

Empty step

Planners view

Translators view

Figure 5: Sketch over the planning system. Grey boxesindicate modules not yet implemented.5 The planning algorithmWithout putting any further restrictions on the mod-eled process we still have a complexity problem, andseveral subclasses show an exponential complexity. Wehave studied this problem for about �ve years, and haveintroduced restrictions to reduce the complexity. Thishas resulted in several subclasses of problems wherewe have constructed provably correct algorithms withpolynomial complexity, see for example [7]. Recentlywe have focussed on structural restrictions on the statetransition graph. By allowing a simple type of loopsin the state transition graph, we have extended thealgorithm given in [7] so that the LEGO car factory4

prevail-condition
of operator ’a’

a

b

c

d

Partial order

c action_a

pre_a

post_a

pre_b

post_b

action_b

prv_a

GRAFCET chart

{

{

⇒

pre-condition of
operator ’b’

empty step

operator ’c’

conditional action

Figure 6: The translation from partial order plan toGRAFCET chart. Operator a is an operatorwith prevail-condition, while operator b has noprevail-condition.problem above can be solved in polynomial time [10].The resulting plan can be automatically translated intoa GRAFCET chart, which in turn can be compiledto PLC code which actually controls the plant as de-scribed above.The main idea in the algorithm is to split the set ofoperators into two sets, thereby splitting the planningproblem into two parts. The result is a process whereseveral simple planning problems are solved, and thecombined solution is a solution to the original problem.These simple planning problems �t into the SAS+-IAOclass de�ned in [7], and hence the algorithm given therecan be used. The complexity of the SAS+-IAO algo-rithm increases polynomially with the number of statevariables, and thus each subproblem can be solved inpolynomial time. Since the number of subproblems islimited by the number of available operators, the re-sulting complete algorithm is polynomial. The over-allcomplexity �gure only requires that the algorithm thatis used to solve the subproblems is polynomial, that is,any polynomial-time algorithm can be used dependingon the problem to be solved.An outline of the complete algorithm is given in Fig-ure 7. The algorithm is described in more detail in [10],while only an informal description is given here. Firstthe set of operators O is split into two sets O1 andO2 where the operators in the set O2 are indepen-dent of the operators in the set O1. For the LEGOcar factory, the �rst set (O1) contains all operatorswith prevail-conditions, ie. the operators in Table 2,and the second set (O2) contains all operators withoutprevail-conditions, ie. the operators in Table 3 andall operators for extending and retracting feeders andstopper bars. The set of variables V is split in a similarmanner. The set V1 contains all variables a�ected by

an operator in the set O1, and V2 contains all variablesa�ected by an operator in the set O2. Thus V1[V2 = Vand O1 [O2 = O. Furthermore s0 is the initial stateand s� the desired goal state.The �rst step in the algorithm is to �nd a plan(o1; : : : ; on) from s0 to s� when only operators fromthe �rst set and their corresponding state variables aretaken into account (line 2 in Figure 7). This will re-sult in an incomplete plan that cannot be executeddue to unful�lled prevail-conditions. The second stepis an interweaving process making the plan executable(lines 3{7 in Figure 7). In the interweaving processeach operator in the incomplete plan is checked to seeif its prevail-conditions are ful�lled when the opera-tor is to be executed, ie.if the prevail-condition for theoperator ok+1 is satis�ed in the state sk which is thestate reached when executing the operators in the plan(!0; o1;!1; o2; : : : ;!k�2; ok�1;!k�1; ok) . If the prevail-condition is not satis�ed a plan !k achieving the desiredprevail-condition is searched for in the second set of op-erators (O2). In the last step (line 8 in Figure 7) theplans constructed during the interweaving process aremerged into the original incomplete plan, resulting ina complete plan that solves the original problem and isexecutable.Since only a part of the problem is considered at eachtime point, only a part of the state is considered aswell. In the algorithm in Figure 7 this is not formallystated, but when planning with variables from V1 (V2) the state sk is actually a restriction taking onlyvariables from V1 (V2) into account.1 procedure Plan(V ;O; s0; s�);2 (o1; : : : ; on) PlanIAO(V1;O1; s0; s�)3 !0 PlanIAO(V2;O2; s0;prevail(o1))4 for k = 1; : : : ; n� 1 do5 !k PlanIAO(V2;O2; sk;prevail(ok+1))6 fsk is the state reached when ex-ecuting the operators in the plan(!0; o1;!1; o2; : : : ; ok�1;!k�1; ok)g7 !n PlanIAO(V2;O2; sn; s�)8 return (!0; o1;!1; o2; : : : ;!n�1; on;!n)Figure 7: Planning algorithm. PlanIAO is a procedurerealizing the algorithm described in [7].Depending on how we choose the initial state and thegoal state we can plan for di�erent cases. Here weshow a plan for normal operation, ie. the goal is toassemble a LEGO car. It is straightforward to modifythis to plan for error recovery or for an initial stateunknown before execution. The goal state is that thechassis should be in the bu�er storage (pos = st andc-status = not-prepared) and the top and chassis partsshould be pressed onto the chassis (cp-status = pressedand t-status = pressed). All other state variables areunde�ned and can have any value. Suppose that theinitial state is given as follows. The chassis is placedin the chassis magazine (pos = cm), there is no chassisparts on the chassis (cp-status = o�) and there is no topon the chassis (t-status = o�). Furthermore the turner5

is turned towards the �rst half of the factory (turner =A), all feeders and stopper bars are retracted and thechassis press, the top press and the chassis lift are intheir down position.Applying the algorithm in Figure 7 results in the planin Figure 8. The solid arrows denote the incompleteplan resulting from the �rst step in the algorithm (line2 in Figure 7). This plan cannot be executed due tounful�lled prevail-conditions. For example the oper-ator cm2cpm cannot be executed because the chassisfeeder is retracted in the initial state, but according toTable 2 it must be extended when executing cm2cpm.The result of the interweaving process (lines 3-7 in Fig-ure 7) is shown as dashed arrows in Figure 8.
extend-cpm-stop

cm2cmp put-cp cpm2cp press-cp cp2ts ts2cl

cl2ocvB

extend-c-feeder

extend-cp-feeder

retract-cpm-stop

c-press-up

retract-cp-stop

A2B

cl-up

t-press-up

c-press-up

c-press-down

extend-cp-stop

ocvB2tmput-top

extend-tm-stop

extend-st-feeder t-press-down

retract-tp-stop

press-toptp2sfsf2st

extend-t-feederretract-tm-stop t-press-up

extend-tp-stop

prepare-chassis

tm2tpFigure 8: Resulting plan. The solid arrows are the outputfrom solving the �rst planning problem, andthe dashed arrows are the result from the in-terweaving process.6 ConclusionsTsatsoulis and Kayshap [14] call planning \one of themost underused techniques of AI" in the context ofmanufacturing. They list a number of areas within in-dustry where planning could be applied, but where noor very few attempts have been made at such applica-tions.We have applied our previous results on polynomial-time planning to an application example in automaticcontrol|an assembly line for LEGO cars, and have pre-sented a planning tool that can be used to control theLEGO car factory in reality. The planning tool con-tains algorithms for generating plans for a restrictedclass of problems in polynomial time. The plans aregenerated as GRAFCET charts which are automati-cally translated into PLC code and loaded to the PLCthat controls the LEGO car factory. The result is anintegrated system able to perform planning in reality.This paper presents the practical results stemmingfrom the LEGO car factory project. In fact the study-ing of the LEGO car factory also provided feedback formodifying the theory [10], and the class of problemsthat can be handled is thus extended.

References[1] Actron AB. ActGraph+ GrafCet Programmingfor HITACHI PLC, 1991. Manual for the ActGraph+development system.[2] C. B�ackstr�om and I. Klein. Parallel non-binaryplanning in polynomial time. In Proceedings of the12th International Joint Conference on Arti�cial Intel-ligence, pages 268{273, Sydney, Australia, Aug 1991.[3] C. B�ackstr�om and I. Klein. Planning in polyno-mial time: the SAS-PUBS class. Computational Intel-ligence, 7:181{197, August 1991.[4] C. B�ackstr�om and B. Nebel. Complexity re-sults for SAS+ planning. Computational Intelligence,11(4):625{655, 1995.[5] R. E. Fikes and N. J. Nilsson. STRIPS: A newapproach to the application of theorem proving to prob-lem solving. 2:189{208, 1971.[6] IEC. Preparation of function charts for controlsystems - IEC 848. Technical Report 848:1988, IEC,Geneve, 1988.[7] P. Jonsson and C. B�ackstr�om. Tractable plan-ning with state variables by exploiting structural re-strictions. In Proceedings of the 12th (US) NationalConference on Arti�cial Intelligence (AAAI-94), Seat-tle, WA, USA, July{August 1994.[8] I. Klein and C. B�ackstr�om. On the planning prob-lem in sequential control. In Proceedings of the 30thConference on Decision and Control, pages 1819{1823,Brighton, England, 1991. IEEE.[9] I. Klein and C. B�ackstr�om. Planning in poly-nomial time: The SAS-PUS class. Technical ReportLiTH-ISY-I-1229, Department of Electrical Engineer-ing, Link�oping University, Link�oping, Sweden, 1991.[10] I. Klein, P. Jonsson, and C. B�ackstr�om. Tractableplanning for an assembly line. In M. Ghallaband A. Milani, editors, New Directions in AI Plan-ning: EWSP'95|3rd European Workshop on Plan-ning, Frontiers in AI and Applications, Assissi, Italy,September 1995. IOS Press.[11] F. Russian. Automatic generation of control pro-grams for an assembly line. Technical Report LiTH-ISY-EX-1620, Department of Electrical Engineering,Link�oping University, Link�oping, Sweden, 1995. ISY.[12] E. Sandewall and R. R�onnquist. A representa-tion of action structures. In Proceedings of the FifthNational Conference on Arti�cial Intelligence (AAAI-86), pages 89{97, Philadelphia, Pennsylvania, August1986. Morgan Kaufman.[13] J-E. Str�omberg. Styrning av lego-bilfabrik. Tech-nical report, Department of Electrical Engineering,Link�oping University, Link�oping, Sweden, 1991. Man-ual for control laboratory session.[14] C. Tsatsoulis and R. L. Kayshap. Planning andits application to manufacturing. In Soundar T Ku-mara, Rangasami L Kashyap, and Allen L Soyster, ed-itors, Arti�cial Intelligence, Manufacturing Theory andPractice, chapter 7, pages 193{223. Institute of Indus-trial Engineers, 1988.6

