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June 2, 1994AbstractSequential control is a common control problem in industry. Despite itsimportance fairly little theoretical research has been devoted to this problem.We study a subclass of sequential control problems, which we call the SAS-PUBSclass, and present a planning algorithm for this class. The algorithm is developedusing formalism from arti�cial intelligence (AI). For planning problems in theSAS-PUBS class the algorithm �nds a plan from a given initial state to a desired�nal state if and only if any plan exists solving the stated planning problem.Furthermore the complexity of the given algorithm increases polynomially withthe number of state variables.1 IntroductionPlanning is to sequential control what designing a controller is to regular control theory.Using a rather coarse model (typically �nite state) the planning problem is alwayssolvable in principle, but when the size of the problem increases it soon gives rise tocomplexity problems. Hence we propose to study subclasses where we retain feasibility.In this paper we study the SAS-PUBS class of planning problems which is de�nedbelow.Sequential control is a common problem in industry. Almost all process plants con-tain a part which can be described as sequential control, for example when starting orshutting down a process plant. Despite its importance fairly little theoretical researchhas been devoted to this problem. Sequential control can be divided into two parts:planning and implementation. Planning is the problem of �nding a plan, that is, asequence of actions, which transforms a given initial state into a desired �nal state. A1



plan can be illustrated by using the graphical notation GRAFCET, which has manysimilarities with Petri nets. A description can be found in the GRAFCET standard[22]. However, GRAFCET is a tool for presenting plans rather than developing plansalthough it can be a help in structuring the process. In the implementation phase theplan is implemented, i.e., the actual controller or sequencer is designed.We will here consider the planning problem which so far mainly has been studied inarti�cial intelligence(AI). A considerable amount of work has been spent on developingplanners, that is, programs which automatically generate plans. One situation wheresuch a planner could be useful is after an emergency stop. The process can then bein a state which is not known on beforehand. We want the planner to develop a planto take the system back into normal operation or into some safe state of the system.If the number of states is large it is not realistic to have precompiled plans for allpossible initial states, and there is thus a need for automatic planning. The work onplanners started with the General Problem Solver (GPS) [16] and the perhaps mostwell-known planner is STRIPS [8]. In STRIPS each operator, that is, action, is de�nedby a set of preconditions, an add list and a delete list of clauses. In spite of all the workthat has been done in this area, most of the methods used today are heuristic. Theproblem with most planners is that usually nothing is known about their correctnessand completeness, or about their complexity. Chapman [6] has developed a plannercalled TWEAK. He proves that TWEAK is correct, i.e., the resulting plan will in factsolve the stated planning problem, and complete, i.e., it will always �nd a plan if thereexists any plan solving the problem. However, TWEAK does not always terminate.There are also a lot of papers on temporal logics [1, 20]. The majority of these papersdiscuss representation problems and do not analyze complexity or computability. Thisshould, however, be important when designing a planner.Sequential control can also be viewed as a sub�eld of discrete event dynamicalsystems (DEDS). In contrast to the well-known models for dynamical systems, whichcan be described by di�erential or di�erence equations, there is not yet any unifyingtheory for DEDS. A considerable amount of work has been done in di�erent areas todescribe and analyze DEDS, and to develop controllers for DEDS. Models for DEDShave been developed based on temporal logic [21], queueing theory [10], and minimaxalgebra [7]. A DEDS is easily described in automata theory, and work in this area hasbeen done by Ramadge and Wonham [18], Inan and Variaya [12], and others. Anotherway of describing DEDS is using Communicating Sequential Processes developed byHoare [11]. Benveniste and others [5] has developed a language which can be used tosimulate DEDS. Petri nets [17] have also been used to describe and analyze DEDS.Di�erent models are developed for di�erent purposes, and it is probably not possibleto �nd a method which works well for all problems, so we will most likely have todevelop di�erent methods for di�erent classes of DEDS. Here, we will study a specialcase of sequential control where all actions are controlled by the agent and we haveconsiderable knowledge about the actions.Our formalism, Simpli�ed Action Structures is based on work by Sandewall andR�onnqvist [19] where an action is described by its pre-, post-, and prevail-conditions.2



These conditions correspond to the delete list, add list, and preconditions used inSTRIPS [8]. We will focus on the actions instead of the states and use the mentionedconditions to �nd a plan without having to explicitly construct the state graph. Thisis an advantage since the number of states in the state graph is normally exponentiallylarger than the number of available action types.For a class of sequential planning problems, the SAS-PUBS class to be de�nedbelow, we present a planning algorithm. A planning problem is in the SAS-PUBSclass if it can be formulated using simpli�ed action structures, where the state variabledomains are binary and the set of action types (a sort of generic action) is unary, post-unique and single-valued. Unary means that every action a�ects only one state variableand post unique means that there are no alternative actions to use to achieve a givengoal. The only way that minimal plans di�er from each other is in the order in whichthe actions are performed. If the set of action types is single-valued, then no actionmust be performed more than once. For planning problems in the SAS-PUBS class thede�ned algorithm will always �nd a plan if and only if there exists any plan solving thestated planning problem. Furthermore, the found plan is correct, i.e., when executed,it will in fact transform the initial state into the �nal state and the complexity of thealgorithm increases polynomially with the number of state variables. A typical actionin this class could be to close or open a valve, or to switch on or o� some device, forexample a motor.The SAS-PUBS class of planning problem might be considered as rather small, andof course our aim is to extend this class while retaining tractability. It is important tostudy the planning problem analytically and to study a subclass of sequential controlproblems where this is possible. We can then use our conclusions to develop heuristicplanning algorithms for more general problems. It is also interesting to characterize`simple' planning problems to gain insight into planning and develop an understandingof how the structure of a planning problem a�ects the solution.In this paper we will describe the main ideas behind the above mentioned algorithm.For formal de�nitions and proofs the reader is referred to [13]. The organization of thepaper is as follows: in Section 2 we present the formalism we will use and introducethe notions of actions and plans. In Section 3 the restrictions forming the SAS-PUBSclass of planning problems are stated and Section 4 gives an intuitive description ofthe planning algorithm. Section 5 presents a simple example and Section 6 containsthe conclusion.2 A formalism for describing the planning prob-lemThe world can be described by a state and a set of actions which transforms the stateof the world into a new state. An action is usually performed by an agent; it has aduration in time and it has a result, i.e., it a�ects the state of the world in some way.3



An agent can be, for example, a robot or a human being. The formalism, simpli�edaction structures, presented here is based on work by Sandewall and R�onnquist [19],but somewhat simpli�ed. The main advantage of using action structures instead of,for example, a �nite state automaton is that the number of states is exponential in thenumber of state variables. It is also intuitively attractive to describe the actions andhow they a�ect the state of the world.We will use some concepts about relations, and the reader who is not familiar withrelations and partial orders is referred to [9]. In [3, 4, 13] the formalism is described inmore detail.2.1 StatesThe state of the world is described by a state vector x of dimension n, i.e., x =(x1; : : : ; xn). Each state variable belongs to a discrete, �nite set Si and thus x 2 S =S1 � S2 � : : : � Sn. In this paper we will only consider binary state variables, but Simay of course be any �nite set. Each state variable set is extended with the valueunde�ned (u) and contradictory (k). The unde�ned value can be interpreted as 'don'tcare'. The contradictory value is added for technical reasons only. A state x is calleda partial state if the unde�ned or contradictory value is allowed for its components.2.2 Action types and actionsExamples of actions could bemove workpiece, where a robot moves a workpiece from awork-station to storage, read input channel, where a computer reads an input channel,and drive to shop, where a human being drives to a shop.An action is formally described by two concepts, an action label and an action type.The action type can be interpreted as a generic action, and the action label is put onan action type to distinguish between di�erent actions of the same type. An action canonly occur once, and is a particular instantiation of an action type. The same actiontype can occur several time with di�erent labels.An action type a is de�ned by its pre-, post- and prevail-condition. The pre-condition b(a) states what must hold when the action starts, the post-condition e(a)what holds when the action ends, and the prevail-condition f(a) what must be trueduring the performance of the action but which is not a�ected by the action. Theseconditions are partial states which do not contain the contradictory value for any statevariable.Consider, for example, the action type refuel where an aircraft is refueled. Here,the pre-condition is that the tank of the aircraft is empty, and the post-conditionis that it is full. Thus the pre- and post-conditions describe what is changed by theaction. When refueling the aircraft it is important that the aircraft is grounded, i.e., anelectrical connection between the aircraft and the ground is established to eliminate thevoltage di�erence. Thus, there is a condition which must be ful�lled when the action4



is performed, but which is not a�ected by the action. This is the prevail-condition andfor the action type refuel the prevail-condition is that the aircraft is grounded.2.3 PlanningA plan h	; �i from xo to x? is a set of actions 	 and a partial order � on the set 	.The order � is the execution order which tells in which order the actions in the set 	should be performed in order to transform the initial state xo into the �nal state x?.The planning problem can now be stated as follows.� Given a set of action types H, a state space S, an initial state xo 2 S and a �nalstate x? 2 S, �nd a plan h	; �i from xo to x?.We say that a plan is minimal if there is no plan from the given initial state to thedesired �nal state containing fewer actions. The persistence handling is the same asthe STRIPS assumption [8], namely that nothing changes unless explicitly stated inthe pre- and post-condition.3 The SAS-PUBS class of planning problemsIn this section we describe the restrictions forming the class of planning problems wefocus on. The formal de�nitions can be found in [3, 4, 13].The class of planning problems de�ned so far is called the SAS class, where SASstands for Simpli�ed Action Structures. To form the class of planning problems wefocus on in this paper we introduce some further restrictions:� all state variables are binary� each action a�ects only one state variable (unary)� no two di�erent action types can change a particular state variable to the samevalue (post-unique)� no two di�erent action types have di�erent but de�ned (not the unde�ned value)prevail-conditions for the same state variable (single-valued)This class of planning problems is called the SAS-PUBS (Post unique, Unary, Binary,Single-valued) class.An example of a problem in the SAS-PUBS class is a process plant where some uidis transported in pipes. In such a plant the typical action types would be to open orto close a speci�c valve. However, the restriction to single-valued sets of action typesmeans that if there is one action type whose prevail-condition is that a speci�c valveis open, then there can be no action type whose previal-condition is that this valve isclosed. 5



4 Planning for planning problems in the SAS-PUBSclassFinding a plan from an initial state xo to a �nal state x? is equivalent to �nding a pathin the state graph from xo to x?. One way of �nding a plan is of course to search thestate graph. Such a planner would always succeed in �nding a plan if there is any planat all. However, the complexity of such a planner will increase exponentially with thenumber of state variables, and is thus not suitable when the number of state variablesis large. Our approach is instead to develop more specialized planners tailored fordi�erent classes of planning problems. For a full presentation of complexity theory thereader is referred to, for example, Mendelson [15].Our main idea is to use the structure of the SAS-PUBS class to �nd and order theactions without having to explicitly construct the state graph. Instead we use the pre-,post- and prevail-conditions to �nd which actions to perform and in what order theseactions should be performed. Here we will only describe the process intuitively. Theformal de�nitions can be found in [3, 4, 13].For planning problems in the SAS-PUBS class, planning can be divided into twoparts: �nding the set of necessary and su�cient actions and �nding the execution orderprecedes. The set of necessary and su�cient actions (�) consists of two sets: the setof primary necessary actions and the set of secondary necessary actions. The processof �nding these two sets can be described as follows:� The set of primary necessary actions P0 is found by checking the di�erence be-tween the initial state xo and the �nal state x?, and search for the actions whosepre- and post-conditions corresponds to this di�erence. These actions form theset of primary necessary actions.� The set of secondary necessary actions is found by an iterative procedure. If therewhere no prevail-conditions, i.e., any action could be performed in any state wherethe pre-condition of the action is satis�ed, the set of primary necessary actionsP0 would contains all the actions needed to transform xo into x?. Because of theprevail-conditions we can usually not perform these actions without performingsome other actions to set their prevail-conditions. Suppose a 2 P0 such that theprevail-condition for the ith state variable is not ful�lled in the initial state andthat xoi = x?i . Then we have to perform one action to temporarily change xi inorder to ful�ll f(a) and another action to change xi back again to its requiredvalue x?i . These two actions belong to the set of secondary necessary actions.Thus the set of secondary necessary actions contains set/reset pairs for somestate variables xi to assure that the ith state variable is temporarily changed ifrequired by the prevail-condition of some action a in the set of primary necessaryactions. Furhtermore we can probably not perform these new actions withoutsetting and resetting their prevail-conditions. This is an iterative procedure whichwill eventually stop because all needed set and reset actions are already included6



in the set.The set of necessary and su�cient actions � is now the union of the two sets above.The next step is to �nd the execution order precedes (�) which is a relation de�nedon the set of necessary and su�cient actions �. The relation precedes is constructedfrom two relations enables and disables.� If a1 `enables' a2 then a1 provides some part of the prevail-condition for a2.� If a2 `disables' a1 then a2 destroys some part of the prevail-condition for a1.In both these cases a1 should be performed before a2. Putting these two relationstogether and taking the transitive closure gives the execution order �.Now h�; �i is a plan from the initial state xo to the �nal state x? if the set � existsand � is a partial order. If � is not a partial order or if the set � does not exist thenthere is no plan transforming xo into x? using the available actions. Furthermore thefound plan is minimal. This is stated in Theorem 4.1.Theorem 4.1 For planning problems in the SAS-PUBS class h�; �i is a minimal planfrom xo to x? if and only if any plan from xo to x? exists using the available actions.Proof: The proof can be found in [13]. 2Theorem 4.1 is proved by using concepts from discrete mathematics about relationsand partial orders. Note that when writing h�; �i it is implicit that � is a partial order.The unordered actions in � may be performed in parallel.In Appendix A we give an algorithm for �nding a plan h�; �i following the processdescribed above. In [13] this algorithm is proven to be correct and complete, i.e.,the algorithm will in fact �nd h�; �i if any plan exists solving the stated planningproblem, and otherwise it will fail. The complexity of this algorithm is proven toincrease polynomially with the number of state variables. This should be comparedwith the number of states in the state graph which is exponential in the number of statevariables. If the available actions is to close or to open a speci�c valve than each statevariable corresponds to one valve, and the number of state variables is the number ofvalves in the plant.Theorem 4.2 An algorithm �nding h�; �i if and only if there is any plan exists and thecomplexity of this algorithm increases polynomially with the number of state variables.Proof: The proof can be found in [13]. 2We have here only considered planning problems in the SAS-PUBS class. In [14] analgorithm for planning problems in the SAS-PUS class can be found. In the SAS-PUSclass we allow non-binary state variables. This algorithm is proven to be correct andcomplete, and the complexity is proven to increase polynomially with the number ofavailable actions. 7



5 ExampleIn this section we apply our planning algorithm to a simple example. The problem isto refuel an aircraft using a mobile refuel vehicle. We de�ne four state variables suchthat for any state x 2 S, the state x is interpreted as:x1 = ( 0 if the tank of the aircraft is empty1 if the tank of the aircraft is fullx2 = ( 0 if the refuel vehicle is not at the aircraft1 if the refuel vehicle is at the aircraftx3 = ( 0 if the aircraft is not grounded1 if the aircraft is groundedx4 = ( 0 if the tank of the aircraft is open1 if the tank of the aircraft is not openWhen refueling the aircraft, it is important to eliminate the voltage di�erence betweenthe aircraft and the refuel vehicle in order to avoid sparks. That the aircraft is groundedthus means that such an electrical connection is established, so grounding has nothingto do with whether the aircraft is airborne or not. There are seven action types in H,and these are de�ned together with their pre-, post-, and prevail-conditions in table 1.action type (h) b(h) e(h) f(h)refuel (0; u; u; u) (1; u; u; u) (u; 1; 1; 0)move vehicle to aircraft (u; 0; u; u) (u; 1; u; u) (u; u; u; u)move vehicle from aircraft (u; 1; u; u) (u; 0; u; u) (u; u; u; u)ground (u; u; 0; u) (u; u; 1; u) (u; 1; u; u)unground (u; u; 1; u) (u; u; 0; u) (u; 1; u; u)close aircraft tank (u; u; u; 0) (u; u; u; 1) (u; 1; u; u)open aircraft tank (u; u; u; 1) (u; u; u; 0) (u; 1; u; u)Table 1: De�nition of the action types for the example.The initial state is xo = (0; 0; 0; 1) and the �nal state is x? = (1; 0; 0; 1), i.e. we wantto refuel the aircraft. The problem of �nding a plan from xo to x? is clearly in theSAS-PUBS class. The set of necessary and su�cient actions is�(xo; x?) = fhl1;move vehicle to aircrafti;hl2;move vehicle from aircrafti; hl3; groundi;hl4; unground i; hl5; refueli; hl6; open aircraft tank i;hl7; close aircraft tank igwhere l1; l2; : : : ; l7 are distinct labels from the set L. The relation `precedes' (�) is givenin �gure 1, where ak denotes the action with label lk.8



a1 a3a6 a5 a4a7 a2���*HHHj HHHj���* ���*HHHj HHHj���*Figure 1: The relation `precedes' (�) on the set �.6 ConclusionWe have solved the planning problem in the SAS-PUBS class by presenting an algo-rithm which is correct and complete, and complexity increases polynomially with thenumber of available actions. Even if the SAS-PUBS class can be said to contain onlysimple planning problems, it is important to develop theoretical results and therebycharacterize what makes a planning problem simple. Furthermore we can use theknowledge gained for these simple problems as a source of inspiration when developingalgorithms for more di�cult problems.A AlgorithmHere we present an algorithm for �nding a plan h�; �i. First we de�ne some functionsand procedures used in the algorithm.De�nition A.1 We assume that the following functions and procedures are available:Insert(a,A) Inserts the action a into the set A.Find(A,i,x) Searches the set A for an action a such that b(a)i = x. Returns a if found,otherwise returns nil.R�nd(A,i,x) Like Find, but also removes a from A if it is found.Warshall(M) M is a Boolean matrix representing a relation �. Returns a Boolean ma-trix representing the transitive closure of �. Uses Warshalls algorithm describedin, for example, [2].Algorithm A.1 [Plan]Input: A, a set containing one action for each action type in H, and xo and x?, theinitial and �nal states respectively.Output: � a set of actions, and � a partial order on �.1 ProcedureP lan(A :set of actions;xo; x? :state);9



2 var3 i :state variable index;4 a; a0; a1; a2 :action;5 P;P 0;� :set of actions;6 r :Boolean matrix;78 begin9 � := ;;10 P := ;;1112 for i = 1 to ndo13 if xoi 6= x?i then14 a :=R�nd(A; i; xoi);15 if a 6= nil then Insert(a; P );Insert(a;�)16 else fail17 end fifg18 endfifg19 endfforg;2021 whileP 6= ;do22 P 0 := ;;23 for a 2 P do24 for i = 1 tondo25 if f(a)i 6v xoi then26 a0 :=Find(�; i; xoi);27 if a0 = nil then28 a1 :=R�nd(A; i; xoi);29 a2 :=R�nd(A; i; f(a)i);30 if a1 = nil or a2 = nil or e(a1)i 6= f(a)i or31 e(a2)i 6= x?i then fail32 else Insert(a1; P 0);Insert(a2; P 0);33 Insert(a1;�);Insert(a2;�)34 endfifg35 endfifg36 endfifg37 endfforg38 endfforg;39 P := P 040 endfwhile g;4142 r := `j�j � j�j zero matrix';4344 for a 2 �do 10
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