
Tractable Plan Existence Does Not Imply Tractable

Plan Generation

Peter Jonsson and Christer B�ackstr�om

Department of Computer and Information Science

Link�oping University

S-581 83 Link�oping, Sweden

Phone: +46 13 28 24 15

Fax: +46 13 28 26 06

fpetej,cbag@ida.liu.se

Abstract

We present a class, 3S, of planning instances such that the plan

existence problem is tractable while plan generation is provably in-

tractable for instances of this class. The class is de�ned by simple

structural restrictions, all of them testable in polynomial-time. Fur-

thermore, we show that plan generation can be carried out in time

bounded by a polynomial in the size of the input and the size of the

generated solution. For this class, we propose a provably sound and

complete incremental planner, i.e., a planner that can usually output

an executable pre�x of the �nal plan before it has generated the whole

plan.

Keywords: Arti�cial intelligence; Planning; Computational complexity.

AMS Classi�cation: Primary: 68T20; Secondary: 68Q25.

1 Introduction

It is well-known that planning is computationally di�cult in the general case;
plan existence for Strips-style formalisms is undecidable in the �rst-order
case [6] and Pspace-complete for all common propositional variants [5, 2].
Most of these analyses have focussed on the plan existence problem and it
seems to have been tacitly assumed that plan existence is not substantially
easier than plan generation. From a practitioner's point of view, however,
the complexity of plan existence per se is of limited interest since the ultimate
goal is to generate an executable plan, not just �nd out that one exists. It
seems often to be assumed in the literature that the di�culty of generating a
plan is directly related to the di�culty of �nding out whether a plan exists.
That is, plan generation is hard if plan existence is hard and it is easy if plan
existence is easy. However, the suspicion that this is not always the case has
been expressed by B�ackstr�om and Nebel [4]. We show in this paper that the

1

complexity of plan existence is not necessarily related to the complexity of
plan generation.

We present a class of propositional Strips planning problems, 3S, having
the property that plan existence is tractable while plan generation is prov-
ably intractable. This is shown by �rst giving an algorithm that decides the
plan existence problem in polynomial time and then showing that there ex-
ist instances in 3S with exponentially sized minimal solution. Hence, there
cannot exist any planner whatsoever generating a plan in polynomial time.
The class is de�ned by simple structural restrictions, all of them testable in
polynomial time.

Even though we cannot generate plans in polynomial time, we can prob-
ably do better than an ordinary planner by exploiting our knowledge about
the structure of 3S. We present a planning algorithm that generates plans
for 3S in solution-polynomial time, that is, in time bounded by a polyno-
mial in the size of the instance and in the size of the produced solution.
This planner is incremental, i.e., it outputs executable pre�xes of the �nal
plan before it has generated the whole plan. For this type of planners, it is
important that we can tell in advance whether there exists a plan or not.
It would be disappointing if the planner generated a large pre�x, which we
started to execute, and then suddenly told us that no solution exists for the
instance. For further details about incremental planning, see Jonsson and
B�ackstr�om [11].

The paper is organized as follows. First, the PSN planning formalism and
the 3S class are de�ned. Then, we show that the plan existence problem
for 3S is solvable in polynomial time while the plan generation problem
is provably intractable. In addition we show that the bounded existence
problem is NP-hard. We continue by presenting a pre�x-generating planner
for the 3S class that runs in solution-polynomial time. We conclude with a
brief discussion of the results.

2 Basic Formalism

We base our work in this paper on the propositional Strips formalism with
negative goals [5], which is equivalent to most other variants of propositional
Strips [2].

De�nition 2.1 An instance of the PSN planning problem is a quadruple
� = hP ;O; s0; hs�+; s��ii where

� P is a �nite set of atoms;

� O is a �nite set of operators of the form hpre+; pre�; add ; del ; namei,
where pre+; pre� � P denote the positive and negative precondition
respectively, satisfying pre+ \ pre� = ?, add ; del � P denote the
positive and negative postcondition (add and delete list) respectively,
satisfying add \ del = ?, and name is a unique identi�er;

2

� s0 � P denotes the initial state and s�
+; s�

� � P denote the positive
and negative goal respectively, satisfying s�

+ \ s�
� = ?;

The unique identi�er for each operator is not technically necessary but it will
simplify the forthcoming proofs. For o = hpre+; pre�; add ; del ; namei � O,
we write pre+(o), pre�(o), add(o), del(o) and name(o) to denote pre+, pre�,
add , del and name respectively.

De�nition 2.2 Given a set of operators O, de�ne Seqs(O) to be the set of
all �nite sequences of operators from O.

A sequence ho1; : : : ; oni 2 Seqs(O) of operators is called a PSN plan (or sim-
ply plan). We continue by de�ning when a plan solves a planning instance.

De�nition 2.3 The ternary relation Valid � Seqs(O)� 2P � (2P � 2P) is
de�ned such that for arbitrary ho1; : : : ; oni 2 Seqs(O) and S; T+; T� � P ,
Valid(ho1; : : : ; oni; S; hT

+; T�i) i� either

1. n = 0, T+ � S and T� \ S = ? or

2. n > 0, pre+(o1) � S, pre�(o1) \ S = ? and
Valid(ho2; : : : ; oni; (S � del(o1))[add(o1); hT

+; T�i).

A plan ! 2 Seqs(O) is said to be a solution to � i� Valid(!; s0; hs
+
� ; s

�
� i).

We can now formally de�ne the planning problems that we will consider in
this paper.

De�nition 2.4 Let � = hP ;O; s0; hs+� ; s
�
� ii be a PSN instance. The plan

existence problem (PE) is to decide whether there exists or not exists some
! 2 Seqs(O) such that ! is a solution to �. The bounded plan existence
problem (BPE) takes an integer K � 0 as an additional parameter and
decides whether a solution for � of length K or shorter exists or not. The
plan generation problem (PG) is to �nd some ! 2 Seqs(O) such that ! is a
solution to � or answer that no such ! exists. The bounded plan existence
problem (BPG) takes an integer K � 0 and �nds a solution a solution for �
of length K or shorter exists or answers that no such solution exists.

3 The 3S Class

We begin by de�ning dependency graphs on planning instances. Such a graph
represents for each atom p, which other atoms we will possibly have to add
or delete in order to add or delete p. The idea is not new; a more restricted
variant is used by Knoblock [12] in his Alpine system. From now on, let
� = hP ;O; s0; hs

+
� ; s

�
� ii be an arbitrarily chosen PSN instance.

De�nition 3.1 Let p 2 P and let Q � P . Then,

A�ects(p) = fo 2 O j p 2 add(o) or p 2 del(o)g

and A�ects(Q) =
S
q2QA�ects(q).

3

De�nition 3.2 De�ne the dependency graph DG(�) as a directed labelled
graph DG(�) = hP ;Di with vertex set P and arc set D such that for all
p; q 2 P ,

� hp;+; qi 2 D i� there exists an operator o 2 A�ects(q) such that
p 2 pre+(o)

� hp;�; qi 2 D i� there exists an operator o 2 A�ects(q) such that
p 2 pre�(o).

� hp;�; qi 2 D i� there exists an operator o 2 O such that p; q 2 add (o)[
del(o) and p 6= q.

An example of an dependency graph for some � with P = fA; : : : ; Ig can be
found in Figure 1. For example, we can see that there exists some operator
a�ecting both A and B and that I is not dependent of the other atoms
in any way. We continue by de�ning three classes of atoms, namely static,
irreversible and reversible atoms. The intuition behind these classes is that
a static atom must not or cannot be added or deleted, an irreversible atom
can be added or deleted but not both and a reversible atom can be both
added and deleted.

mIm m

m mm m

m m

�
�
���

@
@

@@I

� -

-

J
J
J
JJ]

�

J
J
J
JJ]

�

A B

+ �

�

� +

C

D E

� +

� F G

H

Figure 1: An example dependency graph.

De�nition 3.3 Let p 2 P . Then, p is static in � i� (1) p 62 s0 and there
does not exist an o 2 O such that p 2 add(o) or (2) p 2 s0 and there does
not exist an o 2 O such that p 2 del(o) or (3) p 62 s0 and p 2 s�� and there
does not exist an o 2 O such that p 2 del(o) or (4) p 2 s0 and p 2 s+� and
there does not exist an o 2 O such that p 2 add (o).

Case (1) says that there does not exist any operator that can add p and since
p 62 s0, p cannot occur in any state that any plan solving � might achieve.
Case (2) is analogous to case (1). Case (3) says that if we add p, then we
cannot delete it again. But since p 2 s�� we must delete p if we have added
it. Hence, p cannot be added by any plan solving �. Case (4) is analogous
to case (3). So, if an atom p is static in �, then no plan solving � can add
or delete p.

4

De�nition 3.4 An atom p 2 P is reversible in � i� for all o 2 O, whenever
p 2 add(o) then there exists an o0 2 O such that p 2 del(o) and vice
versa. Moreover, p is symmetrically reversible in � i� p is reversible and
for all o 2 O, whenever p 2 add(o) then there exists an o0 2 O such that
p 2 del(o), pre+(o) = pre+(o0) and pre�(o) = pre�(o0), and vice versa.

If an atom p is reversible in �, then plans that solve � can contain both
operators adding p and operators deleteing p. If an atom is symmetrically
reversible, then we can always delete it under the same conditions as we can
add it and vice versa.

De�nition 3.5 An atom p 2 P is irreversible in � i� it is not static in �
and not reversible in �.

If an atom p is irreversible in �, then plans that solve � must contain an
operator that adds or deletes p, but not both.

De�nition 3.6 Let G = hV;Ei be a directed labelled graph and G0 =
hV;E0i be its undirected counterpart, that is, let

E 0 = f(v; x; w); (w;x; v) j (v; x; w) 2 Eg:

Then, for v; w 2 V , w is weakly reachable from v in G i� there exists a path
from v to w in G0 = hV;E 0i.

De�nition 3.7 Let DG(�) = hV;Ei and assume that p 2 P . Furthermore,
let

Q
p
+ = fq j (p;+; q) 2 Eg;

Q
p
� = fq j (p;�; q) 2 Eg;

DG
p
+(�) = hV;E� f(p;+; x) 2 E j x 2 V gi; and

DG
p
�(�) = hV;E� f(p;�; x) 2 E j x 2 V gi:

Then, we can divide P into the following three sets:

1. Pp+ = Q
p
+ [fq j q is weakly reachable from some r 2 Qp

+ in DGp
+(�)g.

2. Pp� = Q
p
� [fq j q is weakly reachable from some r 2 Qp

� in DGp
�(�)g.

3. Pp
0
= fq 2 �0 j q is not weakly reachable from p in DG(�)g.

Consider the dependency graph in Figure 1 and the vertex C. We can see
that QC

+ = fEg and consequently, PC+ = fEg [fF;G;Hg = fE; F;G;Hg.
Analogously, QC

� = fDg and PC� = fDg [? = fDg. Also note that PC0 =
fIg. Obviously, Pp+ \ P

p
0
= ? and Pp� \ P

p
0
= ? for all choices of p but, in

the general case, Pp+ and Pp� are not disjoint. This observation leads to the
next de�nition:

5

De�nition 3.8 An atom p 2 P is splitting in � i� Pp+ and Pp� are disjoint.

The atomC in Figure 1 is a splitting atom because PC+\P
C
� = fE; F;G;Hg\

fDg = ?. Another example is the atom F where both PF+ and PF� equal
?. Intuitively, if an atom p is splitting then the problem instance can be
split into three subproblems which can be solved independently and the sets
Pp+;P

p
� and Pp

0
tells us which atom belongs to which subproblem. As a

convention, we usually drop \in �" when dealing with types of atoms if � is
clear from the context. We can now de�ne the 3S class of planning problems.

De�nition 3.9 3S is the set of PSN instances having acyclic dependency
graphs and where every atom is static, symmetrically reversible or splitting.

Note that if DG(�) is acyclic, then � is unary, that is, jadd(o)[del(o)j = 1
for every o 2 O. Hence, every 3S instance is unary. It should also be noted
that the restrictions on the atomic level are not orthogonal to each other.
For example, an atom can be splitting and symmetrically reversible at the
same time.

4 Polynomial Plan Existence

In this section, we show that the plan existence problem for instances in 3S is
polynomial while the plan generation problem is provably intractable. How-
ever, we begin by de�ning some concepts that will facilitate the forthcoming
proofs.

De�nition 4.1 Let p be a member of P and s; s+; s� � P . Then s is
compatible with hs+; s�i wrt p i� (1) p 2 s and p 62 s� or (2) p 62 s and
p 62 s+.

Loosely speaking, an initial state s0 is compatible with a goal state hs+� ; s
�
� i

wrt. p if we do not have to add or delete p in order to satisfy the goal.
We continue by de�ning a function e for restricting operators and planning
instances to limited sets of atoms. We also de�ne a function for recreating
operators that have been restricted by e.

De�nition 4.2 Let � = hP ;O; s0; hs+� ; s
�
� ii be a PSN instance, o 2 O and

P 0 � P . Then, o e P 0 (the restriction of o to P 0) is the operator

hadd(o)\ P 0; del(o)\ P 0; pre+(o)\ P 0; pre�(o) \ P 0; name(o)i:

We de�ne e for a set O0 � O of operators in the following way: O0 e P 0 =
fo e P 0 j o 2 O0g. Finally, we de�ne e for a PSN problem instance � such
that � e P 0 = hP 0;O e P 0; s0 \ P 0; hs+� \ P

0; s�� \ P
0ii

De�nition 4.3 Let o be an operator and O a set of operators. Then,
#O (o) is de�ned as the unique operator o0 2 O such that name(o) =
name(o0). We generalize #O to operate on plans in the obvious way, namely
#O (ho1; : : : ; oni) = h#O (o1); : : : ; #O (on)i.

6

Observe that the previous de�nition is sound since we have assumed that
every operator has a unique name in every operator set. In the next de�ni-
tion, we provide a method for removing certain operators from a planning
instance.

De�nition 4.4 Let O0 � O and p 2 P . Then, R+(p;O0) = fo 2 O0 j p 62
pre+(o)g and R�(p;O0) = fo 2 O0 j p 62 pre�(o)g. We also de�ne R+

and R� for PSN problem instances the obvious way; namely R+(p;�) =
hP ; R+(p;O); s0; hs+� ; s

�
� ii and R

�(p;�) = hP ; R�(p;O); s0; hs+� ; s
�
� ii.

We can view R+(p;�) as the problem instance � with all operators o such
that p 2 pre+(o) is removed and R�(p;�) as � with all operators o such
that p 2 pre�(o) is removed. Finally, we de�ne a well-known graph-theoretic
concept.

De�nition 4.5 Let G = hV;Ei be a directed (labelled) graph. A vertex
v 2 V is minimal i� there does not exist any e 2 E ending in v.

We claim that the PE-3S algorithm which is presented in Figure 2 solves
the plan existence problem in polynomial time for problem instances in 3S.
To prove the claim, we need the following three lemmata.

Lemma 4.6 Let � = hP ;O; s0; hs+� ; s
�
� ii 2 3S and let P 0 = P � fpg for

some arbitrary p 2 P . Then, � e P 0; R+(p;�)e P 0; R�(p;�)e P 0 2 3S.

Proof: If �0 = � e P 0, then DG(�0) is acyclic and every atom in �0 is
either static, symmetrically reversible or splitting since � 2 3S. Assume
�0 = R+(p;�) e P 0. DG(�0) is acyclic since DG(�) is acyclic. Choose an
arbitrary q 2 P 0. If q is static, then q is static in �0 because jO0j � jOj. If q
is symmetrically reversible, then q is either reversible or static in �0. This
follows from the fact that if some add operator that a�ects p is removed by
R+, then the corresponding delete operator is removed as well. Finally, if q
is splitting, then q is still splitting in �0 because jO0j � jOj. The case when
�0 = R�(p;� e P 0) is analogous. 2

1 function PE-3S(�) : boolean (* � = hP ;O; s0; hs
+
� ; s

�
� ii *)

2 if P = ? then return true

3 else

4 choose an atom p that is minimal in DG(�)
5 if p is static then

6 if s0 is not compatible with hs+� ; s
�
� i wrt. p

7 then return false

8 elsif p 62 s0 then return PE-3S(R+(p;�)e (P � fpg))
9 else return PE-3S(R�(p;�)e (P � fpg))
10 else return PE-3S(� e (P � fpg))

Figure 2: The PE-3S algorithm.

7

Lemma 4.7 Let � = hP ;O; s0; hs
+
� ; s

�
� ii 2 3S. Then, PE-3S(�) returns

true if � has a solution.

Proof: Suppose there exists a plan ! that solves �, but PE-3S(�) returns
false. We show that this is impossible by induction over jPj:
Basis step: jPj = 0. PE-3S(�) returns true by de�nition.
Induction hypothesis: Suppose the lemma holds for jPj � k, k � 0.
Induction step: We want to show that the lemma holds for jPj = k + 1.
We have four cases:

1. PE-3S returns false in line 7. Obviously, � does not have any solution.
Contradiction.

2. PE-3S returns false in line 8. Since we cannot add p, we must check if
R+(p;�)e(P�fpg) has any solution. By Lemma 4.6, R+(p;�)e(P�
fpg) 2 3S so, by the induction hypothesis, we can do this recursively.
Hence, if PE-3S(R+(p;�)e (P � fpg)) returns false, then � does not
have any solution. Contradiction.

3. PE-3S returns false in line 9. Analogous to the previous case.

4. PE-3S returns false in line 10. By Lemma 4.6, � e (P � fpg) 2 3S.
Hence, by the induction hypothesis, we can check whether �e(P�fpg)
has a solution or not with PE-3S. If � e (P � fpg) has no solution,
then � has no solution. Contradiction. 2

Lemma 4.8 Let � = hP ;O; s0; hs
+
� ; s

�
� ii 2 3S Then, � has a solution if

PE-3S(�) returns true.

Proof: Assume PE-3S(�) returns true. We show the lemma by induction
over jPj:
Basis step: If jPj = 0, then PE-3S(�) returns true in line 2. Obviously, hi
is a valid plan for � so the lemma holds in this case.
Induction hypothesis: Suppose the lemma holds for jPj � k, k � 0.
Induction step: We want to show that the lemma holds for jPj = k + 1.
Let p be the minimal atom in DG(�) that PE-3S chooses in line 7 and let
P 0 = P � fpg. (Note that the algorithm always can choose such a p since
DG(�) is acyclic). We have three cases:

1. p is static. Since PE-3S(�) returns true, s0 is compatible with hs+� ; s
�
� i

wrt. p. Hence, PE-3S must return true in line 8 or 9. Both R+(p;�)e
P 0 and R�(p;�) e P 0 are members of 3S by Lemma 4.6. So, by the
induction hypothesis, there exists a valid plan ! for R+(p;�)e P 0 or
R�(p;�)e P 0. Since p is static, #O (!) is a valid plan for �.

2. p is reversible. We know that p is not static so PE-3S must return true
in line 10. Since p is minimal in DG(�), there exists operators o+; o�

that adds p and deletes p having no preconditions at all. Hence, we can
add and delete p freely. By Lemma 4.6, �eP 0 2 3S so by the induction

8

hypothesis, there exists a valid plan ! for �eP 0. Consequently, there
exists a plan !0 for �. (Simply by inserting o+ before every operator in
#O (!) that needs p to be true and inserting o� before every operator
in #O (!) that needs p to be false. Possibly, we also have to insert some
operator last in the plan to ensure that the goal state is satis�ed.)

3. p is irreversible. We begin by showing that p is splitting. Remember
that p is either static, symmetrically reversible or splitting. The case
when p is static was taken care of earlier. Since p is irreversible, p
cannot be symmetrically reversible. The only remaining possibility is
that p is splitting. Consequently, PE-3S must return true in line 10. By
Lemma 4.6, �0 = � e P 0 2 3S and by the induction hypothesis, there
exists a plan ! that solves �0. Since p is splitting, Pp+;P

p
� and Pp

0
are

disjoint. Form the following three subinstances: �0
+ = � e Pp+;�

0
� =

� e Pp�;�
0
0 = � e Pp

0
. Assume that p 2 s0. As we know that p is

not static, there exists an operator o� that deletes p. Furthermore, we
know that Pp+;P

p
� and Pp

0
are disjoint, so we can reorder ! to the plan

!0 = (!+;!�;!0) where !+ solves �0
+, !� solves �0

� and !0 solves
�0
0. As a consequence, !00 = (#O (!+); o�; #O (!�); #O (!0)) is a valid

plan solving �. The case where p 62 s0 is analogous. 2

We are now able to prove that the plan existence problem for instances in
3S is polynomial.

Theorem 4.9 Let � = hP ;O; s0; hs+� ; s
�
� ii 2 3S. Then, whether � has a

solution or not can be decided in polynomial time.

Proof: The recursion depth of PE-3S is bounded above by jPj since the
number of atoms decreases strictly for each recursive level. Hence, PE-3S
must eventually return true or false. By Lemmata 4.7 and 4.8, � has a solu-
tion i� PE-3S(�) returns true. Conversely, � lacks a solution i� PE-3S(�)
is false. It remains to show that PE-3S runs in polynomial time for every
�. Constructing DG(�) and performing the di�erent tests takes only poly-
nomial time. We have already shown that we PE-3S will make less than jPj
recursive calls. Consequently, PE-3S runs in polynomial time. 2

5 Bounded Plan Existence and Plan Generation

We proceed by showing that the bounded plan existence problem for 3S is
NP-hard. The reduction is based on the Minimum Cover problem, which
is known to be NP-complete.

De�nition 5.1 An instance of the Minimum Cover problem is given by
a �nite set X = fx1; : : : ; xmg, a set C = fC1; : : : ; Cng of subsets of X and
a positive integer K � jCj. The question is whether there exists a cover
for X , i.e., a subset C 0 � C with jC0j � K such that every element of X
belongs to at least one member of C0.

9

Theorem 5.2 (Garey and Johnson [8]) The problem Minimum Cover is
NP-complete.

Theorem 5.3 Bounded plan existence is NP-hard for PSN problem in-
stances such that every atom is symmetrically reversible and their corre-
sponding dependency graphs are acyclic.

Proof: NP-hardness is shown by reduction from Minimum Cover. Let
C = fc1; : : : ; cmg be a collection of subsets of a �nite set X = fx1; : : : ; xng
and let K be an integer such that K � jCj. De�ne a PSN problem instance
� = hP ;O; s0; hs

+
� ; s

�
� ii such that

� P = fck j 1 � k � mg [fxl j 1 � l � ng.

� O = fc+k ; c
�

k j 1 � k � mg [fx+k;l; x
�

k;l j 1 � k � n and xk 2 Clg where

pre+(c+k) = pre+(c�k) = ?

pre�(c+k) = pre�(c�k) = ?

add (c+k) = del(c�k) = fckg
add (c�k) = del(c+k) = ?

pre+(x+k;l) = pre+(x�k;l) = fclg

pre�(x+k;l) = pre�(x�k;l) = ?

add (x+k;l) = del(x�k;l) = fxkg

add (x�k;l) = del(x+k;l) = ?

� s0 = ?

� s+� = fxl j 1 � l � ng, s�� = ?

It is obvious that X has cover C0 such that jC0j � K i� there is a plan of
size jX j+K or less solving �. Since � satis�es the given restrictions, the
theorem follows. 2

Now, we turn our attention to the complexity of plan generation for instances
in 3S. In the next theorem, we show that there exists instances having
exponentially sized minimal solution in 3S.

Theorem 5.4 Let n be an arbitrary integer strictly greater than 0. Then
there exists an instance �n = hP ;O; s0; hs+� ; s

�
� ii 2 3S such that jPj = n

and all minimal plans solving � are of length 2n � 1.

Proof: De�ne �n as follows:

� P = fp1; : : : ; png;

10

� O = fo+
1
; o�

1
; : : : ; o+n ; o

�
n g where for 1 � k � m,

pre+(o+k) = pre+(o�k) =

(
fpk�1g if k > 1
? otherwise

pre�(o+k) = pre�(o�k) =

(
fp1; : : : ; pk�2g if k > 2
? otherwise

add (o+k) = del(o�k) = fpkg
add (o�k) = del(o+k) = ?

� s0 = ?;

� s+� = fpng and s�� = fp1; : : : ; pn�1g.

It is easy to see that �n is a 3S instance. Furthermore, the length of the
shortest plan solving �n is 2n � 1 as shown by B�ackstr�om and Nebel [4].
2

So, plan generation takes exponential time in the worst case. Consequently,
the bounded plan generation problem also takes exponential time.

6 Incremental Planning

Since Lemma 4.8 is constructive, it allows us to devise a planner that gen-
erates a solution plan whenever one exists. By exploiting our knowledge of
the structure of the plan, we can even construct a incremental planner, i.e.,
a planner that attempts outputting an executable pre�x of the �nal solution
plan before the whole of this solution is completed. This algorithm, IP-3S,
appears in Figure 3. To be able to output pre�xes before the whole solution
is computed, we use streams. The procedure output puts one or more ele-
ments on the stream and the function read returns the �rst element of the
stream and removes it.

The ability of IP-3S to produce executable pre�xes stems from two facts:
(1) if an atom p is splitting, then the problem can be divided into three
subproblems which can be solved independently and (2) Interweave does
not have to wait for its incoming stream to be closed before it can begin
putting operators on its output stream. To take full advantage of the pre�x-
generation, a certain amount of parallelism is needed. We do not want to
wait until a recursive call in line 15 of IP-3S is completed before we begin
to process the output on the stream from this call. Instead, we want the
recursive call to be a new process that executes concurrently with the process
that called it.

It should be noted that # has to be rede�ned in a straight-forward way
to operate on streams in order to make IP-3S work correctly. The IP-3S
algorithm clearly follows the cases in the proof of Lemma 4.8 so the following
theorem follows immediately.

11

Theorem 6.1 If � is a soluble instance of 3S, then IP-3S will generate a
plan ! solving �

Since we can check if � 2 3S has a solution or not in polynomial time, it
is not very restrictive that IP-3S requires � to have a solution in order to
work; It would, in fact, be very disappointing if IP-3S generated a large
pre�x (which we perhaps would start to execute) and then suddenly told
us that no solution exists for the instance. We continue with de�ning a
complexity concept for capturing the time complexity of IP-3S.

De�nition 6.2 An algorithm runs in solution-polynomial time i� its run-
ning time is bounded above by some polynomial in the size of the input and
in the size of the generated solution.

IP-3S is an example of an output-sensitive algorithm. Other examples of
output-sensitive algorithms exist in the literature, e.g., the convex hull algo-
rithm by Jarvis [9]. By Theorem 5.4, IP-3S cannot run in polynomial time.
However, it runs in solution-polynomial time, which is as good as we can
hope for when dealing with problems having exponentially sized solutions.

Theorem 6.3 IP-3S runs in solution-polynomial time.

Proof: Suppose we want to compute IP-3S(�) for some arbitrary � =
hP ;O; s0; hs

+
� ; s

�
� ii 2 3S and assume that the resulting plan ! has length L.

Then, IP-3S will perform less than jPj recursive calls on non-empty subin-
stances of the original instance at most. This is trivial if the chosen p is static
or reversible and follows from the fact that Pp+, P

p
� and Pp0 are disjoint oth-

erwise. We can over-estimate the consumed time by assuming that every
recursive calls works on a plan of length L. The construction of DG(�),
�nding a minimal p, the di�erent tests and the # and Interweave functions
are all bounded by some polynomial p in the size of the instance j�j and L.
Hence, the running time is jPj�p(j�j; L) at most and the theorem follows. 2

It is important to notice that IP-3S is polynomial in the length of the gener-
ated plan, not in the shortest possible plan. Hence, it is possible that IP-3S
can take exponential time when solving an instance � though it is possible
to solve � in polynomial time with some other algorithm.

7 Discussion

We have presented a class of planning problems where we can tell in ad-
vance, in polynomial time, whether a solution exists or not. We have also
presented a provably correct planner for this class that runs in polynomial
time in the length of the solution it produces. Furthermore, this planner
will, whenever possible, output successive valid pre�xes of the �nal solution
for immediate execution, concurrently with the continuing planning process.
As we have noted before, it is very important that we can guarantee that the

12

1 function IP-3S(�) : stream (* � = hP ;O; s0; hs
+
� ; s

�
� ii *)

2 if P 6= ? then

3 choose an atom p that is minimal in DG(�)
4 if p is static then

5 if p 62 s0 then output (#O (IP-3S(R+(p;�)e (P � fpg)))
6 else output (#O (IP-3S(R�(p;�)e (P � fpg)))
7 elsif p is irreversible then

8 if p 62 s0 then

9 output (#O (IP-3S(� e Pp�)))
10 output (o) where o 2 O adds p
11 output (#O (IP-3S(� e Pp+)))
12 output (#O (IP-3S(� e P

p
0)))

13 else the case when p 2 s0 is analogous
14 else (* p is reversible *)
15 output (Interweave(#O (IP-3S(�e (P �fpg))); p;O; s0; hs

+
� ; s

�
� i))

16 close output stream

1 function Interweave(! : stream; p;O; s0; s
+
� ; s

�
�) : stream

2 if p 2 s0 then added T

3 else added F

4 let o+; o� 2 O be such that p 2 add (o+) and p 2 del(o�)
5 while ! is not closed do

6 o read(!)
7 if p 2 pre+(o) and not added then output(o+); added T

8 elsif p 2 pre�(o) and added then output(o�); added F

9 output (o)
10 if p 2 s+� and not added then output(o+)
11 elsif p 2 s�� and added then output(o�)
12 close output stream

Figure 3: The IP-3S algorithm.

generated pre�xes are pre�xes of a valid plan. Other incremental planners,
such as those presented by Ambros-Ingerson and Steel [1] and Drummond
et al. [7], do not have this property. It is, however, important to note that
they consider a much more general planning problem than the 3S class. It
seems highly improbable that such general incremental planners can have
the ability to tell whether a solution exists or not in polynomial time. In the
�rst-order case, it would imply that the undecidable plan existence problem
could be solved in polynomial time. In the propositional case, this would
imply that the Pspace-complete plan existence problem could be solved
in polynomial time. Hence, we are probably forced to consider severely
restricted problems if we want to use incremental planning techniques.

This research continues as well as complements our ongoing research
into tractable planning, using syntactic restrictions [4] as well as structural
ones [10]. Incremental planning seems to provide one way of tackling non-

13

tractable classes of planning problems, while also making replanning feasible.
The variable-graph approach is an obvious continuation of our research into
structural restrictions [10]. Interestingly, these graphs can be viewed as a
generalization of the dependency graphs Knoblock [12] uses for generating
abstraction hierarchies, where our graphs contain more information.

In earlier publications [4], we have argued that planning problems al-
lowing exponential-size optimal solutions should be considered unrealistic.1

This does not imply that the 3S class is unrealistic, however. It is important
to distinguish between the inherent complexity of an application problem
and the complexity of the hardest problems allowed by a planning formal-
ism per se. The only natural examples of problems with exponential-size
optimal solutions seem to be arti�cial puzzles, like Towers of Hanoi, which
are deliberatly designed to have this property. Application problems arising
'naturally' in industry etc. can be expected not to exhibit this property.
In other words, we can expect real problems �tting within the 3S class to
have reasonably sized solutions. Note, however, that this would not be of
much help to us if the 3S class did not allow tractable plan existence, since
we would then still face the intractability for the unsolvable instances|not
being able to tell in advance that these are unsolvable.

Most of the research in planning complexity have only addressed the
plan existence problem. However, the class 3S puts in doubt whether it is
relevant to concentrate research into planning complexity on plan existence.
As is demonstrated in this paper, there might be a considerable gap in the
hardness between plan existence and plan generation. Since we are usually
interested in actually generating a plan, it seems reasonable to concentrate
on the complexity of plan generation instead.

One problem with the IP-3S algorithm is that although it runs in poly-
nomial time in the length of the solution it generates, it is not guaranteed
to generate an optimal plan. In fact, in the worst case it could happen to
generate an exponential plan when there is a short, optimal one. Although
we can hope for this not to happen in practice, it seems hard to rule out the
possibility by any simple means and this problem arises also for `standard'
general-purpose planners, like Tweak. However, while such planners can
avoid the problem through backtracking, although at a considerably higher
cost, this may not be possible if we want to generate pre�xes greedily. This
problem is not unique for incremental planning, however. An analogous
problem arises in state abstraction, where the wrong choice of abstraction
hierarchy can force the hierarchical planner to spend exponentially longer
time generating an exponentially longer solution than a non-hierarchical
planner [3]. For incremental planners, there seems to be a tuning factor
between outputting pre�xes early and guaranteeing reasonably short plans
respectively|an interesting challenge for future research.

1This is simply a specialization of the `same' claim for problems in general [8, p. 11].

14

8 Conclusions

We have presented a class of planning instances such that the plan existence
problem is polynomial while plan generation is provably intractable for in-
stances of this class. The class is de�ned by simple structural restrictions,
allowing for polynomial-time membership testing. Furthermore, we have
shown that plan generation can be carried out in solution-polynomial time,
that is, in time bounded by a polynomial in the size of the input and the size
of the generated solution. We have further proposed a solution-polynomial
and pre�x-generating planner IP-3S for the class that is provably sound and
complete.

Acknowledgements

We would like to thank Christos Papadimitriou and the anonymous refer-
ees for discussions and comments which helped improving the paper. The
research was supported by the Swedish Research Council for Engineering
Sciences (TFR) under grants Dnr. 92-143 and Dnr. 93-00291.

References

[1] J. A. Ambros-Ingerson and S. Steel, Integrating planning, execution and
monitoring, in: Proc. 7th (US) Nat'l Conf. on Artif. Intell. (AAAI-88),
Morgan Kaufmann, 1988, pp. 83{88.

[2] C. B�ackstr�om, Expressive equivalence of planning formalisms, Artif.
Intell. 76(1{2) (1995) 17{34.

[3] C. B�ackstr�om and P. Jonsson, Planning with abstraction hierarchies
can be exponentially less e�cient, in: Proc. 14th Int'l Joint Conf. on
Artif. Intell. (IJCAI-95), Morgan Kaufmann, 1995, pp. 1599{1604.

[4] C. B�ackstr�om and B. Nebel, Complexity results for SAS+ planning,
Comput. Intell. 11(4) (1995) 625{655.

[5] T. Bylander, The computational complexity of propositional STRIPS
planning, Artif. Intell. 69 (1994) 165{204.

[6] D. Chapman, Planning for conjunctive goals, Artif. Intell. 32 (1987)
333{377.

[7] M. Drummond, K. Swanson, J. Bresina, and R. Levinson, Reaction-
�rst search, in: Proc 13th Int'l Joint Conf. on Artif. Intell. (IJCAI-93),
Morgan Kaufmann, 1993, pp. 1408{1413.

[8] M. Garey and D. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, Freeman, 1979.

15

[9] R. A. Jarvis, On the identi�cation of the convex hull of a �nite set of
points in the plane, Inf. Process. Lett. 2 (1973) 18{21.

[10] P. Jonsson and C. B�ackstr�om, Tractable planning with state variables
by exploiting structural restrictions, in: Proc. 12th (US) Nat'l Conf.
on Artif. Intell. (AAAI-94), Morgan Kaufmann, 1994, pp. 998{1003.

[11] P. Jonsson and C. B�ackstr�om, Incremental planning, in: New Directions
in AI Planning: Proc. 3rd Eur. WS. Planning (EWSP'95), IOS Press,
1995, pp. 79{90.

[12] C. A. Knoblock, Automatically generating abstractions for planning,
Artif. Intell., 68 (1994) 243{302.

16

