COMPLEXITY RESULTS FOR STATE-VARIABLE
PLANNING UNDER MIXED SYNTACTICAL AND
STRUCTURAL RESTRICTIONS

PETER JONSSON
Department of Computer and Information Science
Linkoping University, S-581 83 Linkoping, Sweden
email: petej@ida.liu.se

and

CHRISTER BACKSTROM
Department of Computer and Information Science
Linkoping University, S-581 83 Linkoping, Sweden

email: cba@ida.liu.se

ABSTRACT

Most tractable planning problems reported in the literature have been defined by
syntactical restrictions. To better exploit the inherent structure of problems, however,
it 1s probably necessary to study also structural restrictions on the state-transition
graph. We present an almost exhaustive map of complexity results for state-variable
planning under all combinations of our previously analysed syntactical (P, U, B, S)
and structural (I, A, O) restrictions, considering both optimal and non-optimal plan

generation.

1 Introduction

Many planning problems in manufacturing and process industry are believed to be
highly structured, thus allowing for efficient planning if exploiting this structure. How-
ever, a ‘blind” domain-independent planner will most likely go on tour in an exponential
search space even for tractable problems. Although heuristics may help a lot, they are
often not based on a sufficiently thorough understanding of the underlying problem
structure to guarantee efficiency and correctness. Further, we believe that if having
such a deep understanding of the problem structure, it is better to use other methods
than heuristics.

Some tractability results have been reported in the literature for restrictions on the
propositional STRIPS formalism™? and for restrictions on the related state-variable
formalism SAST.%¢ These results are all based on essentially syntactic restrictions on
the set of operators. Syntactic restrictions are very appealing to study, since, typically,
they are easy to define and not very costly to test. However, to gain any deeper insight
into what makes planning problems hard and easy respectively probably require that

we study the structure of the problem, in particular the state-transition graph induced
by the operators. Putting explicit restrictions on the state-transition graph must be
done with great care, however, since this graph is typically of size exponential in the
size of the planning problem instance, making it extremely costly to test arbitrary
properties.

In a recent paper'® we took an intermediate approach. Using the SAST formalism
we defined restrictions not on the whole state-transition graph, but on the domain-
transition graph for each state variable in isolation. These can, hence, be tested in
polynomial time. Although not being a substitute for restrictions on the whole state-
transition graph, many interesting and useful properties of this graph can be indirectly
exploited. In particular, we identified three structural restrictions (I, A and O) which
together make planning tractable and properly generalize the tractable problems we
have previously defined using syntactical restrictions. We also presented a polynomial-
time, sound and complete algorithm for generating optimal plans under the new struc-
tural restrictions. Despite being structural, our restrictions can be tested in polynomial
time. Further, this approach would not be very usetul for a planning formalism based
on propositional atoms, since the resulting two-vertex domain-transition graphs would
not allow for much structure to exploit.

We have previously® presented a map over the complexity of planning for all com-
binations of the previously considered syntactical restrictions on SAST planning. In
this paper, we repeat this endeavour, taking also the new structural restrictions into
account. We provide a map over the complexity of both optimal and non-optimal plan
generation for all combinations of the restrictions, considering also mixed structural
and syntactical restrictions. Hence, we augment our previous tractability result for the
SAS*-TAO problem by also showing that it is a maximally tractable problem under the
restrictions considered. (For reasons explained later in the paper, we actually study a
restricted version of the SAST formalism.)

2 The SAS™ and SAS* formalisms

The SAST formalism,*® is a variant of propositional STRIPS, generalizing the atoms to
multi-valued state variables. Furthermore, what is called a precondition in STRIPS is
here divided into two conditions, the precondition and the prevailcondition. Variables
which are required and changed by an operator go into the precondition and those
which remain unchanged, but are required, go into the prevailcondition. We briefly
recapitulate the SAST formalism below, referring to Backstrom and Nebel® for further
explanation.

Definition 2.1 An instance of the SASYT planning problem is given by a tuple 11 =
(V, 0, sq, 8«) with components defined as follows:

oV = {uv,...,v,} is a sel of state variables. Fach variable v € V has an
associated domain D, which implicitly defines an extended domain D} =
D, U{u}, where u denotes the undefined value. Further, the total state space
S =D, x...xD,, and the partial state space ST = D} x ... x D! are
implicitly defined. We write s[v] to denote the value of the variable v in a state s.

e O is a set of operators of the form (b,e,f), where be,f € ST denote the pre-,
post- and prevail-condition respectively. FEach operator (b,e,f) € O is subject
to the following two restrictions

(R1) for allv €V if b[v] # u, then b[v] # e[v] # u,
(R2) for allv eV, efv]=u orflv] =u.

e 50 € ST and s, € ST denote the initial state and goal state respectively.

Restriction R1 essentially says that a state variable can never be made undefined,
once made defined by some operator. Restriction R2 says that the pre- and prevail-
conditions of an operator must never define the same variable.

We write s Tt if the state s is subsumed (or satisfied) by state t, ie. if s[v] =u or
s[v] = t[v]. We extend this notion to whole states, defining

sCtiff forall veV, s[v]=u or s[v]=t[v].

If o = (b,e,f) is a SAST operator, we write b(o), e(o) and (o) to denote b, e and f
respectively. OF denotes the set of operator sequences over O and the members of O
are called plans. Given two states s,t € ST, we define for all v €V,

(s @ 1)v] = { tlo] if t{v] # u,

slv] otherwise.

The ternary relation Valid C O* x ST x ST is defined recursively s.t. for arbitrary op-
erator sequence (01, ...,0,) € O* and arbitrary states s,t € ST, Valid({(o1,...,0,),5,1)
iff either

1.n=0and tC s or
2.n>0,b(o1) C s, flo1) C s and Valid({og,...,0,),(s B e(01)),1).
A plan {(01,...,0,) € OF solves Il iff Valid({o1,...,0n), S0, Sx).

Finally, we define a restricted variant of the SAST formalism.

Definition 2.2 The SAS* problem is the SAST problem restiricted to instances
(V,0, s0,8.) satisfying (1) s. € S and (2) for every operator o € O and variable
v eV, if blo)[v] = u, then e(o)[v] =u

3 Restrictions

In this section we define the various restrictions on SAS™ planning to be analysed in
the next section. We have previously presented both the syntactical ones (P, U, B
and S)*>% and three of the structural ones (I, A and O).'* In addition we present a
new structural restriction, AT. Before presenting the restrictions we must define some
other concepts, however. Assume below that 11 = (V, O, sq, s.) is a SAST instance.

Definition 3.1 An operatoro € O isunary iff there is exactly one v € V s.t. e(o)[v] #
u.

Definition 3.2
For each v €V and O C O, the set RY' of requestable values for O is defined
as RC" = {f(0)[v] | o € O'} U {b(0)[v],e(0)[v] | 0 € O" and o is non-unary } — {u}.

Obviously, R® C D, for all v € V. For each state variable domain, we further define
the graph of possible transitions for this domain, without taking the other domains
into account, and the reachability graph for arbitrary subsets of the domain.

Definition 3.3 For ecach v €V, we define the corresponding domain transition
graph G, as a directed labelled graph G, = (D}, T,) with vertex set DF and arc set

T, s.t. for all x,y € D} and o € O, (x,0,y) € ’]UL iff b(o)[v] = « and e(o0)[v] =y # u.
Further, for each X C D we define the reachability graph for X as a directed graph
GX = (X, Tx) with verter set X and arc set Ty s.t. for all .y € X (z,y) € Tx iff

there is a path from x to y in G,.

Alternatively, G¥ can be viewed as the restriction to X C D} of the transitive
closure of ¢, but with unlabelled arcs. When speaking about a path in a domain-
transition graph below, we will typically mean the sequence of labels, ie. operators,
along this path. We say that a path in G, is via a set X C D iff each member of X
is visited along the path, possibly as the initial or final vertex.

Definition 3.4 An operatoro € O isirreplaceable wrt. a variable v € V iff removing
an arc labelled with o in G, splits some component of GG, into two components.

In the remainder of this paper we will only be interested in SAS™ instances satisfying
combinations of the following restrictions.

Definition 3.5 The SAST instance 11 is:

(P) Post-unique iff for all 0,0’ € O, if e(o)[v] = e(d')[v] # u for some v €V, then

0o=20;
(U) Unary iff for all o € O, o is unary;
(B) Binary iff |D,| =2 for allv eV,
(S) Single-valued iff there exists some state s € ST s.t. (o) C s for all o € O.

(I) Interference-safe iff every operator o € O is either unary or irreplaceable wrt.
every v € V it affects.

(A) Acyclic wrt. R? iff Gf? is acyclic for each v € V.

(A*T) Acyclic iff G, is acyclic for each v € V.

(O) Prevail-order-preserving iff for each v € V, whenever there are two z,y € D

s.t. G, has a shortest path (o1,...,0,) from x to y via some set X C RY and
it has any path (0),...,0.) from x to y via some set Y C RY s.t. X C Y, there
exists some subsequence (..., 0} ,...,0. ,...) s.t. flox) E (0}) for 1 <k < m.

From now on, we will consider the SAS* formalism instead of the SAST formal-
ism. One of the reasons for doing so, is that SAST and SAS* are equally expressive
formalisms under polynomial reductions. (See Backstrom®? for a discussion of expres-
siveness equivalences.) Another reason is that all previously described polynomial-time
SAST planners require that the problem instance satisfy both restriction I and A. This
mixes badly with actions having u as precondition. For example, restriction I prevents
the existence of a path in G, from u to any state that is the precondition of a non-
unary action and restriction A prevents the existence of two requestable values which
are both reachable from u.

Many of the complexity results to be presented in the next section will carry over
by inheritance, using the following subproblem relationships. (The proofs of theorems
are omitted or only sketched. All proofs can be found in Jonsson and Backstrom.'?)

Lemma 3.6 The following subproblem relations hold:
1. SAS*-AT C SA5-A 2. SAS*-U C SAS -1
3. SAS-US C SAS*-A 4. SAS-P C SAS*-O
5. SAS-PA C SAS*-I

Proof sketch: 1 and 2 are trivial. 3 follows from the fact that S and U in combination
implies |[RY| < 1 for all v € V. Both 4 and 5 follow from analysing how post-uniqueness
restricts the domain-transition graphs. O

4 Complexity of plan generation

In this paper we will only discuss the plan generation problem (finding a solution). We
will not consider the plan existence problem (deciding whether a solution exists), since
we are ultimately interested in actually generating a solution.

Definition 4.1 Given a SAS* instance 11, we have the following planning problems:
The plan generation problem (PG) finds a solution for 11 or answer that no solution
exists. The bounded plan generation problem (BPQG) takes an integer k > 0 as
an additional parameter and finds a solution for Il of length k or shorter or answer
that no plan of length k or shorter exists for 11.

The complexity of the plan generation problems follows from the theorems in this

section, Lemma 3.6 and inheritance. The tractability results appear in previous pub-
lications, as indicated below.

Theorem 4.2 BPG is polynomial for SAS*-IAQ.*?

Theorem 4.3 PG is polynomial for SAS*-US.6

For the intractability results we have to distinguish those problems that are inher-
ently intractable, ie. can be proven to take exponential time, and those which are
NP-equivalent, ie. intractable unless P = N P. Observe that we cannot use the term
NP-complete since we consider the search problem (generating a solution) and not the
decision problem (whether a solution exists). A search problem is NP-easy if it can be
Turing reduced to some NP-complete problem, NP-hard if some NP-complete problem
can be Turing reduced to it and NP-equivalent if it is both NP-easy and NP-hard.
Loosely speaking, NP-equivalence is to search problems what NP-completeness is to
decision problems. See Johnson!! for formal details.

Theorem 4.4 Optimal solutions are always polynomially bounded for (1) SAS*-A and
(2) SAS*-1S.

Proof sketch: We observe that for SAS*-A each requestable value is visited at most
once in an optimal solution and, hence, (1) holds. For SAS*-IS we observe that cycles
in a domain-transition graph can only contain unary operators. Hence, the proof of
(2) is a simple extension to the proof that optimal SAST-US plans are of polynomial
size.® O

Corollary 4.5 BPG is NP-easy for SAS*-A and SAS*-1S.

Theorem 4.6 PG is NP-hard for SAS*-BSAT O.

Proof sketch: Proof by reduction from EXACT COVER BY 3-SETS. O
Theorem 4.7 BPG is NP-hard for SAS*-UBSAT.

Proof sketch: Proof by reduction from MINIMUM COVER. O
Theorem 4.8 PG is NP-hard for SAS*-BSIAT and SAS*-UBAT.

Proof sketch: Proof by reduction from 3-SATISFIABILITY. O

Theorem 4.9 Both SAS*-PUB and SAS*-PBS have instances with exponentially sized

optimal solutions® (and are thus inherently intractable).

The complexity results are summarized in the lattice in Figure 1 which can be
viewed as a three-dimensional cube. The figure is to be interpreted in the following
way: The top-element of each diamond-shaped sublattice corresponds to a combination
of restrictions on the SAS* problem defined by selecting at most one restriction from
each of the sets {AT, A}, {P,O} and {U, I}. These restrictions are marked along the
three axes in the figure, where “-” denotes that neither of the two restrictions on an axis
applies. The other three points in each sublattice further specialize the top element
by adding one or both of the restrictions B and S, as shown in the enlarged sublattice.
As an example of how to interpret the lattice, the SAS*-SAQO problem is indicated
explicitly in the figure.

SAS*-SA0

Polynomial for PG and BPG

°
o Polynomial for PG, NP-equivalent for BPG
O NP-equivalent for PG and BPG

B Inherently intractable.

Figure 1: Complexity of SAS* plan generation

The lattice presents complexity results for both bounded and unbounded plan gen-
eration as follow. Problems which are polynomial for both PG and BPG are marked
with a filled dot, while those which are polynomial for PG but NP-equivalent for
BPG are marked by an unfilled dot. The problems marked by an unfilled square are
NP-equivalent for both PG and BPG and those marked with a filled square are inher-
ently intractable for both PG and BPG. Unmarked positions denote problems whose
complexity is unknown at present.

5 Discussion and conclusions

Not much research on structural restrictions on planning problems seems to be re-
ported in the literature, although some exceptions can be found. Korf'* has defined
some subgoal dependency properties of planning problems modelled by state-variables,
for instance serializability of subgoals. However, this property is PSPACE-complete
to test,® but does not guarantee tractable planning. Madler!® extends Sacerdoti’s'®
essentially syntactic state abstraction technique to structural abstraction, identifying
bottle-neck states (needle’s eyes) in the state-transition graph for a state-variable for-

malism. Smith and Peot!” use an operator graph for preprocessing planning problem

instances, identifying potential threats that can be safely postponed during planning—
thus, pruning the search tree. The operator graph can be viewed as an abstraction of
the full state-transition graph, containing all the information relevant to analysing
threats. In addition to this, we have previously presented a polynomial-time algorithm
for the SAST-IAO problem!® and proven that this problem properly generalizes the
previously studied syntactically defined tractable planning problems.

In this paper, we have extended this result by analysing the complexity of plan
generation under all combinations of restrictions, considering both these new struc-
tural restrictions and the previously analysed syntactical ones. By the results in this
paper, we can conclude that SAS*-TAO is maximally tractable under the structural
restrictions I, A and O, thus being a structural counterpart of the result in Backstrom
& Nebel® stating that SAST-PUS is the maximal tractable problem under the syn-
tactical restrictions P, U, B and S. Obviously, this result holds for the SAS* case as
well. Mixing syntactical and structural restrictions yield two problems, SAS*-SIO and
SAS*-PSI, whose complexity we have not managed to show. Both problems seems
to be of minor practical interest since the S restriction is very severe. Though, it is
worth noticing that the SAS*-SIO class is incomparable wrt. expressive power with
both the SAS*-PUS and the SAS*-TAO class. We have also shown SAS*-US (and con-
sequently SAST-US) non-optimal plan generation cannot be further generalized with
preserved tractability by replacing US with any combination of our studied syntactical
or structural restrictions. By providing some additional hardness results, we have built
a map over the complexity of planning for all combinations of both the syntactical and
structural restrictions, considering both optimal and non-optimal plan generation.

6 Acknowledgements

This research was sponsored by the Swedish Research Council for the FEngineering
Sciences (TFR) under grants Dnr. 92-143 and Dnr. 93-00291.

References

[1] Proc. 10th (US) Nat’l Conf. on Artif Intell. (AAAI-92), San José, CA, USA, July
1992.

[2] C. Backstrom. Computational Complexity of Reasoning about Plans. Doctoral
dissertation, Linkoping University, Linkoping, Sweden, June 1992.

[3] C. Backstrom. Equivalence and tractability results for SAST planning. In Proc.
3rd Int’l Conf. on Principles of Knowledge Repr. and Reasoning (KR-92), pages
126-137, Cambridge, MA, USA, Oct. 1992.

[4] C. Backstrom and I. Klein. Parallel non-binary planning in polynomial time. In

LJCALY pages 268-273.

[5] C. Backstrom and I. Klein. Planning in polynomial time: The SAS-PUBS class.
Comput. Intell., 7(3):181-197, Aug. 1991.

[6] C. Backstrom and B. Nebel. Complexity results for SAST planning. In Proc 13th
Int’l Joint Conf. on Artif. Intell. (IJCAI-93), Chambery, France, Aug.—Sept. 1991.

71 T. Bylander. Complexity results for planning. In IJCATL'° pages 274-279.
Yy p y p g , pag

[8] T. Bylander. Complexity results for serial decomposability. In AAAL! pages
729-734.

9] K. Erol, D. S. Nau, and V. S. Subrahmanian. On the complexity of domain-
independent planning. In AAAL! pages 381-386.

[10] Proc 12th Int’l Joint Conf. on Artif. Intell. (IJCAI-91), Sydney, Australia, Aug.
1991.

[11] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science: Algorithms and Complexity, volume A,
chapter 2, pages 67-161. Elsevier, Amsterdam, 1990.

[12] P. Jonsson and C. Backstrom. Complexity results for state-variable planning under
mixed syntactical and structural restrictions. Research report, Department of
Computer and Information Science, Linképing University, 1994. In preparation.

[13] P. Jonsson and C. Backstrom. Tractable planning with state variables by exploiting
structural restrictions. In Proe. 12th (US) Nat’l Conf. on Artif. Intell. (AAAI-94),
Seattle, WA, USA, July-Aug. 1994. To appear.

[14] R. E. Korf. Planning as search: A quantitative approach. Artif. Intell., 33:65-88,
1987.

[15] F. Madler. Towards structural abstraction. In Proc. st Intl Conf. on Artif. Intell.
Planning Sys. (AIPS-92), pages 163-171, College Park, MD, USA, June 1992.

[16] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artif. Intell.,
5(2):115-135, 1974.

[17] D. E. Smith and M. A. Peot. Postponing threats in partial-order planning. In Proc.
11th (US) Nat’l Conf. on Artif Intell. (AAAI-93), pages 500-506, Washington, DC,
USA, July 1993.

