
COMPLEXITY RESULTS FOR STATE-VARIABLEPLANNING UNDER MIXED SYNTACTICAL ANDSTRUCTURAL RESTRICTIONSPETER JONSSONDepartment of Computer and Information ScienceLink�oping University, S-581 83 Link�oping, Swedenemail: petej@ida.liu.seandCHRISTER B�ACKSTR�OMDepartment of Computer and Information ScienceLink�oping University, S-581 83 Link�oping, Swedenemail: cba@ida.liu.seABSTRACTMost tractable planning problems reported in the literature have been de�ned bysyntactical restrictions. To better exploit the inherent structure of problems, however,it is probably necessary to study also structural restrictions on the state-transitiongraph. We present an almost exhaustive map of complexity results for state-variableplanning under all combinations of our previously analysed syntactical (P, U, B, S)and structural (I, A, O) restrictions, considering both optimal and non-optimal plangeneration.1 IntroductionMany planning problems in manufacturing and process industry are believed to behighly structured, thus allowing for e�cient planning if exploiting this structure. How-ever, a `blind' domain-independent planner will most likely go on tour in an exponentialsearch space even for tractable problems. Although heuristics may help a lot, they areoften not based on a su�ciently thorough understanding of the underlying problemstructure to guarantee e�ciency and correctness. Further, we believe that if havingsuch a deep understanding of the problem structure, it is better to use other methodsthan heuristics.Some tractability results have been reported in the literature for restrictions on thepropositional STRIPS formalism7, 9 and for restrictions on the related state-variableformalism SAS+.5, 6 These results are all based on essentially syntactic restrictions onthe set of operators. Syntactic restrictions are very appealing to study, since, typically,they are easy to de�ne and not very costly to test. However, to gain any deeper insightinto what makes planning problems hard and easy respectively probably require that

we study the structure of the problem, in particular the state-transition graph inducedby the operators. Putting explicit restrictions on the state-transition graph must bedone with great care, however, since this graph is typically of size exponential in thesize of the planning problem instance, making it extremely costly to test arbitraryproperties.In a recent paper13 we took an intermediate approach. Using the SAS+ formalismwe de�ned restrictions not on the whole state-transition graph, but on the domain-transition graph for each state variable in isolation. These can, hence, be tested inpolynomial time. Although not being a substitute for restrictions on the whole state-transition graph, many interesting and useful properties of this graph can be indirectlyexploited. In particular, we identi�ed three structural restrictions (I, A and O) whichtogether make planning tractable and properly generalize the tractable problems wehave previously de�ned using syntactical restrictions. We also presented a polynomial-time, sound and complete algorithm for generating optimal plans under the new struc-tural restrictions. Despite being structural, our restrictions can be tested in polynomialtime. Further, this approach would not be very useful for a planning formalism basedon propositional atoms, since the resulting two-vertex domain-transition graphs wouldnot allow for much structure to exploit.We have previously6 presented a map over the complexity of planning for all com-binations of the previously considered syntactical restrictions on SAS+ planning. Inthis paper, we repeat this endeavour, taking also the new structural restrictions intoaccount. We provide a map over the complexity of both optimal and non-optimal plangeneration for all combinations of the restrictions, considering also mixed structuraland syntactical restrictions. Hence, we augment our previous tractability result for theSAS�-IAO problem by also showing that it is a maximally tractable problem under therestrictions considered. (For reasons explained later in the paper, we actually study arestricted version of the SAS+ formalism.)2 The SAS+ and SAS� formalismsThe SAS+ formalism,4, 6 is a variant of propositional STRIPS, generalizing the atoms tomulti-valued state variables. Furthermore, what is called a precondition in STRIPS ishere divided into two conditions, the precondition and the prevailcondition. Variableswhich are required and changed by an operator go into the precondition and thosewhich remain unchanged, but are required, go into the prevailcondition. We brie
yrecapitulate the SAS+ formalism below, referring to B�ackstr�om and Nebel6 for furtherexplanation.De�nition 2.1 An instance of the SAS+ planning problem is given by a tuple � =hV;O; s0; s�i with components de�ned as follows:� V = fv1; : : : ; vmg is a set of state variables. Each variable v 2 V has anassociated domain Dv, which implicitly de�nes an extended domain D+v =Dv [fug, where u denotes the unde�ned value. Further, the total state spaceS = Dv1 � : : : � Dvm and the partial state space S+ = D+v1 � : : : � D+vm areimplicitly de�ned. We write s[v] to denote the value of the variable v in a state s.

� O is a set of operators of the form hb; e; fi, where b; e; f 2 S+ denote the pre-,post- and prevail-condition respectively. Each operator hb; e; fi 2 O is subjectto the following two restrictions(R1) for all v 2 V if b[v] 6= u, then b[v] 6= e[v] 6= u,(R2) for all v 2 V, e[v] = u or f[v] = u.� s0 2 S+ and s� 2 S+ denote the initial state and goal state respectively.Restriction R1 essentially says that a state variable can never be made unde�ned,once made de�ned by some operator. Restriction R2 says that the pre- and prevail-conditions of an operator must never de�ne the same variable.We write s v t if the state s is subsumed (or satis�ed) by state t, ie. if s[v] = u ors[v] = t[v]. We extend this notion to whole states, de�nings v t i� for all v 2 V; s[v] = u or s[v] = t[v]:If o = hb; e; fi is a SAS+ operator, we write b(o), e(o) and f(o) to denote b, e and frespectively. O� denotes the set of operator sequences over O and the members of O�are called plans. Given two states s; t 2 S+, we de�ne for all v 2 V,(s� t)[v] = (t[v] if t[v] 6= u;s[v] otherwise.The ternary relation Valid � O��S+�S+ is de�ned recursively s.t. for arbitrary op-erator sequence ho1; : : : ; oni 2 O� and arbitrary states s; t 2 S+, Valid(ho1; : : : ; oni; s; t)i� either1. n = 0 and t v s or2. n > 0, b(o1) v s, f(o1) v s and Valid (ho2; : : : ; oni; (s� e(o1)); t).A plan ho1; : : : ; oni 2 O� solves � i� Valid (ho1; : : : ; oni; s0; s�).Finally, we de�ne a restricted variant of the SAS+ formalism.De�nition 2.2 The SAS� problem is the SAS+ problem restricted to instanceshV;O; s0; s�i satisfying (1) s� 2 S and (2) for every operator o 2 O and variablev 2 V, if b(o)[v] = u, then e(o)[v] = u3 RestrictionsIn this section we de�ne the various restrictions on SAS+ planning to be analysed inthe next section. We have previously presented both the syntactical ones (P, U, Band S)5, 6 and three of the structural ones (I, A and O).13 In addition we present anew structural restriction, A+. Before presenting the restrictions we must de�ne someother concepts, however. Assume below that � = hV;O; s0; s�i is a SAS+ instance.

De�nition 3.1 An operator o 2 O is unary i� there is exactly one v 2 V s.t. e(o)[v] 6=u.De�nition 3.2For each v 2 V and O0 � O, the set RO0v of requestable values for O0 is de�nedas RO0v = ff(o)[v] j o 2 O0g [fb(o)[v]; e(o)[v] j o 2 O0 and o is non-unary g � fug.Obviously, ROv � Dv for all v 2 V. For each state variable domain, we further de�nethe graph of possible transitions for this domain, without taking the other domainsinto account, and the reachability graph for arbitrary subsets of the domain.De�nition 3.3 For each v 2 V, we de�ne the corresponding domain transitiongraph Gv as a directed labelled graph Gv = hD+v ;Tvi with vertex set D+v and arc setTv s.t. for all x; y 2 D+v and o 2 O, hx; o; yi 2 Tv i� b(o)[v] = x and e(o)[v] = y 6= u.Further, for each X � D+v we de�ne the reachability graph for X as a directed graphGXv = hX;TX i with vertex set X and arc set TX s.t. for all x; y 2 X hx; yi 2 TX i�there is a path from x to y in Gv.Alternatively, GXv can be viewed as the restriction to X � D+v of the transitiveclosure of Gv, but with unlabelled arcs. When speaking about a path in a domain-transition graph below, we will typically mean the sequence of labels, ie. operators,along this path. We say that a path in Gv is via a set X � D+v i� each member of Xis visited along the path, possibly as the initial or �nal vertex.De�nition 3.4 An operator o 2 O is irreplaceable wrt. a variable v 2 V i� removingan arc labelled with o in Gv splits some component of Gv into two components.In the remainder of this paper we will only be interested in SAS+ instances satisfyingcombinations of the following restrictions.De�nition 3.5 The SAS+ instance � is:(P) Post-unique i� for all o; o0 2 O, if e(o)[v] = e(o0)[v] 6= u for some v 2 V, theno = o0;(U) Unary i� for all o 2 O, o is unary;(B) Binary i� jDvj = 2 for all v 2 V,(S) Single-valued i� there exists some state s 2 S+ s.t. f(o) v s for all o 2 O.(I) Interference-safe i� every operator o 2 O is either unary or irreplaceable wrt.every v 2 V it a�ects.(A) Acyclic wrt. RO i� GROvv is acyclic for each v 2 V.(A+) Acyclic i� Gv is acyclic for each v 2 V.

(O) Prevail-order-preserving i� for each v 2 V, whenever there are two x; y 2 D+vs.t. Gv has a shortest path ho1; : : : ; omi from x to y via some set X � ROv andit has any path ho01; : : : ; o0ni from x to y via some set Y � ROv s.t. X � Y , thereexists some subsequence h: : : ; o0i1 ; : : : ; o0im ; : : :i s.t. f(ok) v f(o0ik) for 1 � k � m.From now on, we will consider the SAS� formalism instead of the SAS+ formal-ism. One of the reasons for doing so, is that SAS+ and SAS� are equally expressiveformalisms under polynomial reductions. (See B�ackstr�om3, 2 for a discussion of expres-siveness equivalences.) Another reason is that all previously described polynomial-timeSAS+ planners require that the problem instance satisfy both restriction I and A. Thismixes badly with actions having u as precondition. For example, restriction I preventsthe existence of a path in Gv from u to any state that is the precondition of a non-unary action and restriction A prevents the existence of two requestable values whichare both reachable from u.Many of the complexity results to be presented in the next section will carry overby inheritance, using the following subproblem relationships. (The proofs of theoremsare omitted or only sketched. All proofs can be found in Jonsson and B�ackstr�om.12)Lemma 3.6 The following subproblem relations hold:1. SAS�-A+ � SAS�-A 2. SAS�-U � SAS�-I3. SAS�-US � SAS�-A 4. SAS�-P � SAS�-O5. SAS�-PA � SAS�-IProof sketch: 1 and 2 are trivial. 3 follows from the fact that S and U in combinationimplies jROv j � 1 for all v 2 V. Both 4 and 5 follow from analysing how post-uniquenessrestricts the domain-transition graphs. 24 Complexity of plan generationIn this paper we will only discuss the plan generation problem (�nding a solution). Wewill not consider the plan existence problem (deciding whether a solution exists), sincewe are ultimately interested in actually generating a solution.De�nition 4.1 Given a SAS� instance �, we have the following planning problems:The plan generation problem (PG) �nds a solution for � or answer that no solutionexists. The bounded plan generation problem (BPG) takes an integer k � 0 asan additional parameter and �nds a solution for � of length k or shorter or answerthat no plan of length k or shorter exists for �.The complexity of the plan generation problems follows from the theorems in thissection, Lemma 3.6 and inheritance. The tractability results appear in previous pub-lications, as indicated below.Theorem 4.2 BPG is polynomial for SAS�-IAO.13Theorem 4.3 PG is polynomial for SAS�-US.6

For the intractability results we have to distinguish those problems that are inher-ently intractable, ie. can be proven to take exponential time, and those which areNP-equivalent, ie. intractable unless P = NP . Observe that we cannot use the termNP-complete since we consider the search problem (generating a solution) and not thedecision problem (whether a solution exists). A search problem is NP-easy if it can beTuring reduced to some NP-complete problem, NP-hard if some NP-complete problemcan be Turing reduced to it and NP-equivalent if it is both NP-easy and NP-hard.Loosely speaking, NP-equivalence is to search problems what NP-completeness is todecision problems. See Johnson11 for formal details.Theorem 4.4 Optimal solutions are always polynomially bounded for (1) SAS�-A and(2) SAS�-IS.Proof sketch: We observe that for SAS�-A each requestable value is visited at mostonce in an optimal solution and, hence, (1) holds. For SAS�-IS we observe that cyclesin a domain-transition graph can only contain unary operators. Hence, the proof of(2) is a simple extension to the proof that optimal SAS+-US plans are of polynomialsize.6 2Corollary 4.5 BPG is NP-easy for SAS�-A and SAS�-IS.Theorem 4.6 PG is NP-hard for SAS�-BSA+O.Proof sketch: Proof by reduction from EXACT COVER BY 3-SETS. 2Theorem 4.7 BPG is NP-hard for SAS�-UBSA+.Proof sketch: Proof by reduction from MINIMUM COVER. 2Theorem 4.8 PG is NP-hard for SAS�-BSIA+ and SAS�-UBA+.Proof sketch: Proof by reduction from 3-SATISFIABILITY. 2Theorem 4.9 Both SAS�-PUB and SAS�-PBS have instances with exponentially sizedoptimal solutions6 (and are thus inherently intractable).The complexity results are summarized in the lattice in Figure 1 which can beviewed as a three-dimensional cube. The �gure is to be interpreted in the followingway: The top-element of each diamond-shaped sublattice corresponds to a combinationof restrictions on the SAS� problem de�ned by selecting at most one restriction fromeach of the sets fA+; Ag, fP;Og and fU; Ig. These restrictions are marked along thethree axes in the �gure, where \-" denotes that neither of the two restrictions on an axisapplies. The other three points in each sublattice further specialize the top elementby adding one or both of the restrictions B and S, as shown in the enlarged sublattice.As an example of how to interpret the lattice, the SAS�-SAO problem is indicatedexplicitly in the �gure.

@@��@@�� @@��@@��
@@��@@��@@��@@��@@��@@��@@��@@�� @@��@@�� @@��@@��@@��@@��....................... @@��@@�� @@��@@��

@@��@@��@@��@@��@@��@@��@@��@@�� @@��@@�� @@��@@��@@��@@��....................... lll��@@��B SBS-@@��@@�� @@��@@��
@@��@@��@@��@@��@@��@@��@@��@@�� @@��@@�� @@��@@��@@��@@��.......................

tt tt tt tt t ttt t tt tt tt tt ttt tt tt tt tt tttt tt t tt tttt td d d d d d
td

�������� ������(((((hhhhhPO- A -A+ U I -
Inherently intractable.Polynomial for PG and BPGNP-equivalent for PG and BPGPolynomial for PG, NP-equivalent for BPG

SAS�-SAO

Figure 1: Complexity of SAS� plan generationThe lattice presents complexity results for both bounded and unbounded plan gen-eration as follow. Problems which are polynomial for both PG and BPG are markedwith a �lled dot, while those which are polynomial for PG but NP-equivalent forBPG are marked by an un�lled dot. The problems marked by an un�lled square areNP-equivalent for both PG and BPG and those marked with a �lled square are inher-ently intractable for both PG and BPG. Unmarked positions denote problems whosecomplexity is unknown at present.5 Discussion and conclusionsNot much research on structural restrictions on planning problems seems to be re-ported in the literature, although some exceptions can be found. Korf14 has de�nedsome subgoal dependency properties of planning problems modelled by state-variables,for instance serializability of subgoals. However, this property is PSPACE-completeto test,8 but does not guarantee tractable planning. M�adler15 extends Sacerdoti's16essentially syntactic state abstraction technique to structural abstraction, identifyingbottle-neck states (needle's eyes) in the state-transition graph for a state-variable for-malism. Smith and Peot17 use an operator graph for preprocessing planning problem

instances, identifying potential threats that can be safely postponed during planning|thus, pruning the search tree. The operator graph can be viewed as an abstraction ofthe full state-transition graph, containing all the information relevant to analysingthreats. In addition to this, we have previously presented a polynomial-time algorithmfor the SAS+-IAO problem13 and proven that this problem properly generalizes thepreviously studied syntactically de�ned tractable planning problems.In this paper, we have extended this result by analysing the complexity of plangeneration under all combinations of restrictions, considering both these new struc-tural restrictions and the previously analysed syntactical ones. By the results in thispaper, we can conclude that SAS�-IAO is maximally tractable under the structuralrestrictions I, A and O, thus being a structural counterpart of the result in B�ackstr�om& Nebel6 stating that SAS+-PUS is the maximal tractable problem under the syn-tactical restrictions P, U, B and S. Obviously, this result holds for the SAS+ case aswell. Mixing syntactical and structural restrictions yield two problems, SAS�-SIO andSAS�-PSI, whose complexity we have not managed to show. Both problems seemsto be of minor practical interest since the S restriction is very severe. Though, it isworth noticing that the SAS�-SIO class is incomparable wrt. expressive power withboth the SAS�-PUS and the SAS�-IAO class. We have also shown SAS�-US (and con-sequently SAS+-US) non-optimal plan generation cannot be further generalized withpreserved tractability by replacing US with any combination of our studied syntacticalor structural restrictions. By providing some additional hardness results, we have builta map over the complexity of planning for all combinations of both the syntactical andstructural restrictions, considering both optimal and non-optimal plan generation.6 AcknowledgementsThis research was sponsored by the Swedish Research Council for the EngineeringSciences (TFR) under grants Dnr. 92-143 and Dnr. 93-00291.References[1] Proc. 10th (US) Nat'l Conf. on Artif Intell. (AAAI-92), San Jos�e, CA, USA, July1992.[2] C. B�ackstr�om. Computational Complexity of Reasoning about Plans. Doctoraldissertation, Link�oping University, Link�oping, Sweden, June 1992.[3] C. B�ackstr�om. Equivalence and tractability results for SAS+ planning. In Proc.3rd Int'l Conf. on Principles of Knowledge Repr. and Reasoning (KR-92), pages126{137, Cambridge, MA, USA, Oct. 1992.[4] C. B�ackstr�om and I. Klein. Parallel non-binary planning in polynomial time. InIJCAI,10 pages 268{273.[5] C. B�ackstr�om and I. Klein. Planning in polynomial time: The SAS-PUBS class.Comput. Intell., 7(3):181{197, Aug. 1991.

[6] C. B�ackstr�om and B. Nebel. Complexity results for SAS+ planning. In Proc 13thInt'l Joint Conf. on Artif. Intell. (IJCAI-93), Chamber�y, France, Aug.{Sept. 1991.[7] T. Bylander. Complexity results for planning. In IJCAI,10 pages 274{279.[8] T. Bylander. Complexity results for serial decomposability. In AAAI,1 pages729{734.[9] K. Erol, D. S. Nau, and V. S. Subrahmanian. On the complexity of domain-independent planning. In AAAI,1 pages 381{386.[10] Proc 12th Int'l Joint Conf. on Artif. Intell. (IJCAI-91), Sydney, Australia, Aug.1991.[11] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Hand-book of Theoretical Computer Science: Algorithms and Complexity, volume A,chapter 2, pages 67{161. Elsevier, Amsterdam, 1990.[12] P. Jonsson and C. B�ackstr�om. Complexity results for state-variable planning undermixed syntactical and structural restrictions. Research report, Department ofComputer and Information Science, Link�oping University, 1994. In preparation.[13] P. Jonsson and C. B�ackstr�om. Tractable planning with state variables by exploitingstructural restrictions. In Proc. 12th (US) Nat'l Conf. on Artif. Intell. (AAAI-94),Seattle, WA, USA, July{Aug. 1994. To appear.[14] R. E. Korf. Planning as search: A quantitative approach. Artif. Intell., 33:65{88,1987.[15] F. M�adler. Towards structural abstraction. In Proc. 1st Int'l Conf. on Artif. Intell.Planning Sys. (AIPS-92), pages 163{171, College Park, MD, USA, June 1992.[16] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artif. Intell.,5(2):115{135, 1974.[17] D. E. Smith and M. A. Peot. Postponing threats in partial-order planning. In Proc.11th (US) Nat'l Conf. on Artif Intell. (AAAI-93), pages 500{506, Washington, DC,USA, July 1993.

