
Tractable Plan Existence does not Imply TractablePlan GenerationPeter Jonsson and Christer B�ackstr�omDepartment of Computer and Information ScienceLink�oping University, S-581 83 Link�oping, Swedenemail: fpetej,cbag@ida.liu.sephone: +46 13 282415, +46 13 282429fax: +46 13 282606AbstractWe present a class of planning instancessuch that the plan existence problem istractable while plan generation is prov-ably intractable for instances of this class.The class is de�ned by simple struc-tural restrictions, all of them testable inpolynomial-time. Furthermore, we showthat plan generation can be carried out insolution-polynomial time, that is, in timebounded by a polynomial in the size of theinput and the size of the generated solu-tion. For this class, we propose a provablysound and complete incremental planner,i.e. a planner that can usually outputan executable pre�x of the �nal plan be-fore it has generated the whole plan. Thisopens up some interesting possibilities forinterleaving plan generation with plan ex-ecution. IntroductionIt is well-known that planning is compu-tationally di�cult in the general case; planexistence for Strips-style formalisms is un-decidable in the �rst-order case (Chap-man 1987) and Pspace-complete for allcommonpropositional variants (B�ackstr�om1995; Bylander 1994). Most of these anal-yses have focussed on the plan existenceproblem and it seems to have been tacitlyassumed that plan existence is not substan-tially easier than plan generation. From apractitioner's point of view, however, thecomplexity of plan existence per se is oflimited interest since the ultimate goal is togenerate an executable plan, not just �ndout that one exists. It seems often to be as-sumed in the literature that the di�cultyof generating a plan is directly related tothe di�culty of �nding out whether a planexists. That is, plan generation is hard ifplan existence is hard and it is easy if planexistence is easy. We show in this paper

this need not at all be the case.We present a class of propositionalStrips planning problems, 3S, having theproperty that plan existence is tractablewhile plan generation is provably in-tractable. This is shown by �rst giving analgorithm that decides the plan existenceproblem in polynomial time and then show-ing that there exist instances in 3S with ex-ponentially sized minimal solution. Hence,there cannot exist any planner whatsoevergenerating a plan in polynomial time. Theclass is de�ned by simple structural restric-tions, all of them testable in polynomialtime.Even though we cannot generate plans inpolynomial time, we can probably do bet-ter than an ordinary planner by exploit-ing our knowledge about the structure of3S. We have presented elsewhere (Jonsson& B�ackstr�om 1995) a planning algorithmthat generates plans for 3S in solution-polynomial time, that is, in time boundedby a polynomial in the size of the instanceand in the size of the produced solution.This planner is incremental, i.e. it out-puts executable pre�xes of the �nal planbefore it has generated the whole plan. Ifeach plan step takes reasonably long timeto execute, we can assume that the plan-ner generates plan steps rapidly comparedto the time it takes to execute them. Forthis type of planners, it is important thatwe can tell in advance whether there ex-ists a plan or not. It would be disappoint-ing if the planner generated a large pre�x(which we perhaps would start to execute)and then suddenly told us that no solutionexists for the instance.Due to space limitations, we have omit-ted much detail and completely removedall proofs in this paper. A longer versionof the paper is available by anonymous ftp



at ftp.ida.liu.se@pub/labs/rkllab/people/petej/ewsp95.Basic FormalismWe will only consider propositional plan-ning, using the Propositional Strips withNegative Goals (PSN) formalism (Bylan-der 1994), which is equivalent to mostother propositional formalisms (B�ackstr�om1995). For full de�nitions, see (B�ackstr�om1995; Bylander 1994).De�nition 0.1 An instance of the PSNplanning problem is a quadruple � =hP;O; s0; hs�+; s��ii where� P is a �nite set of atoms;� O is a �nite set of operators ofthe form hpre+; pre�; add ; deli, wherepre+; pre� � P denote the positiveand negative precondition respec-tively, add ; del � P denote the positiveand negative postcondition (add anddelete list) respectively.� s0 � P denotes the initial state ands�+; s�� � P denote the positive andnegative goal respectively.RestrictionsWe begin by de�ning dependency graphs onplanning instances. Such a graph repre-sents for each atom p, which other atomswe will possibly have to add or delete inorder to add or delete p. The idea is notnew; A more restricted variant is used by(Knoblock 1994) in his Alpine system.De�nition 0.2 Let p 2 P and let Q �P. Then, A�ects(p) = fo 2 Ojp 2add(o) or p 2 del(o)g and A�ects(Q) =Sq2Q A�ects(q).De�nition 0.3 For a given PSN instance� = hP;O; s0; hs+� ; s�� ii, we de�ne the cor-responding dependency graphDG(�) asa directed labelled graph DG(�) = hP;Diwith vertex set P and arc set D such thatfor all p; q 2 P,� hp;+; qi 2 D i� there exists an operatoro 2 A�ects(q) such that p 2 pre+(o)� hp;�; qi 2 D i� there exists an operatoro 2 A�ects(q) such that p 2 pre�(o).� hp;�; qi 2 D i� there exists an operatoro 2 O such that p; q 2 add (o) [ del (o)and p 6= q .We continue by de�ning three classes ofatoms, namely static, irreversible and re-versible atoms. The intuition behind these

classes is that a static atom must not beadded or deleted, an irreversible atom canbe added or deleted but not both and areversible atom can be both added anddeleted.De�nition 0.4Let � = hP;O; s0; hs+� ; s�� ii be a PSN in-stance and let p 2 P. Then, p is static in� i� (1) p 62 s0 and there does not exist ano 2 O such that p 2 add (o) or (2) p 2 s0and there does not exist an o 2 O such thatp 2 del (o) or (3) p 62 s0 and p 2 s�� andthere does not exist an o 2 O such thatp 2 del(o) or (4) p 2 s0 and p 2 s+� andthere does not exist an o 2 O such thatp 2 add (o).An atom p 2 P is reversible in �i� for all o 2 O, whenever p 2 add(o)then there exists an o0 2 O such thatp 2 del(o) and vice versa. Moreover, pis symmetrically reversible in � i� pis reversible and for all o 2 O, wheneverp 2 add(o) then there exists an o0 2 Osuch that p 2 del(o), pre+(o) = pre+(o0)and pre�(o) = pre�(o0).Finally, an atom p 2 P is irreversiblein � i� it is not static in � and not re-versible in �.De�nition 0.5 Let G = hV;Ei be adirected labelled graph and let E0 =f(v; x; w); (w; x; v)j(v; x;w) 2 Eg. Then,for v; w 2 V , w is weakly reachablefrom v i� there exists a path from v tow in G = hV;E0i.De�nition 0.6 Let� = hP;O; s0; hs+� ; s�� ii be a PSN instance,DG(�) = hV;Ei and let p 2 P. Further-more, let Qp+ = fqj(p;+; q) 2 Eg, Qp� =fqj(p;�; q) 2 Eg, DGp+(�) = hV;E �f(p;+; x) 2 Ejx 2 V gi and DGp�(�) =hV;E � f(p;�; x) 2 Ejx 2 V gi. Then, wecan divide P into the following three sets:1. Pp+ = Qp+[fqjq is weakly reachable fromsome r 2 Qp+ in DGp+(�)g.2. Pp� = Qp�[fqjq is weakly reachable fromsome r 2 Qp� in DGp�(�)g.3. Pp0 = fq 2 �0jq is not weakly reachablefrom p in DG(�)g.De�nition 0.7Let � = hP;O; s0; hs+� ; s�� ii be a PSN in-stance. An atom p 2 P is splitting in �i� Pp+ and Pp� are disjoint.We can now de�ne the 3S class of planningproblems.



De�nition 0.8 3S is the set of PSN in-stances having acyclic dependency graphsand where every atom is static, symmetri-cally reversible or splitting.Polynomial-time PlanExistenceIn this section, we show that the plan ex-istence problem for instances in 3S is poly-nomial while the plan generation problemis provably intractable. We begin by de�n-ing some concepts used in the de�nition ofthe algorithm.De�nition 0.9Let � = hP;O; s0; hs+� ; s�� ii be a PSN in-stance, p 2 P and let s; s+; s� � P. Thens is compatible with hs+; s�i wrt p i� (1)p 2 s and p 62 s� or (2) p 62 s and p 62 s+.De�nition 0.10Let � = hP;O; s0; hs+� ; s�� ii be a PSN in-stance, o 2 O and P 0 � P. Then, o e P 0(the restriction of o to P 0) is the op-erator hadd(o) \ P 0; del(o) \ P0; pre+(o) \P 0; pre�(o) \ P0i. We de�ne e for a setO0 � O of operators in the following way:O0 eP 0 = foeP 0jo 2 O0g. Finally, we de-�ne e for a PSN problem instance � suchthat � e P 0 = hP0;O e P 0; s0 \ P0; hs+� \P 0; s�� \P 0iiDe�nition 0.11Let � = hP;O; s0; hs+� ; s�� ii be a PSN in-stance, O0 � O and p 2 P. Then,R+(p;O0) = fo 2 O0jp 62 pre+(o)g andR�(p;O0) = fo 2 O0jp 62 pre�(o)g. Wealso de�ne R+ and R� for PSN prob-lem instances the obvious way; namelyR+(p;�) = hP; R+(p;O); s0; hs+� ; s�� ii andR�(p;�) = hP; R�(p;O); s0; hs+� ; s�� ii.De�nition 0.12 Let G = hV;Ei be a di-rected (labelled) graph. A vertex v 2 V isminimal i� there does not exist any e 2 Eending in v.We claim that the PE-3S algorithm whichis presented in Figure 1 solves the plan exis-tence problem in polynomial time for prob-lem instances in 3S.Theorem 0.13Let � = hP;O; s0; hs+� ; s�� ii 2 3S. Then,If � has a solution or not can be decided inpolynomial time by PE-3S.Now, we turn our attention to the complex-ity of plan generation for instances in 3S.In the next theorem, we show that thereexists instances having exponentially sizedminimal solution in 3S.

Theorem 0.14 For all n > 0, there issome instance � = hP;O; s0; hs+� ; s�� ii 23S such that jPj = n and all minimal planssolving � are of length 2n � 1.So, plan existence is polynomial for in-stances in 3S while plan generation takesexponential time in the worst case.Incremental PlanningWe have seen that it is not possible togenerate plans in polynomial time for 3S.However, we can generate plans in solution-polynomial time.De�nition 0.15 An algorithm runs insolution-polynomial time i� its runningtime is bounded above by some polynomialin the size of the input and in the size ofthe generated solution.Theorem 0.16 For 3S there exists a plan-ning algorithm PPG-3S with the followingproperties:� It is sound, complete and runs insolution-polynomial time.� It produces executable pre�xes of the �nalplan before it has generated the completeplan.Having a solution-polynomial algorithm isprobably as good as we can hope for whendealing with instances having exponen-tially sized plans. It is important to noticethat the planner is polynomial in the lengthof the generated plan, not in the shortestpossible plan. Hence, it is possible that thealgorithm can take exponential time whensolving an instance � though it is possibleto solve � in polynomial time with someother algorithm.We claim that this planner is e�cient inpractice. If each plan step takes a reason-able amount time to execute, we can as-sume that the planner generates plan stepsrapidly compared to the time it takes to ex-ecute them. Hence, the time spent on plan-ning is negligible. Note that, for this typeof planners, it is important that we cantell in advance whether there exists a planor not. It would be disappointing if theplanner generated a large pre�x (which weperhaps would start to execute) and thensuddenly told us that no solution exists forthe instance. Executing a pre�x of a non-solution is not advisable, since we maywishto try planning for some alternative goal ifthere is no solution for the �rst one. How-ever, executing the invalid pre�x may pre-vent us from reaching the alternative goal.



1 function PE-3S(�) : boolean (* � = hP;O; s0; hs+� ; s�� ii *)2 if P = ? then return true3 else4 choose an atom p that is minimal in DG(�)5 if p is static then6 if s0 is not compatible with hs+� ; s�� i wrt. p7 then return false8 elsif p 62 s0 then return PE-3S(R+(p;�) e (P � fpg))9 else return PE-3S(R�(p;�) e (P � fpg))10 else return PE-3S(� e (P � fpg))Figure 1: The PE-3S algorithm.DiscussionThe class 3S puts in doubt whether it isrelevant to concentrate research into plan-ning complexity on plan existence. As isdemonstrated in this paper, there might bea considerable gap in the hardness betweenplan existence and plan generation. Sincewe are usually interested in actually gener-ating a plan, it seems reasonable to concen-trate on the complexity of plan generationinstead.The idea of incremental planning is notnew (see, for example, (Ambros-Ingerson &Steel 1988)) but the problem seems to havebeen little studied in the literature. Thisis somewhat surprising, since we believeincremental planning to be an interestingalternative to replanning in domains withuncertainty. If failures are frequent, ac-tions may often fail already when executingthe �rst pre�x. We can then start replan-ning immediately, but need not wait for awhole new plan to be generated|only the�rst pre�x|until we can start executingagain. However, much work remains be-fore incremental planners are applicable inpractice. Typical problems to tackle rangesfrom the worst- and average-case time ofproducing the �rst pre�x to the quality ofthe produced plan, for example, in terms ofits length. An important question is if it ispossible to determine upper and/or lowerbounds on the length of a plan before gen-erating it. ConclusionsWe have presented a class of planning in-stances such that the plan existence prob-lem is polynomial while plan generation isprovably intractable for instances of thisclass. The class is de�ned by simple struc-tural restrictions, allowing for polynomial-time membership testing. Furthermore,we have shown that plan generation can

be carried out in solution-polynomial time,that is, in time bounded by a polynomialin the size of the input and the size ofthe generated solution. We have furtherproposed a solution-polynomial and incre-mental planner for the class that is prov-ably sound and complete. This opens upsome interesting possibilities for interleav-ing plan generation with plan execution.ReferencesAmbros-Ingerson, J. A., and Steel, S.1988. Integrating planning, execution andmonitoring. In Proceedings of the 7th(US) National Conference on Arti�cialIntelligence (AAAI-88), 83{88. St. Paul,MN, USA: American Association for Ar-ti�cial Intelligence.B�ackstr�om, C. 1995. Expressive equiv-alence of planning formalisms. Arti�cialIntelligence 76(1{2):17{34.ARTINT 1234.Bylander, T. 1994. The computationalcomplexity of propositional STRIPS plan-ning. Arti�cial Intelligence 69:165{204.Chapman, D. 1987. Planning for conjunc-tive goals. Arti�cial Intelligence 32:333{377.Jonsson, P., and B�ackstr�om, C. 1995.Incremental planning. In Ghallab, M.,and Milani, A., eds., New Directions inAI Planning: EWSP'95|3rd EuropeanWorkshop on Planning, Frontiers in AIand Applications, 79{90. Assisi, Italy:IOS Press.Knoblock, C. A. 1994. Automatically gen-erating abstractions for planning. Arti�-cial Intelligence 68:243{302.


