Tractable Plan Existence does not Imply Tractable
Plan Generation

Peter Jonsson and Christer Backstrom
Department of Computer and Information Science
Linkoping University, S-581 83 Linkoping, Sweden

email: {petej,cha}@ida.liu.se
phone: +46 13 282415, +46 13 282429
fax: +46 13 282606

Abstract

We present a class of planning instances
such that the plan existence problem is
tractable while plan generation is prov-
ably intractable for instances of this class.
The class is defined by simple struc-
tural restrictions, all of them testable in
polynomial-time. Furthermore, we show
that plan generation can be carried out in
solution-polynomial time, that is, in time
bounded by a polynomial in the size of the
input and the size of the generated solu-
tion. For this class, we propose a provably
sound and complete incremental planner,
t.e. a planner that can usually output
an executable prefix of the final plan be-
fore it has generated the whole plan. This
opens up some interesting possibilities for
interleaving plan generation with plan ex-
ecution.

Introduction

It is well-known that planning is compu-
tationally difficult in the general case; plan
existence for STRIPS-style formalismsis un-
decidable in the first-order case (Chap-
man 1987) and PspacE-complete for all
common propositional variants (Backstrom
1995; Bylander 1994). Most of these anal-
yses have focussed on the plan existence
problem and it seems to have been tacitly
assumed that plan existence i1s not substan-
tially easier than plan generation. From a
practitioner’s point of view, however, the
complexity of plan existence per se is of
limited interest since the ultimate goal is to
generate an executable plan, not just find
out that one exists. It seems often to be as-
sumed in the literature that the difficulty
of generating a plan is directly related to
the difficulty of finding out whether a plan
exists. That is, plan generation is hard if
plan existence is hard and it is easy if plan
existence is easy. We show in this paper

this need not at all be the case.

We present a class of propositional
STRIPS planning problems, 3S, having the
property that plan existence is tractable
while plan generation is provably in-
tractable. This is shown by first giving an
algorithm that decides the plan existence
problem in polynomial time and then show-
ing that there exist instances in 3S with ex-
ponentially sized minimal solution. Hence,
there cannot exist any planner whatsoever
generating a plan in polynomial time. The
class is defined by simple structural restric-
tions, all of them testable in polynomial
time.

Even though we cannot generate plansin
polynomial time, we can probably do bet-
ter than an ordinary planner by exploit-
ing our knowledge about the structure of
3S5. We have presented elsewhere (Jonsson
& Backstrom 1995) a planning algorithm
that generates plans for 3S in solution-
polynomaial time, that 1s, in time bounded
by a polynomial in the size of the instance
and in the size of the produced solution.
This planner is incremental, t.e. it out-
puts executable prefixes of the final plan
before it has generated the whole plan. If
each plan step takes reasonably long time
to execute, we can assume that the plan-
ner generates plan steps rapidly compared
to the time it takes to execute them. For
this type of planners, it is important that
we can tell in advance whether there ex-
ists a plan or not. It would be disappoint-
ing if the planner generated a large prefix
(which we perhaps would start to execute)
and then suddenly told us that no solution
exists for the instance.

Due to space limitations, we have omit-
ted much detail and completely removed
all proofs in this paper. A longer version
of the paper is available by anonymous ftp

at ftp.ida.liu.se@pub/labs/rkllab
/people/petej/eusp95.

Basic Formalism

We will only consider propositional plan-
ning, using the Propositional STRIPS with
Negative Goals (PSN) formalism (Bylan-
der 1994), which is equivalent to most
other propositional formalisms (Backstrom
1995). For full definitions, see (Backstrom
1995; Bylander 1994).

Definition 0.1 An instance of the PSN
planning problem is a quadruple 11 =
(P,0,s0,(s5:F,5.7)) where

e P is a finite set of atoms;

e O s a finite set of operators of
the form (pre™ pre™, add,del), where
pret pre” C P denote the positive
and mnegative precondition respec-
tively, add, del C P denote the positive
and negative postcondition (add and
delete list) respectively.

e s C P denotes the initial state and
5.T,5.~ C P denote the positive and
negative goal respectively.

Restrictions

We begin by defining dependency graphson
planning instances. Such a graph repre-
sents for each atom p, which other atoms
we will possibly have to add or delete in
order to add or delete p. The idea 1s not
new; A more restricted variant is used by
(Knoblock 1994) in his ALPINE system.

Definition 0.2 Let p € P and let () C
P. Then, Affects(p) = {o € Olp
add(o) or p € del(0o)} and Affects(Q)

quQ Affects(q).

Definition 0.3 For a given PSN instance
I =(P,0,so,(sF,s5)), we define the cor-
responding dependency graph DG(IT) as
a directed labelled graph DG(I1) = (P, D)
with vertex set P and arc set D such that
for allp,q €P,

m

o (p,+,q) € D iff there exists an operator
o € Affects(q) such that p € pret(o)

o (p,—,q) € D iff there exists an operator
o € Affects(q) such that p € pre= (o).

o (p,~,q) € D iff there exists an operator
o € O such that p,q € add(o) U del(o)

and p#£q .

We continue by defining three classes of
atoms, namely static, irreversible and re-
verstble atoms. The intuition behind these

classes 1s that a static atom must not be
added or deleted, an irreversible atom can
be added or deleted but not both and a
reversible atom can be both added and

deleted.

Definition 0.4

Let T = (P, 0, s0,(sF,s;)) be a PSN in-
stance and let p € P. Then, p is static in
I iff (1) p & so and there does not exist an
o € O such that p € add(o) or (2) p € sy
and there does not exist an o € O such that
p € del(o) or (3) p & so and p € s, and
there does not exist an o € O such that
p € del(o) or (4) p € so and p € st and
there does not exist an o € O such that
p € add(o).

An atom p € P is reversible in II
iff for all 0 € O, whenever p € add(o)
then there erxists an o € O such that
p € del(o) and vice versa. Moreover, p
15 symmetrically reversible in II iff p
1s reversible and for all o € O, whenever
p € add(o) then there exists an o' € O
such that p € del(o), pret(o) = pret (o)
and pre= (o) = pre~ (o).

Finally, an atom p € P is irreversible
in II iff i is not static in II and not re-
verstble in 11.

Definition 0.5 Let G = (V,E) be «a
directed labelled graph and let E' =
{(v,2,w), (w,z,v)|(v,z,w) € E}. Then,
for v,w € V, w is weakly reachable
from v ff there exists a path from v to

win G=(V,E").

Definition 0.6 Let

I = (P,0,sq,(st,s5)) be a PSN instance,

DG() = (V,E) and let p € P. Further-

more, let Q4 = {q|(p,+,q) € E}, Q¥ =

{al(p,— @) € E}, DGL(I) = (V. E —

{(p,+,z) € E|lz € V}) and DG.(II) =

(V,E—{(p,—,x) € Ele € V}). Then, we

can dwide P into the following three sets:

1. PL = Q% U{qlq is weakly reachable from
some r € QY in DG (I)}.

2. PY = Q¥ U{qlq is weakly reachable from
some r € Q. in DG (II)}.

3. PE = {q € I|q is not weakly reachable
from p in DG(IT)}.

Definition 0.7

Let T = (P, 0, s0,(sF,s;)) be a PSN in-

stance. An atom p € P is splitting in II

iff PL and P are disjoint.

We can now define the 3S class of planning
problems.

Definition 0.8 3S is the set of PSN in-
stances having acyclic dependency graphs
and where every atom 1is static, symmetri-
cally reversible or splitting.

Polynomial-time Plan
Existence

In this section, we show that the plan ex-
istence problem for instances in 3S is poly-
nomial while the plan generation problem
is provably intractable. We begin by defin-
ing some concepts used in the definition of
the algorithm.

Definition 0.9

Let T = (P,0, 50, (sF,s7)) be a PSN in-
stance, p € P and let 5,57 ,57 CP. Then
s is compatible with (st,s7) wrt p iff (1)
pEsandpds™ or (2)pgsandpdst.
Definition 0.10

Let I = (P, 0, s0,(st,s7)) be a PSN in-
stance, o € @ and P’ C P. Then, oA P’
(the restriction of o to P’) is the op-
erator {add(o) NP’ del(o) NP’ pret(o) N
Ppre (o) NPy, We define m for a set
O C O of operators in the following way:
O'AP ={onP'loe O}. Finally, we de-
fine A for a PSN problem wnstance 1l such
that TP = (PL,OAP so NP, (sf N
Pl so 0PY)

Definition 0.11

Let T = (P,0,s0,(sF,s7)) be a PSN in-
stance, @' C O and p € P. Then,
RY(p,0") = {o € O'|p & pret(o)} and
R=(p,0'") = {o € O'|p & pre”(0)}. We
also define Rt and R~ for PSN prob-
lem instances the obvious way;, namely
R*(p, M) = (P, R*(p, 0), 50, (sF,57)) and
R™(p,I1) = (P, R~ (p,0), 50, (s, 57))-

Definition 0.12 Let G = (V, E) be a di-
rected (labelled) graph. A vertex v € V is
minimal iff there does not exist any e € E
ending in v.

We claim that the PE-3S algorithm which
is presented in Figure 1 solves the plan exis-
tence problem in polynomial time for prob-
lem instances in 3S.

Theorem 0.13

Let T = (P,0,s0,(sF,57)) € 3S. Then,
If I has a solution or not can be decided in
polynomaal teme by PE-3S.

Now, we turn our attention to the complex-
ity of plan generation for instances in 3S.
In the next theorem, we show that there
exists instances having exponentially sized
minimal solution in 3S.

Theorem 0.14 For all n > 0, there s
some instance 11 = (P, 0, so, (s, s7)) €
3S such that |P| = n and all minimal plans
solving 11 are of length 27 — 1.

So, plan existence i1s polynomial for in-
stances in 3S while plan generation takes
exponential time in the worst case.

Incremental Planning

We have seen that it is not possible to
generate plans in polynomial time for 3S.
However, we can generate plans in solution-
polynomaial time.

Definition 0.15 An algorithm runs in
solution-polynomial time ff its running
time 1s bounded above by some polynomial
mn the size of the input and in the size of
the generated solution.

Theorem 0.16 For 3S there exists a plan-
ning algorithm PPG-3S with the following
properties:

e It is sound, complete and runs n
solution-polynomaial time.

e [t produces executable prefizes of the final
plan before 1t has generated the complete
plan.

Having a solution-polynomial algorithm is
probably as good as we can hope for when
dealing with instances having exponen-
tially sized plans. It is important to notice
that the planner is polynomial in the length
of the generated plan, not in the shortest
possible plan. Hence, it is possible that the
algorithm can take exponential time when
solving an instance Il though it is possible
to solve II in polynomial time with some
other algorithm.

We claim that this planner is efficient in
practice. If each plan step takes a reason-
able amount time to execute, we can as-
sume that the planner generates plan steps
rapidly compared to the time it takes to ex-
ecute them. Hence, the time spent on plan-
ning is negligible. Note that, for this type
of planners, it is important that we can
tell in advance whether there exists a plan
or not. It would be disappointing if the
planner generated a large prefix (which we
perhaps would start to execute) and then
suddenly told us that no solution exists for
the instance. Executing a prefix of a non-
solution i1s not advisable, since we may wish
to try planning for some alternative goal if
there 1s no solution for the first one. How-
ever, executing the invalid prefix may pre-
vent us from reaching the alternative goal.

1 function PE-3S(IT) : boolean (* I = (P, O, sq, (s, s7)) *)
2 if P = then return true
3 else
4 choose an atom p that is minimal in DG(IT)
5 if p is static then
6 if sq is not compatible with (sf,s7) wrt. p
7 then return false
8 elsif p ¢ so then return PE-3S(R*(p, 1) m (P — {p}))
9 else return PE-3S(R™ (p,I) A (P — {p}))
10 else return PE-3S(ITm (P — {p}))

Figure 1: The PE-3S algorithm.

Discussion

The class 3S puts in doubt whether it is
relevant to concentrate research into plan-
ning complexity on plan existence. As is
demonstrated in this paper, there might be
a considerable gap in the hardness between
plan existence and plan generation. Since
we are usually interested in actually gener-
ating a plan, it seems reasonable to concen-
trate on the complexity of plan generation
instead.

The idea of incremental planning is not
new (see, for example, (Ambros-Ingerson &
Steel 1988)) but the problem seems to have
been little studied in the literature. This
is somewhat surprising, since we believe
incremental planning to be an interesting
alternative to replanning in domains with
uncertainty. If failures are frequent, ac-
tions may often fail already when executing
the first prefix. We can then start replan-
ning immediately, but need not wait for a
whole new plan to be generated—only the
first prefix—until we can start executing
again. However, much work remains be-
fore incremental planners are applicable in
practice. Typical problems to tackle ranges
from the worst- and average-case time of
producing the first prefix to the quality of
the produced plan, for example, in terms of
its length. An important question is if it 1s
possible to determine upper and/or lower
bounds on the length of a plan before gen-
erating it.

Conclusions

We have presented a class of planning in-
stances such that the plan existence prob-
lem is polynomial while plan generation is
provably intractable for instances of this
class. The class 1s defined by simple struc-
tural restrictions, allowing for polynomial-
time membership testing. Furthermore,
we have shown that plan generation can

be carried out in solution-polynomial time,
that 1s, in time bounded by a polynomial
in the size of the input and the size of
the generated solution. We have further
proposed a solution-polynomial and incre-
mental planner for the class that is prov-
ably sound and complete. This opens up
some interesting possibilities for interleav-
ing plan generation with plan execution.

References

Ambros-Ingerson, J. A., and Steel, S.
1988. Integrating planning, execution and
monitoring. In Proceedings of the 7th
(US) National Conference on Artificial
Intelligence (AAAI-88), 83-88. St. Paul,
MN, USA: American Association for Ar-
tificial Intelligence.

Backstrom, C. 1995. Expressive equiv-
alence of planning formalisms. Artificial
Intelligence 76(1-2):17-34.
ARTINT 1234.

Bylander, T. 1994. The computational
complexity of propositional STRIPS plan-
ning. Artificial Intelligence 69:165-204.

Chapman, D. 1987. Planning for conjunc-
tive goals. Artificial Intelligence 32:333—
377.

Jonsson, P., and Backstrom, C. 1995.
Incremental planning. In Ghallab, M.,
and Milani, A., eds., New Directions n
Al Planning: EWSP’95—3rd FEuropean
Workshop on Planning, Frontiers in Al
and Applications, 79-90. Assisi, Italy:
IOS Press.

Knoblock, C. A. 1994. Automatically gen-
erating abstractions for planning. Artifi-
ctal Intelligence 68:243-302.

