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Abstract

Several algebras have been proposed for reasoning about qualita-
tive constraints over the time line. One of these algebras is Vilain's
point-interval algebra, which can relate time points with time inter-
vals. Apart from being a stand-alone qualitative algebra, it is also used
as a subalgebra in Meiri's approach to temporal reasoning, which com-
bines reasoning about metric and qualitative temporal constraints over
both time points and time intervals. While the satsi�ability problem
for the full point-interval algebra is known to be NP-complete, not
much is known about its 4 294 967 296 subclasses. This article com-
pletely determines the computational complexity of these subclasses
and it identi�es all of the maximal tractable subalgebras|�ve in total.

Keywords: Temporal reasoning, constraint satisfaction, point-interval alge-
bra, algorithms, complexity.
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1 Introduction

Reasoning about temporal constraints is an important task in many areas
of AI and elsewhere, such as planning [2], natural language processing [16],
time serialization in archeology [8] etc. In most applications, knowledge of
temporal constraints is expressed in terms of collections of relations between
time intervals or time points. Often we are only interested in qualitative
relations, i.e., the relative ordering of time points but not their exact occur-
rences in time. There are two archetypical examples of qualitative temporal
reasoning: Allen's algebra (A) [1] for reasoning about time intervals and the
point algebra (PA) [18] for reasoning about time points.

Attempts have been made to integrate reasoning about time intervals and
time points. Meiri's [13] approach to temporal reasoning makes it possible to
reason about time points and time intervals with respect to both qualitative
and metric time. This framework can be restricted to qualitative time and
the resulting fragment is known as the qualitative algebra (QA). In QA, a
qualitative constraint between two objects Oi and Oj (each may be a point
or an interval), is a disjunction of the form (Oir1Oj) _ : : : _ (OirkOj) where
each one of the ri's is a basic relation that may exist between two objects.
There are three types of basic relations:

1. Interval-interval relations that can hold between pairs of intervals. Such
relations correspond to Allen's algebra.

2. Point-point relations that can hold between pairs of points. These
relations correspond to the point algebra.

3. Point-interval and interval-point relations that can hold between a
point and an interval and vice-versa. These relations were introduced
by Vilain [18]. The point-interval and interval-point relations are sym-
metric so we will only consider the point-interval relations in the sequel.

The satis�ability problem for the point algebra is known to be tractable
[19] and the satis�ability problem for Allen's algebra is NP-complete [19].
However, a large number of tractable subclasses of Allen's algebra has been
reported in the literature [6, 8, 15, 17]. Clearly, QA su�ers from computa-
tional di�culties since it subsumes the Allen algebra. Even worse, Meiri [13]
shows that the satis�ability problem is NP-complete even for point-interval
relations. Besides this negative result, not much is known about the com-
putational properties of subclasses of the point-interval algebra. This is an
unfortunate situation if we want to �nd tractable subclasses of the qualitative
algebra since the point-interval and interval-point algebras provide the glue
that ties the world of time points together with the world of time intervals.
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The main result of this article is a complete classi�cation of all subclasses
of the point-interval algebra with respect to tractability. The classi�cation re-
veals that there exists �ve maximal tractable1 subclasses of the point-interval
algebra, denoted V23, V20

s
, V20

f
, V17

s
and V17

f
where the superscripts tell how

many relations there are in the subclasses. The classi�cation makes it pos-
sible to determine whether a given subclass is tractable or not by a simple
test that can be easily carried out by hand or automatically. We have thus
gained a clear picture of the borderline between tractability and intractabil-
ity in the point-interval algebra. In this process, we have also taken a small
step towards a deeper understanding of the qualitative algebra.

The tractable subclasses roughly fall into two classes: three of them (V23,
V20
s

and V20
f

) are very closely related to the aforementioned point algebra.
The subclass V23 consists of the point-interval relations that can be directly
expressed as point algebra formulae over the endpoints. One should note
that this is the only tractable subclass that contain all basic relations. Con-
sequently, V23 resembles the ORD-Horn algebra [15] which is the unique
maximal tractable subclass of Allen's interval algebra containing all basic re-
lations. The subclasses V20

s
and V20

f
can be transformed to the point algebra

since they exhibit a special property: any solution can be transformed to a
new solution where the intervals are of equal and arbitrarily small length.
These classes contains only three basic relations each but they both contain
the interesting (b a) relation which states that a point comes either before
or after an interval. This relation is not a member of V23. The remaining
two subclasses (V17

s
and V17

f
) are trivial in the sense that an instance of these

problems is satis�able i� the empty relation (which is always unsatis�able)
does not appear in the instance.

A few words on methodology seem appropriate at this point. The proof
of the main theorem relies on an extensive case analysis performed by a
computer. The number of cases considered in this analysis was approximately
105. Naturally, such an analysis cannot be reproduced in an article or be
veri�ed manually. To allow for the veri�cation of our results, we include a
description of the program used in the analysis. Furthermore, the programs
used can be obtained from the authors.

The rest of this article is organized as follows: Section 2 de�nes the
point-interval algebra and some auxiliary concepts. Section 3 contains the
classi�cation of subclasses. Section 4 is a brief discussion of the results and
Section 5 concludes the article. Most of the proofs are postponed to the
appendix. This article is an extended and corrected version of an earlier
paper [10].

1A maximal tractable subclass X has the following property: the satis�ability problem
is tractable for X but intractable for all strict supersets of X.

3



2 Point-Interval Relations

The point-interval algebra is based on the notions of points, intervals and
binary relations on these. A point p is a variable interpreted over the set of
real numbers R. An interval I is represented by a pair hI�; I+i satisfying
I� < I+ where I� and I+ are interpreted over R. We assume that we
have a �xed universe of variable names for points and intervals. Then, a
V-interpretation is a function = that maps point variables to R and interval
variables to R � R and satis�es the previously stated restrictions. We will
frequently extend the notation by denoting the �rst component of =(I) by
=(I�) and the second by =(I+).

Given an interpreted point and an interpreted interval, their relative posi-
tions can be described by exactly one of the elements of the set B of �ve basic
point-interval relations where each basic relation can be de�ned in terms of
its endpoint relations (see Table 1). A formula of the form pBI where p is a
point, I an interval and B 2 B, is said to be satis�ed by a V-interpretation i�
the interpretation of the points and intervals satis�es the endpoint relations
speci�ed in Table 1.

To express inde�nite information, unions of the basic relations are used
which lead to 25 distinct binary point-interval relations. Naturally, a set of
basic relations is to be interpreted as a disjunction of its member relations.
A point-interval relation is written as a list of its members, e.g., (b d a). The
set of all point-interval relations 2B is denoted by V. Relations of special
interest are the null relation ; (also denoted by ?) and the universal relation
B (also denoted >).

A formula of the form p(B1; : : : ; Bn)I is called a point-interval formula.
Such a formula is satis�ed by a V-interpretation = i� pBiI is satis�ed by =
for some i, 1 � i � n. A set � of point-interval formulae is said to be V-
satis�able i� there exists an V-interpretation = that satis�es every formula of
�. Such a satisfying V-interpretation is called a V-model of �. The decision
problem we will study is the following:

Instance: A �nite set � of point-interval formulae.
Question: Does there exist a V-model of �?

We denote this problem V-SAT. In the following, we often consider restricted
versions of V-SAT where relations used in the formulae in � are only from
a subset S of V. In this case we say that � is a set of formulae over S
and use a parameter in the problem description to denote the subclass under
consideration, e.g., V-SAT(S).

Meiri's extended de�nition of the point-interval algebra consists of V
equipped with the two binary operations intersection and composition. How-
ever, such a de�nition does not constitute an algebra because it is not closed
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Basic relation Symbol Example Endpoint relation

p before I b p p < I�

III

p starts I s p p = I�

III

p during I d p I� < p < I+

III

p �nishes I f p p = I+

III

p after I a p p > I+

III

Table 1: The �ve basic relations of the V-algebra. The endpoint relation
I� < I+ that is required for all relations has been omitted.

under composition. We replace the composition operation with an operation
on V which we will refer to as 3-composition.

De�nition 2.1 Let B = fb; s; d; f; ag. The point-interval algebra consists
of the set V = 2B and the operations binary intersection (denoted by \) and
ternary 3-composition (denoted by 
). They are de�ned as follows:

8p; I : p(R \ S)I , pRI ^ pSI;

8p; I : p(R 
 S 
 T )I , 9q; J : (qRI ^ qSJ ^ pTJ):

It can easily be veri�ed that

R 
 S 
 T =
[
fB 
B 0 
B 00jB 2 R;B0 2 S;B00 2 Tg;

i.e., 3-composition is the union of the component-wise 3-composition of ba-
sic relations. In Table 2, we present the tables for 3-composition of basic
relations. We can see that, for instance, (f)
 (b)
 (s) = (a).

Next, we introduce a closure operation CV. This operation will simplify
some of the following proofs.

De�nition 2.2 Let S � V. Then we denote by CV(S) the V-closure of S,
de�ned as the least subset of V containing S which is closed under intersection
and 3-composition.

Given a set S � V, we can easily compute CV(S) by de�ning a function
	 : 2V ! 2V such that

	(X) = X [ fx \ y j x; y 2 Xg [ fx
 y 
 z j x; y; z 2 Xg:
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R = b

b s d f a

b (b s d f a) (b s d f a) (b s d f a) (b s d f a) (b s d f a)
s (b) (b) (b s d f a) (b s d f a) (b s d f a)
d (b) (b) (b s d f a) (b s d f a) (b s d f a)
f (b) (b) (b) (b) (b s d f a)
a (b) (b) (b) (b) (b s d f a)

R = s

b s d f a

b (b s d f a) (d f a) (d f a) (d f a) (d f a)
s (b) (s) (d f a) (d f a) (d f a)
d (b) (b) (b s d f a) (d f a) (d f a)
f (b) (b) (b) (s) (d f a)
a (b) (b) (b) (b) (b s d f a)

R = d

b s d f a

b (b s d f a) (d f a) (d f a) (d f a) (d f a)
s (b s d) (d) (d f a) (d f a) (d f a)
d (b s d) (b s d) (b s d f a) (d f a) (d f a)
f (b s d) (b s d) (b s d) (d) (d f a)
a (b s d) (b s d) (b s d) (b s d) (b s d f a)

R = f

b s d f a

b (b s d f a) (a) (a) (a) (a)
s (b s d) (f) (a) (a) (a)
d (b s d) (b s d) (b s d f a) (a) (a)
f (b s d) (b s d) (b s d) (f) (a)
a (b s d) (b s d) (b s d) (b s d) (b s d f a)

R = a

b s d f a

b (b s d f a) (a) (a) (a) (a)
s (b s d f a) (a) (a) (a) (a)
d (b s d f a) (b s d f a) (b s d f a) (a) (a)
f (b s d f a) (b s d f a) (b s d f a) (a) (a)
a (b s d f a) (b s d f a) (b s d f a) (b s d f a) (b s d f a)

Table 2: 3-composition in the V-algebra. Each subtable represents one of
the �ve possible choices of the R relation. Within each subtable, the vertical
axis represents the S relation and the horizontal axis the T relation.

6



Since 	i(S) � 	i+1(S) for all i and jVj = 32, there exists a k � 32 such
that 	k(S) = 	k+1(S). Clearly, 	k(S) = CV(S). A program for computing
V-closures can be obtained from the authors.

The proof of the following result is omitted since proofs of analogous
results can be found in Nebel and B�urckert [15].

Lemma 2.3 Let S � V. V-SAT(S) is in P i� V-SAT(CV(S)) is in P. V-
SAT(S) is NP-hard i� V-SAT(CV(S)) is NP-hard.

It should be noted that these results would not hold if the V-SAT problem
were de�ned somewhat di�erently. Temporal reasoning problems are some-
times de�ned such that each pair of objects (e.g., intervals) has to be related
by some relation di�erent from the universal relation > (cf. Golumbic and
Shamir [8]). If V-SAT were de�ned in this way, then Lemma 2.3 would not
be valid since new points and intervals are added in the reduction but certain
combinations of them are not related to each other. By our way of de�ning
V-SAT, this is not a problem since we always allow points and intervals to
be unrelated.

We continue by de�ning a duality operation on V.

De�nition 2.4 Let R 2 V. De�ne DV(R) as the set f�(r) j r 2 Rg where
�(r) is de�ned as follows:

� �(b) = a;

� �(s) = f;

� �(d) = d;

� �(f) = s;

� �(a) = b.

Let S � V. De�ne DV(S) as the set fDV(R) jR 2 Sg.

Lemma 2.5 Let S � V. There is a polynomial-time reduction from V-
SAT(DV(S)) to to V-SAT(S) and vice versa.

Proof: We show the reduction from V-SAT(DV(S)) to V-SAT(S); the other
reduction is analogous. Let � be an arbitrary instance of the V-SAT(DV(S))
problem. Let �0 = fpDV(R)I j pRI 2 �g. Obviously, �0 is an instance
of the V-SAT(S) problem. Assume � has a V-model =. Construct a new
V-interpretation =0 as follows:

=0(p) = �=(p) for each point p appearing in �;
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=0(I�) = �=(I+) and =0(I+) = �=(I�) for each interval I appearing
in �.

It is not hard to see that =0 is a V-model of �0. 2

Corollary 2.6 Let S � V. V-SAT(S) is in P i� V-SAT(DV(S)) is in P.
V-SAT(S) is NP-hard i� V-SAT(DV(S)) is NP-hard.

3 Classi�cation of V

We begin this section by de�ning �ve subalgebras of the point-interval algebra
having a polynomial-time V-SAT problem. Later on, we show that these
algebras are the only maximal subalgebras of V with this property. Before
we can de�ne the algebras we need a de�nition concerning the point algebra.

De�nition 3.1 A point algebra (PA) formula is an expression of the form
xry where r is a member of f<;�;=; 6=;�; >;?;>g and x; y denote real-
valued variables. The symbols <;�;=; 6=;�; > denote the relations \strictly
less than", \less than" and so on. The symbol? denotes the relation ; which
is unsatis�able for every choice of x; y 2 R and > denotes the relation R�R
which is satis�able for every choice of x; y 2 R.

Let 
 be a set of PA formulae and X the set of variables appearing
in 
. An assignment of real values to the variables in X is said to be a
PA-interpretation of 
. Furthermore, 
 is PA-satis�able i� there exists a
PA-interpretation = such that for each formula xry 2 
, =(x)r=(y) holds.
Such an PA-interpretation = is said to be a PA-model of 
.

The �rst point-interval subalgebra we will consider has a very close connec-
tion to PA.

De�nition 3.2 The set V23 consists of those relations in V that can be
expressed as one or more PA formulae over points and endpoints of intervals.

Alternatively, V23 can be characterized in the following two ways:

V23 = CV(f(s); (f a); (b d f)g); or

V23 = fr 2 V j (d) � r or r � (b s) or r � (f a)g :

The remaining four tractable subalgebras can be de�ned as follows:

De�nition 3.3

V20
s

= fr 2 V j (a) � r or r � (b s)g
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V20
f

= fr 2 V j (b) � r or r � (f a)g

V17
s

= f?g [ fr 2 V j (s) � rg

V17
f

= f?g [ fr 2 V j (f) � rg

Given a subalgebra Vx
y , x denotes the number of relations in the algebra. Let

VP be the set of all subalgebras in De�nition 3.3 together with the algebra
V23. The relations included in each of these algebras can be found in Table 3.

By studying Table 3, one can see that V23 is the unique maximal tractable
subalgebra containing all basic relations. Thus, there is a similarity with
Nebel and B�urckerts famous ORD-Horn algebra which is the unique maximal
tractable subalgebra of Allen's algebra containing all basic relations.

Let VNP denote the set of subalgebras listed in Table 4. We have the
following theorem.

Theorem 3.4 If V 2 VP then V-SAT(V ) is in P. If V 2 VNP then V-SAT(V )
is NP-hard.

Proof: See Appendices A and B for the results concerning VP and VNP ,
respectively. 2

The main theorem can now be stated.

Theorem 3.5 For S � V, V-SAT(S) is in P i� S is a subset of some member
of VP . Otherwise, V-SAT(S) is NP-complete.

Proof: if: For each C 2 VP , V-SAT(C) is in P by Theorem 3.4.
only-if: Choose S � V such that S is not a subset of any algebra in VP . For
each subalgebra C in VP , choose a relation x such that x 2 S and x 62 C.
This can always be done since S 6� C. Let X be the set of these relations.
We make three observations about X:

1. jXj � 5 (by construction);

2. X is not a subset of any algebra in VP (by construction);

3. V-SAT(S) is NP-hard if V-SAT(X) is NP-hard since X � S.

To show that V-SAT(S) has to be NP-hard, a machine-assisted case analysis
of the following form was performed:

1. Generate all subsets of V of size � 5. There are
5X

i=0

 
32
i

!
� 2:4� 105

such subsets.

2. Let T be such a set. Test: T is a subset of some subalgebra in VP or
D � CV(T ) for some D 2 VNP .

The test succeeds for all T . Hence, V-SAT(S) is NP-hard. Since V-SAT is
in NP [13], NP-completeness follows. 2
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V
23

V
20
s V

20
f

V
17
s V

17
f

? � � � � �

(b) � � �

(s) � � �

(b s) � � � �

(d) �

(b d) � �

(s d) � �

(b s d) � � �

(f) � � �

(b f) � �

(s f) � �

(b s f) � � �

(d f) � �

(b d f) � � �

(s d f) � � �

(b s d f) � � � �

(a) � � �

(b a) � �

(s a) � �

(b s a) � � �

(d a) � �

(b d a) � � �

(s d a) � � �

(b s d a) � � � �

(f a) � � � �

(b f a) � � �

(s f a) � � �

(b s f a) � � � �

(d f a) � � �

(b d f a) � � � �

(s d f a) � � � �

> � � � � �

Table 3: The maximal subalgebras of V which have a polynomial-time satis-
�ability problem.
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Subclass Relations Proof of NP-hardness

A0 (d); (b a) Lemma B.6
A1 (d); (b s a) Lemma B.7
A2 (d); (b f a) Lemma B.7
A3 (s d); (b a) Lemma B.7
A4 (s d); (b f a) Lemma B.7
A5 (d f); (b a) Lemma B.7
A6 (d f); (b s a) Lemma B.7
A7 (s d f); (b a) Lemma B.7
A8 (d); (b s f a) Lemma B.7
B0 (d); (b f) Lemma B.8
BD
0 (d); (s a) BD

0 = DV(B0)
B1 (d); (b s f) Lemma B.9
BD
1 (d); (s f a) BD

1 = DV(B1)
B2 (s d); (b f) Lemma B.9
BD
2 (d f); (s a) BD

2 = DV(B2)
B3 (d a); (b f) Lemma B.10
BD
3 (b d); (s a) BD

3 = DV(B3)
B4 (s d a); (b f) Lemma B.11
BD
4 (b d f); (s a) BD

4 = DV(B4)
B5 (d a); (b s f) Lemma B.11
BD
5 (b d); (s f a) BD

5 = DV(B5)
B6 (b f); (s a) Lemma B.12
C0 (s); (b f) Lemma B.13
CD
0 (f); (s a) CD

0 = DV(C0)
D0 (s f); (b d a) Lemma B.14
D1 (s f); (b a) Corollary B.15
D2 (s f); (b d) Corollary B.15
D3 (s f); (d a) Corollary B.15
D4 (s f); (d) Corollary B.15

Table 4: NP-hard subclasses of V.
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4 Discussion

We have only considered qualitative relations between time points and inter-
vals in this article. For certain applications this is satisfactory|for others
we must have the ability to reason also about metric time. Previous re-
search on reasoning about combined qualitative and metric time has proven
this problem to be computationally hard. However, recent results show that
tractable reasoning is possible in certain subclasses of Allen's algebra aug-
mented with quite advanced metric information. The linear-programming ap-
proach by Jonsson and B�ackstr�om [9] and Koubarakis [11] o�ers a straightfor-
ward method for extending the ORD-Horn subclass with metric constraints.
Several other subclasses of Allen's algebra with this property are exhibited
in Drakengren and Jonsson [5]. Almost certainly, these methods can be
adapted to the point-interval algebra which opens up for some interesting fu-
ture research. Another interesting research direction is the study of tractable
subclasses of Meiri's unrestricted approach, i.e., allowing for time points and
time intervals to be both qualitatively and metrically related.

The number of subclasses of V (232 � 4:3� 109) is very small in compar-
ison with the 28192 � 102466 subclasses of A. In principle it would have been
possible to enumerate all subclasses of V with the aid of a computer. This
is not obviously the case with A (at least not with the computers available
today). If we want to classify the subclasses of A with respect to tractability,
we must use other methods. We are not pessimistic about the possibility of
creating a complexity map of A, especially not in the light of Ligozat's [12]
recent results. By using algebraic techniques, he provides succinct proofs
of some central complexity results on Allen's algebra which previously had
only been proved by computerized enumeration methods. Furthermore, sim-
ilar projects have been successfully performed in mathematics and computer
science. A well-known example is the proof of the four-colour theorem [3]
which combine theoretical studies of planar graphs with extensive machine-
generated case analyses. It seems likely that we shall need methods that
combine theoretical studies of the structure of A with brute-force computer
methods. Here we can see a challenge for both theoreticians and practitioners
in computer science.

5 Conclusion

We have studied computational properties of the point-interval algebra. All
of the 232 possible subclasses are classi�ed with respect to whether their cor-
responding satis�ability problem is in P or NP-complete. The classi�cation
reveals that there are exactly �ve maximal subclasses having a polynomial-
time solvable satis�ability problem.

12



Acknowledgements

We would like to thank Martin C. Golumbic, Johan H�astad, Jan Ma luszy�nski,
Sakis Migdalas and the anonymous reviewers for interesting discussions and
valuable comments. This work has been sponsored by the Swedish Research
Council for the Engineering Sciences (TFR) under grants Dnr. 93-291, 95-
731, 96-737 and 97-301.

References

[1] J. F. Allen, Maintaining knowledge about temporal intervals, Comm.
ACM 26(11) (1983) 832{843.

[2] J. F. Allen, Temporal reasoning and planning, in: J. Allen, H. Kautz,
R. Pelavin, and J. Tenenberg, eds., Reasoning about Plans (Morgan
Kaufmann, 1991) 1{67.

[3] K. Appel and W. Haken, Every planar map is four colorable, Bulletin
of the American Mathematical Society 82 (1976) 711{712.

[4] T. Drakengren and P. Jonsson, A complete classi�cation of tractability
in Allen's algebra relative to subsets of basic relations, Artif. Intell.
106(2) (1998) 205{219.

[5] T. Drakengren and P. Jonsson, Eight maximal tractable subclasses of
Allen's algebra with metric time, J. Artif. Intell. Res. 7 (1997) 25{45.

[6] T. Drakengren and P. Jonsson, Twenty-one large tractable subclasses
of Allen's algebra, Artif. Intell. 93 (1997) 297{319.

[7] M. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness (Freeman, New York, 1979).

[8] M. C. Golumbic and R. Shamir, Complexity and algorithms for rea-
soning about time: A graph-theoretic approach, J. ACM 40(5) (1993)
1108{1133.

[9] P. Jonsson and C. B�ackstr�om, A unifying approach to temporal con-
straint reasoning, Artif. Intell. 102(1) (1998) 143{155.

[10] P. Jonsson, T. Drakengren, and C. B�ackstr�om, Tractable subclasses
of the point-interval algebra: A complete classi�cation, in: Proc. 5th
Int'l Conf. on Principles of Knowledge Repr. and Reasoning (KR-96),
Cambridge, MA, USA (1996) 352{363.

13



[11] M. Koubarakis, Tractable disjunctions of linear constraints, in: Proc.
2nd Int'l Conf. on Principles and Practice for Constraint Programming
(CP-96), Cambridge, MA, USA (1996) 297{307.

[12] G. Ligozat, \Corner" relations in Allen's algebra, Constraints 3(2{3)
(1998) 165{177.

[13] I. Meiri, Combining qualitative and quantitative constraints in temporal
reasoning, Artif. Intell. 87(1-2) (1996) 343{385.

[14] B. Nebel and H.-J. B�urckert, Software for machine assisted analysis
of Allen's interval algebra, Avail-
able from the authors by anonymous ftp from duck.dfki.uni-sb.de

as /pub/papers/DFKI-others/RR-93-11.programs.tar.Z (1993).

[15] B. Nebel and H.-J. B�urckert, Reasoning about temporal relations: A
maximal tractable subclass of Allen's interval algebra, J. ACM 42(1)
(1995) 43{66.

[16] F. Song and R. Cohen, The interpretation of temporal relations in
narrative, in: Proc. 7th (US) Nat'l Conf. on Artif. Intell. (AAAI-88),
St. Paul, MN, USA (1988) 745{750.

[17] P. van Beek and R. Cohen, Exact and approximate reasoning about
temporal relations, Comput. Intell. 6(3) (1990) 132{144.

[18] M. B. Vilain, A system for reasoning about time, in: Proc. 2nd (US)
Nat'l Conf. on Artif. Intell. (AAAI-82), Pittsburgh, PA, USA (1982)
197{201.

[19] M. B. Vilain, H. A. Kautz, and P. G. van Beek, Constraint propagation
algorithms for temporal reasoning: A revised report, in: Readings in
Qualitative Reasoning about Physical Systems (San Mateo, Ca, 1989)
373{381.

14



Appendix

This appendix collects the complexity results needed for the proof of The-
orem 3.4. The proofs of membership in P can be found in part A and the
NP-hardness results in part B.

A Polynomial-Time Problems

Proving that V-SAT(V23) 2 P is straightforward.

Proposition A.1 Deciding satis�ability of a set of PA formulae is a problem
that can be solved in polynomial-time.

Proof: See Vilain et al. [19]. 2

Lemma A.2 V-SAT(V23) is in P.

Proof: Follows immediately from the de�nition of V23 and the previous
proposition. 2

Before we can show that the other algebras in Table 3 are tractable, we need
an auxiliary de�nition.

De�nition A.3 Let S � R be �nite and denote the absolute value of x with
abs(x). The minimal distance in S, MD(S), is de�ned as

minfabs(x� y) j x; y 2 S and x 6= yg:

Observe that jSj � 2 in order to make MD(S) de�ned. For all such S,
MD(S) > 0. The de�nition of minimal distance can be extended to PA- and
V-interpretations in the obvious way.

Lemma A.4 V-SAT(V20
s

) is in P.

Proof: Recall that V20
s

consists of relations r satisfying either r � fb; sg
or fag � r.

De�ne the function g : V20
s
! 2f<;=;>g such that

< 2 g(r) i� b 2 r;

= 2 g(r) i� s 2 r;

> 2 g(r) i� a 2 r;
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Clearly, g is a total function. Given an arbitrary instance � of V-SAT(V20
s

),
construct a set �0 of PA formulae as follows:

�0 = fp0g(r)I 0 j prI 2 �g:

It can be decided whether �0 has a PA-model or not in polynomial time. We
show that �0 has a PA-model i� � has a V-model.

only-if: Assume that � has a V-model =. De�ne a PA-interpretation =0 of
�0 such that

=0(p0) = =(p);

=0(I 0) = =(I�):

Arbitrarily choose a formula p0r0I 0 in �0. Now,

if =(p)(b)=(I), then =0(p0) < =0(I 0) and < 2 r0 by the de�nition of g;

if =(p)(s)=(I), then =0(p0) = =0(I 0) and = 2 r0 by the de�nition of g;

if =(p)(d)=(I), then =0(p0) > =0(I 0). However, if d 2 r, then a 2 r by the
de�nition of V20

s
and > 2 r0 by the de�nition of g;

if =(p)(f)=(I), then =0(p0) > =0(I 0). However, if f 2 r, then a 2 r by the
de�nition of V20

s
and > 2 r0 by the de�nition of g;

if =(p)(a)=(I), then =0(p0) > =0(I 0) and > 2 r0 by the de�nition of g.

if: Assume that =0 is a PA-model of �0. De�ne the PA-interpretation = of
� such that

=(p) = =0(p0);

=(I�) = =0(I 0);

=(I+) = =0(I 0) + �;

where � = MD(=0)=2. Arbitrarily choose a formula prI in �. The following
facts hold:

if =0(p0) < =0(I 0), then b 2 r (by the de�nition of g) and p(b)I under =;

if =0(p0) = =0(I 0), then s 2 r (by the de�nition of g) and p(s)I under =;

if =0(p0) > =0(I 0), then =(p) > =(I+) by the choice of �. The de�nition of g
gives that a 2 r and p(a)I under =. 2

16



Corollary A.5 V-SAT(V20
f

) is in P.

Proof: It can easily be veri�ed that V20
f

= DV(V20
s

). 2

Lemma A.6 V-SAT(V17
s

) is in P.

Proof: Let � be an arbitrary instance of V-SAT(V17
s

). If a formula of the
form p?I is in � then � is not satis�able. Otherwise, consider the following
V-interpretation: =(p) = 0 for every point p and =(I�) = 0 and =(I+) = 1
for every interval I. Let pRI be an arbitrary formula in �. By the de�nition
of V17

s
, s 2 R. Obviously, = satis�es pRI. Since it is a polynomial-time

problem to check whether p?I 2 � or not, the lemma follows. 2

Corollary A.7 V-SAT(V17
f

) is in P.

Proof: V17
s

= DV(V17
f

). 2

B NP-Hardness Results

This section provides NP-hardness proofs for the subclasses of V presented
in Table 4. The reductions are mostly made from di�erent subalgebras of
Allen's interval algebra. Consequently, we begin this section by recapitulat-
ing some results concerning this algebra. To make the proofs of NP-hardness
less cumbersome, we will employ a technique which we refer to as model trans-
formations; the de�nitions and results needed are collected in Section B.2.

B.1 Allen's Algebra

Allen's interval algebra [1] is based on the notion of relations between pairs of
intervals. An interval X is represented as an ordered pair hX�;X+i of real
numbers with X� < X+, denoting the left and right endpoints of the interval,
respectively, and relations between intervals are composed as disjunctions of
basic interval relations. Their exact de�nitions can be found in Table 5. Such
disjunctions are represented as sets of basic relations. The algebra is provided
with the operations of converse, intersection and composition on intervals.
The de�nitions of these operations can be found in [1]. By the fact that there
are thirteen basic relations, we get 213 = 8192 possible relations between
intervals in the full algebra. We denote the set of all interval relations by
A. The decision problem we will consider is the problem of satis�ability (A-
SAT) of a set of interval variables with relations between them, i.e., deciding
whether there exists an assignment of intervals on the real line for the interval
variables, such that all of the relations between the intervals hold. Such an
assignment is said to be a A-model for the interval variables and relations.
For A, we have the following result.
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Basic relation Symbol Example Endpoint relations

X before Y � xxx X� < Y �, X� < Y +,
Y after X � yyy X+ < Y �, X+ < Y +

X meets Y m xxxx X� < Y �, X� < Y +,
Y met-by X m

^ yyyy X+ = Y �, X+ < Y +

X overlaps Y o xxxx X� < Y �, X� < Y +,
Y overlapped-by X o

^ yyyy X+ > Y �, X+ < Y +

X during Y d xxx X� > Y �, X� < Y +,
Y includes X d

^ yyyyyyy X+ > Y �, X+ < Y +

X starts Y s xxx X� = Y �, X� < Y +,
Y started by X s

^ yyyyyyy X+ > Y �, X+ < Y +

X �nishes Y f xxx X� > Y �, X� < Y +,
Y �nished-by X f

^ yyyyyyy X+ > Y �, X� < Y +

X equals Y � xxxx X� = Y �, X� < Y +,
yyyy X+ > Y �, X+ = Y +

Table 5: The thirteen basic relations of theA-algebra. The endpoint relations
X� < X+ and Y � < Y + that are valid for all relations have been omitted.

Theorem B.1 De�ne the sets N3 and F as follows:

N3 = f(� �); (o o
^)g

and

F = f(� d
^

o m m
^

f
^)g:

A-SAT(N3) and A-SAT(F) are NP-hard problems.

Proof: The result for N3 can be found in [4].
To prove that A-SAT(F) is NP-hard, we will use a closure operation for

Allen's algebra which was de�ned by Nebel and B�urckert [15]. Assume S �
A. Then we denote by CA(S) the A-closure of S under converse, intersection
and composition, i.e., the least subset of A containing S closed under the
three operations. Nebel and B�urckert [15] have shown that A-SAT(S) is
NP-hard if and only if A-SAT(CA(S)) is. Hence, to show NP-hardness of
A-SAT(F), we can study A-SAT(CA(F)) instead of A-SAT(F).

It can be veri�ed that A = CA(F) and NP-hardness of A-SAT(F) follows.
2

In the previous lemma, CA was computed by the utility aclose [14].
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B.2 Model Transformations

One of our main vehicles for showing NP-hardness of di�erent subclasses is
that of model transformations. It is a method for transforming a solution of
one problem to a solution of a related problem.

De�nition B.2 A model transformation is a mapping on V-interpretations.

This de�nition is very general. To make it applicable in practice, we need a
way of describing model transformations.

De�nition B.3 Let T be a model transformation. A function fT : B! 2B

is a description of T i� for arbitrary V-interpretations =, the following holds:
if b 2 B and pbJ under =, then pfT (b)J under T (=). A description fT can
be extended to handle disjunctions in the obvious way: fT (R) =

S
r2R fT (r).

Lemma B.4 Let R = fr1; : : : ; rng � V and R0 = fr01; : : : ; r
0
ng � V be

such that V-SAT(R) is NP-hard and rk � r0k, 1 � k � n. If there exists
a model transformation T with a description fT such that fT (r0k) � rk for
every 1 � k � n, then V-SAT(R0) is NP-hard.

Proof: Arbitrarily choose an instance � of V-SAT(R) and let �0 =
fpr0I jprI 2 �g. Obviously, this is a polynomial-time transformation and �0

is an instance of V-SAT(R0). We show that � is satis�able i� �0 is satis�able.
only-if: Let = be a model of �. Recall that rk � r0k, 1 � k � n. Hence, = is
a model of �0 since every formula pr0I 2 �0 is weaker than the corresponding
formula prI 2 �.
if: Let =0 be a model of �0. We show that T (=0) is a model of �. Arbitrarily
choose a formula prI in �. By the construction of �0, there exists a formula
pr0I 2 �0. Thus, we have pr0I under =0 which implies pfT (r0)I under T (=0)
since fT is a description of T . Furthermore, fT (r0) � r so prI holds under
T (=0). Since prI was arbitrarily chosen, T (=0) is a model of �. 2

De�nition B.5 Assume that = is an arbitrary V-interpretation and let � =
MD(=)=2. De�ne the model transformation To;o0 for o; o0 2 f+;�; 0g as

1. for every point p, let To;o0(=)(p) = =(p);

2. for every interval I, let To;o0(=)(I�) = =(I�) o � if o 2 f+;�g and
To;o0(=)(I�) = =(I�) otherwise;

3. for every interval I, let To;o0(=)(I+) = =(I+) o0 � if o0 2 f+;�g and
To;o0(=)(I+) = =(I+) otherwise.

Descriptions of the model transformations in the previous de�nition can be
found in Table 6.
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b s d f a

T�;� b d d a a

T�;0 b d d f a

T�;+ b d d d a

T0;� b s d a a

T0;0 b s d f a

T0;+ b s d d a

T+;� b b d a a

T+;0 b b d f a

T+;+ b b d d a

Table 6: Descriptions of some model transformations.

B.3 NP-Hard Subclasses of V

Lemma B.6 V-SAT(A0) is NP-hard.

Proof: Reduction from A-SAT(N3) which is NP-hard by Lemma B.1. Let
I and J be two intervals. We will show how to express I(o o^)J and I(� �)J
in the point-interval algebra by only using the point-interval relations in A0,
i.e., (d) and (b a). By doing so, we have shown NP-hardness of V-SAT(A0).

Assume we want to relate the intervals I and J with the relation (o o
^).

Observe that I(o o
^)J holds i� there exists three real numbers a; b; c with

the following properties:

I� < a < I+ but a < J� or a > J+

I� < b < I+ and J� < b < J+

J� < c < J+ but c < I� or c > I+

Obviously, we can relate I and J with (o o
^) by introducing three fresh

points a; b; c and the following six point-interval formulae:

a(d)I a(b a)J
b(d)I b(d)J
c(d)J c(b a)I:

In order to relate two intervals I; J with the relation (� �), we introduce
two fresh intervals K, L and relate them with (o o

^) by using three fresh
points a, b and c as above. Observe that either =(a) < =(b) < =(c) or
=(c) < =(b) < =(a) in any model =.
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K

L

I J

a b c

Figure 1: The construction of I(� �)J in the proof of Lemma B.6. The
�gure shows the situation when =(I+) < =(b) < =(J�); the other case is
analogous.

Now, relate a; b; c to I; J as follows:

a(d)I a(b a)J
b(b a)I b(b a)J
c(b a)I c(d)J:

Let = be a model satisfying these restrictions. It follows that either =(I+) <
=(b) < =(J�) or =(J+) < =(b) < =(I�) and, consequently, I(� �)J . An
explanation of this construction can be found in Figure 1. 2

Lemma B.7 V-SAT(Ai), 1 � i � 8, is NP-hard.

Proof: Polynomial-time reduction from V-SAT(A0). Use the following
model transformations

i = 1 : T+;0 i = 2 : T0;�
i = 3 : T�;0 i = 4 : T�;�
i = 5 : T0;+ i = 6 : T+;+
i = 7 : T�;+ i = 8 : T+;�

and apply Lemma B.4. 2

Lemma B.8 V-SAT(B0) is NP-hard.

Proof sketch: The proof of Lemma B.6 goes through if the relation (b a)
is replaced by (b f). 2

Lemma B.9 V-SAT(Bi), 1 � i � 2, is NP-hard.
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p1 p1 + � p1 + 2� p1 + 3� p1 + 4� p1 + 5� I+1

p2

p3

p1

I1

I2

I3

Figure 2: The construction used in Lemma B.10.

Proof: Polynomial-time reduction from V-SAT(B0). Use the following
model transformations

i = 1 : T+;0 i = 2 : T�;0

and apply Lemma B.4. 2

Lemma B.10 V-SAT(B3) is NP-hard.

Proof: By Lemma B.8, V-SAT(B0) is NP-hard. Let E = f(b); (d a); (b f)g.
Then (b f) 
 (d a) 
 (b) = (b s d) and (b s d) \ (d a) = (d) so B0 �
CV(E) and V-SAT(E) is NP-hard. Let � be an arbitrary instance of the
V-SAT(E) problem. We show how to construct an instance �0 of the V-
SAT(B3) problem that is satis�able i� � is satis�able.

We begin by showing how to relate a point p1 and an interval I1 such as
p1(b)I1 by only using the relations in B3. We introduce two fresh points p2
and p3 together with two fresh intervals I2 and I3. Consider the following
construction:

(1) p1(b f)I1 (2) p1(b f)I2 (3) p1(b f)I3
(4) p2(b f)I1 (5) p2(d a)I2 (6) p2(b f)I3
(7) p3(b f)I1 (8) p3(b f)I2 (9) p3(d a)I3:

We denote this set of formulae with 
. Assume that = is a V-model of 
.
For the sake of brevity, we identify the points and intervals with their values
when interpreted by =. Hence, instead of writing =(p1) < =(I�1 ), we simply
write p1 < I�1 .
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Obviously, p1 < I�1 or p1 = I+1 . We begin by showing that there exists a
V-model of 
 such that p1 < I�1 . Let � = (I�1 �p1)=5. Consider the following
assignment of values:

I�3 = p1 + � p3 = p1 + 2� I�2 = p1 + 3�
p2 = p1 + 4� I+3 = p1 + 4� I+2 = I+1 :

This assignment is depicted in Figure 2. Obviously, the assignment is a
V-model of 
.

Next, we show that there does not exist any V-model of 
 such that
p1 = I+1 . Assume = is such a V-model. By formula (4), we can see that
p2 < I�1 or p2 = I+1 . By assumption, p1 = I+1 . Hence, either p2 < I�1 or
p2 = p1. If p2 = p1, then formula (2) is equivalent to p2(b f)I2 which clearly
contradicts formula (5). Thus, p2 < I�1 and p2(b)I1. By analogous reasoning
one can see that p3 < I�1 and p3(b)I1.

Next, observe that formulae (2) and (3) imply p1 � I+2 and p1 � I+3 .
Furthermore, p2 < I�1 and p3 < I�1 which implies p2 < I+1 and p3 < I+1 . By
our initial assumption p1 = I+1 we get

A: p2 < I+1 = p1 � I+3

B: p3 < I+1 = p1 � I+2

Consequently, p2 < I+3 and p3 < I+2 . Observe that p2(b f)I3 and p3(b f)I2
by formulae (6) and (8), respectively. Hence, p2 < I�3 and p3 < I�2 .

We have to study four cases, depending on how the V-model assigns values
to the variables in formula (5) and (9).

1. I�2 < p2 < I+2 and I�3 < p3 < I+3 . Then p2 < I�3 < p3 < I�2 < p2 which
leads to a contradiction.

2. I+2 < p2 and I+3 < p3. Then p2 < I�3 < I+3 < p3 < I�2 < I+2 < p2 which
is a contradiction.

3. I+2 < p2 and I�3 < p3 < I+3 . Then p2 < I�3 < p3 < I�2 < I+2 < p2.
Contradiction.

4. I�2 < p2 < I+2 and I+3 < p3. This case is analogous to the previous case.

Consequently, every V-model of 
 satis�es p1 < I�1 .
We have thus shown how to express the relation (b) by only using (d a)

and (b f). Obviously, we can take an instance of the V-SAT(E) problem and
in polynomial time transform it into an equivalent instance of the V-SAT(B3)
problem. NP-hardness of V-SAT(B3) follows immediately.

2
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Lemma B.11 V-SAT(Bi), 4 � i � 5, is NP-hard.

Proof: Polynomial-time reduction from V-SAT(B3). Use the following
model transformations

i = 4 : T�;0 i = 5 : T+;0

and apply Lemma B.4. 2

Lemma B.12 V-SAT(B6) is NP-hard.

Proof: Let E = f(b); (b f); (s a)g. Then (b f) 
 (s a) 
 (b) = (b s d),
(s a)
 (b)
 (s a) = (d f a) and (b s d) \ (d f a) = (d) so B0 � CV(E) and
V-SAT(E) is NP-hard. Let � be an arbitrary instance of V-SAT(E). We
show how to construct an instance �0 of V-SAT(B6) that is satis�able i� �
is satis�able.

We begin showing how to relate a point p1 and an interval I1 such as
p1(b)I1 by only using the relations in B6. We introduce two fresh points p2
and p3 together with a fresh interval I2. Consider the following construction:

(1) p1(b f)I1 (2) p1(b f)I2 (3) p2(b f)I1
(4) p2(s a)I2 (5) p3(s a)I1 (6) p3(b f)I2

We denote this set of formulae with 
. Let = be a V-model of 
. As in the
proof of Lemma B.10, we identify the points and intervals with their value
when interpreted by =.

Obviously, p1 < I�1 or p1 = I+1 . We begin by showing that there exists
a V-model of 
 such that p1 < I�1 . Let � = (I+1 � I�1 )=3. Consider the
following assignment of values:

p3 = I�1

p2 = I+1

I�2 = I+1

I+2 = I�2 + 1

It is not hard to see that this assignment is a V-model of 
.
Next, we show that there does not exist any V-model of 
 such that

p1 = I+1 . Assume = is such a V-model. We consider two cases:

Case 1: p1(f)I2. Then p1 = I+1 = I+2 . Hence, if p2(f)I1, then p2(f)I2 which
contradicts formula (4). Consequently, p2(b)I1 and, by formula (4), p2(s)I2.
Obviously, I�2 < I�1 < I+2 .
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By formula (5), p3(s a)I1. Assume p3(s)I1. Then p3(d)I2 which contra-
dicts formula (6). Assume to the contrary that p3(a)I1. But this implies
p3(a)I2 which also contradicts formula (6).

Case 2: p1(b)I2. Since p1(f)I1, I1 and I2 are disjoint intervals and I1 is
strictly before I2. By formula (3), p2(b f)I1. If p2(b)I1, then p2(b)I2 which
contradicts formula (4). If p2(f)I1, then p2(b)I2 which, again, contradicts
formula (4).

We have thus shown how to express the relation (b) by only using (b f) and
(s a). Obviously, we can take an instance of the V-SAT(E) problem and in
polynomial time transform it into an equivalent instance of the V-SAT(B6)
problem. NP-hardness of V-SAT(B6) follows immediately. 2

Lemma B.13 V-SAT(C0) is NP-hard.

Proof: Reduction from A-SAT(F) which is NP-hard by Lemma B.1. Let
� be an instance of A-SAT(F). We construct a set �0 as follows.

For each formula of the type I(� d
^

o m m
^

f
^)J in �, introduce a new

point pI;J and let pI;J(s)I and pI;J (b f)J in �0;

Clearly �0 is an instance of the V-SAT(D0) problem. It is a routine veri�ca-
tion to show that � is satis�able i� �0 is satis�able. 2

Theorem B.14 V-SAT(D0) is NP-hard.

Proof: Proof by reduction from Graph 3-Colourability, which is
NP-complete [7]. Let G = hV;Ei be an undirected graph. Construct
a corresponding set of point-interval formulae as follows (the construction
is illustrated graphically in Figure 3 for the connected two-vertex graph
hfv1; v2g; ffv1; v2ggi).

First, we construct a paint-box de�ning our three \colours". It consists
of a point p and two intervals I1 and I2, plus the two relations p(s f)I1
and p(s f)I2. Because of these constraints, the two intervals must have at
least one end-point in common, so there is a total of two or three interval
endpoints, which constitute our available colours. Hence, each model has a
palette with two or three colours. We may, thus, occasionally get models
corresponding to 2-colourings of G, but this is unimportant since every 2-
colouring is a 3-colouring. Of course, the actual denotations of these colours
di�er between models, but this is also unimportant since they denote two or
three di�erent colours in each and every model.

Next, for each vertex vi 2 V we introduce a selector consisting of two
intervals J sel

i ; J sep
i and three points qsub1i ; qsub2i and qseli . The interval J sep

i acts
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paint-box

(b d a)
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Figure 3: An example of the construction in the proof of Theorem B.14 for
a connected two-vertex graph.

as a separator for the points qsub1i and qsub2i . This means that by introducing
the relations qsub1i (s f)J sep

i and qsub2i (b d a)J sep
i these two points are forced

not to coincide. Further, both these points are related to the interval J sel
i via

the relations qsub1i (s f)J sel
i and qsub2i (s f)J sel

i , which forces each endpoint of
this interval to coincide with either of the two points. Then the point qseli is
related to interval J sel

i as qseli (s f)J sel
i , which forces it to coincide with either

of the two points qsub1i and qsub2i . Finally, this whole gadget is connected to
the paint-box via the relations qsub1i (s f)I1 and qsub2i (s f)I2. Hence, these
two points select a subpalette of exactly two of the available colours, and the
point qseli then further selects one of these two colours as the colour of vertex
vi.

Finally, for each edge fvi; vjg 2 E we introduce an interval Ki;j acting
as a separator for the points qseli and qselj , in the same way as the separator
interval within the selectors. More precisely, the relations qseli (s f)Ki;j and
qselj (b d a)Ki;j are introduced. Obviously, these two formulae can be simul-
taneously satis�ed i� vertices vi and vj have di�erent colours, since the two
points q0i and q0j must not coincide.

It is obvious that G is 3-colourable i� the set of point-interval formulae
just constructed is V-satis�able, so NP-hardness of the algebra follows. 2

Corollary B.15 V-SAT(Di), 1 � i � 4, is NP-hard.
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Proof: Use the same construction as in the proof of Theorem B.14. We
note that relations of the type (b d a) are used only in separators, forcing two
points apart. Consider a separator interval I for two points p and q which are
related as p(s f)I and q r I, where r = (b d a) in the original construction.
We now consider how r can be constrained. First suppose that p = q. In
this case at most one of the two relations must be satis�ed, which holds as
long as r does not contain either s or f . Conversely, suppose p 6= q. In this
case, there must exist a choice of endpoints for I such that both formulae are
satis�ed. It is obviously a su�cient criterion that r contains either d or both
a and b (either of the latter alone is not su�cient, since other constraints in
the model may dictate whether p < q or q < p). It follows that r can be
chosen as either of the relations (b a), (b d), (d a) and (d), which proves the
corollary. 2
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