
State-Variable Planning under Structural

Restrictions: Algorithms and Complexity

Peter Jonsson and Christer B�ackstr�om

Department of Computer and Information Science

Link�opings Universitet

581 83 Link�oping, Sweden

email: fpetej,chrbag@ida.liu.se

Abstract

Computationally tractable planning problems reported in the lit-

erature so far have almost exclusively been de�ned by syntactical re-

strictions. To better exploit the inherent structure in problems, it

is probably necessary to study also structural restrictions on the un-

derlying state-transition graph. The exponential size of this graph,

though, makes such restrictions costly to test. Hence, we propose

an intermediate approach, using a state variable model for planning

and de�ning restrictions on the separate state-transition graphs for

each state variable. We identify such restrictions which can tractably

be tested and we present a planning algorithm which is correct and

runs in polynomial time under these restrictions. The algorithm has

been implemented an it outperforms Graphplan on a number of test in-

stances. In addition, we present an exhaustive map of the complexity

results for planning under all combinations of four previously studied

syntactical restrictions and our �ve new structural restrictions. This

complexity map considers both the optimal and non-optimal plan gen-

eration problem.

1 Introduction

In this introductory section, we brie
y motivate the work, describe our ap-
proach and present a characterization of the type of application problems we
primarily aim at. The section concludes with an overview of the article.

1

1.1 Motivations and the Proposed Approach

Computational tractability is a fundamental issue in all problem solving. If
a problem is not tractable, we cannot hope to solve an arbitrary instance
of it within reasonable time. This is obviously important if our goal is to
use computers for solving planning problems. Unfortunately, planning is
known to be very hard. Even simple propositional planning is PSPACE-
complete [9], which means that it is most likely intractable. Planning with
variables ranging over an in�nite domain is even undecidable [10, 13]. Until
a few years ago the planning community did not show much interest in the
formal complexity analysis of planning.

Many planning problems in the manufacturing and process industry are
believed to be highly structured, thus allowing for e�cient planning if exploit-
ing this structure. However, a `blind' domain-independent planner will most
likely go on tour in an exponential search space even for tractable problems.
Although heuristics may help a lot, they are often not based on a su�ciently
thorough understanding of the underlying problem structure to guarantee
e�ciency and correctness. Further, we believe that if you have such a deep
understanding of the problem structure, it is better to use other methods
than heuristics.

Some tractability results for planning have recently been reported in the
literature [5, 6, 9]. However, apart from being very restricted, they are all
based on essentially syntactic restrictions on the set of operators. It is ap-
pealing to study syntactic restrictions, since they are often easy to de�ne and
not very costly to test. To gain any deeper insight into what makes planning
problems hard and easy, respectively, we must probably study the structure
of the problem, in particular the state-transition graph induced by the op-
erators. To some extent, syntactic restrictions allow us to do this since they
undoubtedly have implications for the form this graph takes. However, their
value for this purpose seems somewhat limited since many properties that are
easy to express as explicit structural restrictions would require horrendous
syntactical equivalents. Putting explicit restrictions on the state-transition
graph must be performed with great care since this graph is typically ex-
ponential in the size of the planning problem instance, making it extremely
costly to test arbitrary properties.

In this article, we take an intermediate approach. We adopt the state-
variable model SAS+ [6] and de�ne restrictions not on the whole state-
transition graph, but on the domain-transition graphs for each state vari-
able in isolation, taking some interaction between the variables into account.
This is less costly since each such graph is only of polynomial size. Although
not being a substitute for restrictions on the whole state-transition graph,
many interesting and useful properties of this graph can be indirectly ex-
ploited. In particular, we identify sets of structural restrictions which make

2

planning tractable and which properly generalize certain previously identi-
�ed tractable SAS+ problems [5, 6]. Despite being structural, our restrictions
can be tested in polynomial time. For planning under these restrictions, we
present a polynomial-time, provably correct planner. An empirical study of
the algorithm reveals that it is considerably faster than Graphplan on certain
test examples.

We also provide a map of the compuational complexity of both opti-
mal and non-optimal plan generation for all combinations of the restrictions,
considering also mixed syntactical and structural restrictions. We hope that
by including negative results, too, unnecessary work can be avoided in the
future.

1.2 Intended Applications

The kind of applications we have had in mind are problems where no hu-
man expert has a good understanding of how to plan. Such applications
frequently arise in various engineering applications, typically having a large
number of simple, specialized operators and being so extensive as to cause
computational problems. Many applications of this type arise in the �eld
of sequential control, a sub-area of automatic control dealing with discrete
aspects of control applications. Although most industrial processes are con-
tinuous systems, they almost always also contain a superior discrete level.
On this superior level the actions can often be viewed as discrete actions
even if implemented as continuous processes. Many problems on this level
can be viewed as planning. Typical actions can be to open or close a valve
or to start or stop a motor.

An interesting application for automated planning is the situation where
a process breaks down or is stopped in an emergency situation. At such an
event the system may end up in any of a very large number of states and it
might require a quite complex plan1 to bring the system back into the normal
operation mode. It is not realistic to have pre-compiled plans for how to start
up the process again from each such state. Furthermore, the considerable
costs involved when a large industrial process, such as a paper mill, is inactive
necessitate a prompt response from the planner. There is typically no human
expert who knows how to solve the problem or, even less, write down rules for
this. Typically, the (human) operators have some partial understanding and
experience which they combine with experimentation and improvisation|
eventually getting the system running again (in most cases). Hence, planning
from �rst principles seems a better approach than knowledge-based planning
for this type of application, even if di�cult. In principle, nothing prevents

1Such a plan may also contain parallel structures, of course. The word sequential in
sequential control should not be interpreted literally.

3

us from also incorporating expert knowledge to the extent it is available. For
further reading about intended applications and motivation, see Klein [24]
and B�ackstr�om [4].

1.3 About this Article

This article is compiled from two conference papers [20, 22] and the under-
lying technical reports [21, 23, 19], which contain the full proofs.

The remainder of this article is organized in the following way. Section 2
de�nes the SAS+ planning formalism and discusses the main di�erences be-
tween propositional Strips and SAS+. Section 3 de�nes the restrictions
that will be considered in this article. Four previously identi�ed syntactical
restrictions (P, U, B, S) [6] are presented together with �ve new structural
restrictions (I, A�, A, A+, O). Section 4 presents an algorithm for planning
under restrictions I, A and O, together with a small example for illustrating
how the algorithm works. The empirical evaluation of the algorithm can be
found in Section 5.. Section 6 contains the correctness proofs and a complex-
ity analysis for the planning algorithm. This section can be entirely omitted
at a �rst reading of this article. Section 7 provides an exhaustive map of
complexity results for planning under all nine restrictions from Section 3.
This map considers both optimal and non-optimal plan generation. Some
concluding remarks are presented in Section 8.

2 Basic Formalism

The SAS+ formalism is in principle a version of the propositional Strips
formalism [14]. This section brie
y recasts the main di�erences between the
two formalisms and provides a formal de�nition of the SAS+ formalism. The
reader is referred to previous publications [5, 1, 24, 6] for further background,
motivation and examples.

There are mainly two details that di�er between the SAS+ formalism
and the Strips formalism. Instead of propositional atoms we use multi-
valued state variables and instead of using only pre- and post-conditions for
operators we also use a prevail-condition, which is a special type of pre-
condition.

Each state variable has some discrete domain of mutually exclusive de�ned
values and in addition to these we also allow it to take on the unde�ned
value. The unde�ned value is interpreted as `don't care'|that is, the value
is unknown or does not matter. A total (world) state assigns de�ned values to
all state variables, while a partial (world) state may also assign the unde�ned
value. We will often use the term state when it is clear from the context or
does not matter whether the state is partial or total.

4

The main di�erence in contrast to traditional Strips modelling is that
the traditional pre-condition is split into two conditions, the pre-condition
and the prevail-condition depending on whether the variables are changed by
the operator or not. The `behaviour' of an operator is thus modeled by its
pre-, post- and prevail-conditions|all three being partial states. The post-
condition of an operator expresses which state variables it changes and what
values these variables will have after successful execution of the operator.
The pre-condition speci�es which values these changed variables must have
before the operator is executed. The prevail-condition speci�es which of the
unchanged variables must have some speci�c value before the execution of
the operator and what these values are. Both the pre- and prevail-condition
of the operator must be satis�ed for the operator to execute successfully.

2.1 Problem Instances and Plans

De�nition 2.1 An instance of the SAS+ planning problem is given by a
quadruple � = hV;O; s0; s�i with components de�ned as follows:

� V = fv1; : : : ; vmg is a set of state variables. Each variable v 2 V has
an associated domain Dv, which implicitly de�nes an extended domain
D+
v = Dv [fug, where u denotes the unde�ned value. Further, the

total state space S = Dv1 � : : :�Dvm and the partial state space S+ =
D+
v1
� : : :�D+

vm are implicitly de�ned. Let s[v] denote the value of the
variable v in a state s.

� O is a set of operators of the form hpre; post; prvi, where pre; post; prv 2
S+ denote the pre-, post- and prevail-condition, respectively. If o =
hpre; post; prvi is a SAS+ operator, we write pre(o), post(o) and prv(o)
to denote pre, post and prv, respectively. O is subject to the following
restriction: for all o 2 O and v 2 V, post(o)[v] = u or prv(o)[v] = u.

� s0 2 S+ and s� 2 S+ denote the initial state and goal state, respectively.

The pre-, post- and prevail-conditions are elements of S+, which means that
they can take on the unde�ned value for some or all variables. As will
be seen further on, this is interpreted as a non-condition|for example, if
prv(o)[v] = u then there is no prevail-condition on the variable v.

A SAS+ instance implicitly de�nes a set of operator sequences which we
refer to as plans.

De�nition 2.2 Given a set of operators O, we de�ne the set of all operator
sequences over O as Seqs(O) = fhig [fhoi;! j o 2 O and ! 2 Seqs(O)g,
where ; is the sequence concatenation operator. The members of Seqs(O)
are called plans.

5

Note that \operator sequence" and \plan" both denote any sequence of op-
erators, not taking into account whether preconditions are satis�ed or not.

Besides the concatenation operator ; we also need to refer to segments of
operator sequences.

De�nition 2.3 Let ! = ho1; : : : ; oki 2 Seqs(O). Then, First(!) = o1,
Last(!) = ok and Rest(!) = ho2; : : : ; oki. If ! = hi, then First(!) =
Last(!) = hi = Rest(!) = hi.

2.2 Results and Validity

We continue by de�ning the result of applying an operator sequence to a
state and de�ning when an operator sequence solves a SAS+ problem. To
begin with, we need an ordering on S+ that captures the idea of one state
being de�ned in more detail than another state. This ordering will be used
for determining when the pre- and prevail-conditions are satis�ed for an
operator.

De�nition 2.4 Let s v t hold i� the value s is subsumed (or satis�ed) by
value t, i.e. if s = u or s = t. We extend this notion to whole states, de�ning

s v t i� for all v 2 V; s[v] v t[v]

which de�nes a partial order hS+;vi with bottom element ? = hu; : : : ; ui.
The operation t (least upper bound) is de�ned in the usual way on the
partial order hS+;vi.

Note that while there is a bottom element in hS+;vi, there is (usually) no
top element. Thus, stt is not de�ned if there is variable v such that s[v] 6= u,
t[v] 6= u and s[v] 6= t[v]|there is no value x such that s[v] v x and t[v] v x.
However, we will only use t when it is de�ned. To de�ne the result of a plan
when applied to a state, we �rst need to know what the result is of applying
a single operator to a state.

De�nition 2.5 Given two states s; t 2 S+, we de�ne for all v 2 V,

(s� t)[v] =

(
t[v] if t[v] 6= u;
s[v] otherwise.

The function result gives the state resulting from executing an operator
sequence and is de�ned recursively as

result(s; hi) = s;

result(s; (!;hoi)) =

(
t if (pre(o) t prv(o)) v result(s; !);
? otherwise :

where t = result(s; !)� post(o).

6

This de�nition of the result function `solves' the frame problem by employing
the Strips assumption (Fikes and Nilsson [14]), which is su�cient in this
restricted formalism. Furthermore, we take the safe and cautious approach
that anything can happen if an action occurs when its pre- and prevail-
conditions are not satis�ed.

We can now state when an operator sequence solves a problem instance.

De�nition 2.6 The ternary relation Valid � Seqs(O)�S+�S+ is de�ned
recursively s.t. for arbitrary operator sequence ho1; : : : ; oni 2 Seqs(O) and
arbitrary states s; t 2 S+, Valid(ho1; : : : ; oni; s; t) i� either

1. n = 0 and t v s or

2. n > 0, pre(o1) t prv(o1) v s and Valid (ho2; : : : ; oni; (s� post(o1)); t).

A plan ho1; : : : ; oni 2 Seqs(O) solves � i� Valid (ho1; : : : ; oni; s0; s�).

2.3 Partially Ordered Plans

Up till now, we have only considered totally ordered plans|sequences of
operators. However, planning often only requires a partial ordering of the
operators; some operators must be executed in a certain order while others
can be executed in arbitrary order.

To de�ne partially ordered plans, we must introduce the concept of ac-
tions, i.e. instances of operators. Given an action a, type(a) denotes the
operator that a instantiates. Furthermore, given a set of actions A, we de�ne
type(A) = ftype(a) j a 2 Ag and given an action sequence � = ha1; : : : ; ani
of actions, type(�) denotes the operator sequence htype(a1); : : : ; type(an)i.
The functions First, Last and Rest operate on action sequences in the same
way as they operate on operator sequences.

De�nition 2.7 A partial-order plan is a tuple hA;�i where A is a set of
actions and � is a strict partial order onA. A partial-order plan hA;�i solves
a SAS+ instance � i� htype(a1); : : : ; type(an)i solves � for each topological
sort ha1; : : : ; ani of hA;�i.

The set of all topological sorts of a plan � is denoted TS(�). For partial
orders, we need the concepts of transitive closure and reduction.

De�nition 2.8 Given a strict partial order < on a set S we make the fol-
lowing de�nitions:

1. <+ is the transitive closure of < de�ned in the usual way, and

2. <� denotes the reduction of < de�ned as the minimal<0�< such that
<+

0=<
+.

7

De�nition 2.9 LetO be a set of operators over some set V of state variables
and let v 2 V. The function A�ects : V �O ! 2O is de�ned as:

A�ects(v;O) = fo 2 O j post(o)[v] 6= ug

A�ects(v;O) denotes the set of operators in O which change the value of
variable v. Clearly, A�ects can be generalized to sets of actions in the obvious
way.

De�nition 2.10 Let � = hA;�i be a partially ordered plan over some set
of operators O (de�ned over some set of state variables V) and let v 2 V.
The function Paths : V � (2A � (2A�A))! 2Seqs(O) is de�ned as:

Paths(v; hA;�i) = TS(hA�ects(v;A);�0i)

where �0 is � restricted to A�ects(v;A).

Paths(v; hA;�i) denotes the set of sequences over A�ects(v;A) which are
consistent with�. It should be noted that Paths(v; hA;�i) may contain more
than one sequence. For totally ordered action sequences !, we sometimes
abuse the notation and write Paths(v; !) instead of Paths(v; hA;�i) where
A is the actions in ! and � is the total ordering of A.

Given an action sequence � = ha1; : : : ; ani the notation �nk denotes
the action sequence ha1; : : : ; ak�1i and �=k denotes the action sequence
ha1; : : : ; aki, which can be illustrated as follows

�nkz }| {
ha1; : : : ; ak�1; ak| {z }

�=k

; ak+1; : : : ; ani:

2.4 A Remark on the Unde�ned Value

As previously seen, the unde�ned value u is used in several ways in the SAS+

formalism:

� In a pre- or prevail-condition, u indicates that there is no such condition
for that variable; we do not care about the value at all.

� In a post-condition, u indicates that the operator does not change the
value of that variable.

� In an initial state, u indicates that we do not know the value of the
variable.

� In a goal state, u indicates that we do not care what the value of the
variable is when the plan has been executed.

8

The multiple roles of u stems from the action structures formalism [31] from
which SAS+ evolved. Since there is a potential risk of confusion, the reader
ought to keep this multiple use of u in mind when the symbol is encountered.

3 Restrictions

The section de�nes the restrictions to be considered in this article. We
present �ve structural restrictions (I, A�, A, A+ and O) as well as the four
previously studied syntactical restrictions (P, U, B and S). We also develop
methods for checking the structural restrictions in polynomial time.

3.1 Syntactical Restrictions

Previously, four restrictions on the SAS+ planning problem have been identi-
�ed that, in certain combinations, result in tractability [5, 6]. An instance of
the SAS+ problem is post-unique (P) i� no two distinct operators can change
the same state variable to the same value and it is unary (U) i� each operator
changes exactly one state variable. The instance is binary (B) i� all state
variable domains have exactly two values. Finally, the instance is single-
valued (S) i� any two operators that both require the same state variable
to have some speci�c value during their respective occurrences must require
the same de�ned value. For example, single-valuedness prevents us from
having two operators such that one requires a certain room to be lit during
its occurrence while the other requires the same room to be dark during its
occurrence. This is formally de�ned as follows:

De�nition 3.1 An operator o is unary i� there is exactly one variable v
such that post(o)[v] 6= u.

De�nition 3.2 A SAS+ instance � = hV;O; s0; s�i is

(P) Post-unique i� for all o; o0 2 O, whenever post(o)[v] = post(o0)[v] 6= u

for some v 2 V, then o = o0;

(U) Unary i� all o 2 O are unary;

(B) Binary i� jDvj = 2 for all v 2 V;

(S) Single-valued i� there exists some state s 2 S+ s.t. prv(o) v s for all
o 2 O.

All these are essentially syntactical restrictions on the problem instance and
they are all easy to test in polynomial time [1, p. 84].

9

3.2 Prerequisites for Structural Restrictions

Next we will de�ne the new structural restrictions I, A�, A, A+ and O.
However, we �rst need to de�ne some underlying concepts. We will use the
SAS+ problem instance � de�ned in Example 3.1 below as an example for
demonstrating the various concepts.

Example 3.1 � = hV;O; s0; s�i where V = fv1; v2g and Dv1 ;Dv2 and O are
de�ned in Tables 1 and 2. For our purposes the exact values of s0 and s� do
not matter so we leave them unspeci�ed.

In the forthcoming de�nitions, let � = hV;O; s0; s�i be an arbitrary SAS+

instance.
For each state variable domain, we de�ne the graph of possible transi-

tions for this domain, the domain-transition graph, without taking the other
domains into account. We also de�ne the implied reachability graph that
shows whether there is a path or not between the various domain values.

De�nition 3.3 For each v 2 V, we de�ne the corresponding domain transi-
tion graph Gv as a directed labelled graph Gv = hD+

v ;Tvi with vertex set D+
v

and arc set Tv s.t. for all x; y 2 D+
v and o 2 O, hx; o; yi 2 Tv i� pre(o)[v] v x

and post(o)[v] = y 6= u. Further, for each X � D+
v we de�ne the reachability

graph for X as a directed graph GX
v = hX;TX i with vertex set X and arc set

TX s.t. for all x; y 2 X s.t. x 6= y, hx; yi 2 TX i� there is a path from x to y
in Gv.

Note that the condition \pre(o)[v] v x" is equivalent to \pre(o)[v] = u or
pre(o)[v] = x". Hence, there will be an arc from x to y when there is an
operator with x as pre-condition and y as post-condition; there will also be
an arc from x to y when there is an operator with u as pre-condition and y
as post-condition. The latter case will introduce jD+

v j arcs, one from each
vertex, into the domain-transition graph, including one from the vertex u,
which is consistent with the use of u as a \don't know" value|we do not
have a pre-condition on v, so the operator can be applied even if we do not
know the value of v.

As an example, the domain-transition graphs of � are provided in Fig-
ure 1. Another way of viewing GX

v is as the restriction to X � D+
v of the

Variable Domain
v1 fa; b; c; dg
v2 fe; fg

Table 1: State variables of �.

10

Operator Precondition Postcondition Prevailcondition
o1 v1 = a v1 = d v2 = e
o2 v1 = b v1 = d v2 = f
o3 v1 = c; v2 = e v1 = d; v2 = f

Table 2: Operators of �.

- ?� -d

o2

o3 o1

Gv1 : Gv2 :

fe
o3

b

c a

u u

Figure 1: Domain-transition graphs of �.

transitive closure of Gv, but with unlabelled arcs and with all re
exive arcs
removed. When referring to a path in a domain-transition graph below, we
will typically mean the sequence of labels, i.e. operators, along this path.
We say that a path in Gv is via a set X � Dv i� each member of X is vis-
ited along the path, possibly as the initial or �nal vertex. Naturally, other
vertices (i.e. vertices not in X) may be visited along the path.
We continue by de�ning two distinguished types of values, the requestable
values. The set of requestable values plays an important role for de�ning the
structural restrictions. They will also be extensively used in the de�nition of
the planning algorithm.

De�nition 3.4 For each v 2 V and O0 � O, the set PO
0

v of prevail-
requestable values for O0 is de�ned as

PO
0

v = fprv(o)[v] j o 2 O0g � fug

and the set RO0

v of requestable values for O0 is de�ned as

RO0

v = PO
0

v [

fpre(o)[v]; post(o)[v] j o 2 O0 and o is non-unary g � fug:

Example 3.2 For �, POv1 = ? and POv2 = fe; fg. Furthermore, RO
v1
= fc; dg

and RO
v2
= fe; fg.

To illustrate the ideas behind the requestable values, suppose that we create
a path � from x to y in Gv. The operators in that path may have prevail-
conditions on another variable v0. If the operators are non-unary, they may
also have pre- and post-conditions on v0. The path \requests" v0 to obtain

11

those values in a certain order. Thus, a plan for an instance with s0[v] = x
and s�[v] = y containing the path � must include a path from s0[v0] to s�[v0]
via those requested values.

3.3 Structural Restrictions

We can now de�ne the structural restrictions.

De�nition 3.5 Let G = hV;Ai be a directed graph and let G0 be its as-
sociated undirected graph, i.e. the symmetric closure of G. The set of
components of G is the set of largest subgraphs of G such that the associated
subgraphs in G0 are connected.

De�nition 3.6 An operator o 2 O is irreplaceable wrt. a variable v 2 V i�
removing some arc labelled with o in Gv splits some component of Gv into
two components.

Example 3.3 In �, o3 is irreplaceable wrt. v1 because removing it separates
Gv1 into disjoint components. Similarly, o3 is irreplaceable wrt. v2.

Note that an operator o with pre(o)[v] = u and post(o)[v] = x 6= u introduces
several arcs into the domain transition graph; speci�cally, there will be a
re
exive arc from x to x since pre(o)[v] = u v x. Removing that arc will not
split the domain-transition graph into components so operators of this type
cannot be irreplaceable.

De�nition 3.7 Let O be a set of operators and let !; !0 2 Seqs(O) such
that ! = ho1; : : : ; oki and !0 = ho01; : : : ; o

0
ni . Then, ! � !0 i� there exists a

subsequence ho0i1 ; : : : ; o
0
ik
i of !0 such that prv(oj) v prv(o0ij) for 1 � j � k.

Intuitively, ! � !0 means that !0 contains operators that require at least
the same prevail-conditions as the operators in ! and, furthermore, they
are required in the same order. Note that hi � ! for any ! 2 Seqs(O).
Furthermore, if !; !0; ; 0 2 Seqs(O), !�!0 and � 0, then (!;)� (!0; 0).

We can now de�ne the structural restrictions.

De�nition 3.8 A SAS+ instance � is:

(I) Interference-safe i� every operator o 2 O is either unary or irreplaceable
wrt. every v 2 V it a�ects.

(A�) Acyclic wrt. prevail-requestable values i� GPO
v

v is acyclic for each v 2 V.

(A) Acyclic wrt. requestable values i� GRO
v

v is acyclic for each v 2 V.

(A+) Acyclic i� Gv is acyclic for each v 2 V.

12

(O) Prevail-order-preserving i� for all v 2 V, all x; y 2 D+
v , all X � R

O
v

and all ! = ho1; : : : ; omi, !0 = ho01; : : : ; o
0
ni in Seqs(O), whenever ! is

a shortest path from x to y via X and !0 is a path from x to y via X,
then ! � !0.

The formal de�nitions may, perhaps, seem somewhat di�cult to understand
at a �rst reading, so the reader might �nd the following intuitive explanations
helpful.

Interference-safeness: If an operator changes more than one variable, then for
each such variable it splits the domain of this variable into two partitions and
is the only operator which can move between these partitions. This means
that if we have to move from one partition to the other for a variable, then
we know that we must also do so for all other variables the operator a�ects,
i.e. interference between subplans arises. If this side-e�ect is unacceptable,
then we know immediately that there is no solution. Otherwise, this helps
by splitting the problem into smaller subproblems.

Acyclicity: For each variable, certain distinguished values must be achieved
in a particular order, if they need to be achieved at all. Since these are pre-
cisely those values that may cause interference between subplans for di�erent
variables, they can be used as synchronization points in the planning pro-
cess. The variants A+ and A� consider fewer and more distinguished values
respectively.

Prevail-order-preservation: For each state variable, the sequence of prevail-
conditions required along a shortest operator sequence between two values
must be the same as or a relaxation of the values requested by any other
sequence between the same values. Hence, it can never be easier to generate
a plan by generating non-shortest subplans for a variable since this would
never cause less interference between the subplans.

Example 3.4 Consider the previous � example. By example 3.3, it is easy
to see that � is interference-safe since o3 is the only non-unary action and it is
irreplaceable wrt. all variables it a�ects. Since both Gv1 and Gv2 are acyclic,
� satis�es A and as there exists one path at most between any two values in
the domain-transition graphs, prevail-order-preservation also follows.

3.4 Testing Structural Restrictions

Given a SAS+ instance �, it is trivial to test the restrictions A�, A and
A+ in polynomial time. Similarly it is easy to check whether an operator
o is irreplaceable or not. For each variable that o a�ects, remove o from

13

the corresponding domain-transition graph and test if the number of com-
ponents increases in each of the domain-transition graphs. This can be done
in polynomial time by using some standard graph component algorithm [32].
Hence, checking restriction I takes polynomial time. The complexity of check-
ing prevail-order-preservation remains an open question. Fortunately, it is
tractable to test this restriction for instances that are acyclic wrt. requestable
values, so it is tractable to test the combination AO. First, we de�ne the no-
tion of weak prevail-order-preservation. Weak prevail-order-preservation is a
version prevail-order-preservation where the sets of intermediate values are
required to be empty.

De�nition 3.9 A domain-transition graph Gv is weakly prevail-order-
preserving i� for all x; y 2 D+

v and for all ! = ho1; : : : ; omi, !0 = ho01; : : : ; o
0
ni 2

Seqs(O), if ! is a shortest path from x to y and !0 is a path from x to y,
then ! � !0.

We continue by showing that if v is a state-variable satisfying restriction A,
then weak and ordinary prevail-order-preservation are equivalent.

Theorem 3.10 Let v be a state variable such that GRO
v

v is acyclic. Then,
Gv is prevail-order-preserving i� Gv is weakly prevail-order-preserving.

Proof sketch: 2 The only-if part is immediate from the special case when
the paths go via the empty set. The if part is a straightforward induction
over the size of the subsets of GRO

v
v . 2

Hence, under restriction A, it is su�cient to check if an instance is weakly
prevail-order-preserving to conclude that it satis�es restriction O.

De�nition 3.11 Let v be a state variable and let x; y 2 D+
v . Then, two

paths ! = ho1; : : : ; oni; !
0 = ho01; : : : ; o

0
ni 2 Seqs(O) of equal length n from

x to y are prevail-consistent i� prv(oi) = prv(o0i) for all 1 � i � n, which we
denote ! , !0.

An alternative de�nition is that ! , !0 i� ! � !0 and !0 � !. Note that
prevail-consistency is an equivalence relation.

De�nition 3.12 A state variable v is shortest-path consistent i� for all x; y 2
D+
v and all shortest paths !; !0 from x to y in Gv, ! and !0 are prevail-

consistent.

Since hi is always the shortest path from a value x 2 D+
v to u, we can without

loss of generality assume that y 2 Dv in order to simplify the forthcoming
proofs.

2Full proofs can be found in the technical reports listed in Section 1

14

Lemma 3.13 Let v be a state variable that satis�es restriction O. Then, v
is shortest-path consistent.

Proof: Arbitrarily choose x 2 D+
v and y 2 Dv. Let ! = ho1; : : : ; oni; !0 =

ho01; : : : ; o
0
ni 2 Seqs(O) be two arbitrary shortest paths from x to y. By

prevail-order-preservation, both ! � !0 and !0 � ! hold so ! , !0. 2

We now present an algorithm, Check-SPC, for checking shortest-path consis-
tency. The algorithm can be found in Figure 2. Note that the for-loop in
line 3 is not technically necessary for the algorithm to function properly, it
is merely inserted to allow for a simpler correctness proof.

Lemma 3.14 Let v be a state variable. Then, Check-SPC accepts i� v is
shortest-path consistent.

Proof: if: We show the contrapositive. If Check-SPC rejects, then it has
constructed an example of two shortest paths that are not prevail-consistent,
either in line 2 or in line 9. Consequently, v cannot be shortest-path consis-
tent.
only-if: We must show that if Check-SPC accepts, then there does not exist
any x 2 D+

v ; y 2 Dv and two shortest paths !; from x to y such that !;
are not prevail-consistent. We show this by induction over n, the length of
the shortest path from x to y. The basis step of the induction corresponds
to the test in line 2 of Check-SPC. The induction steps correspond to lines
3-9 for di�erent values of i.
Basis step: Arbitrarily choose x 2 D+

v , y 2 Dv such that n = 0 or n = 1. Let
! and be arbitrary shortest paths from x to y. If n = 0 then ! = = hi
is a path from some x 2 Dv to itself and ! , follows immediately. If
n = 1, then ! = hoi and = hpi. Since the algorithm did not fail in line 2,
prv(o)[v] = prv(o0)[v] and ! , follow.
Induction hypothesis: For arbitrary x 2 D+

v , y 2 Dv and for all pairs of
shortest paths !; from x to y of length n � k in Gv, assume ! , .
Induction step: Arbitrarily choose x 2 D+

v , y 2 Dv such that n = k + 1,
k � 1. Let ! and be two arbitrary shortest paths from x to y in Gv. Let
! be the shortest path from x to y that the algorithm constructs in line 5.

Since j!j = k + 1 and k � 1, there exists some r 2 Dv such that ! is
a shortest path from x to y via r, r 6= x and r 6= y. Let
1 and
2 be
the paths that the algorithm chooses in lines 7 and 8 when the value of z
is r. Partition ! into two non-empty paths, !1; !2 such that ! = (!1;!2)
and post(Last(!1))[v] = r. Since ! is a shortest path from x to y, it follows
that !1 is a shortest path from x to r and !2 is a shortest path from r to
y. By the induction hypothesis,
1 , !1 and
2 , !2 which implies that
(
1;
2) , (!1;!2). The algorithm did not fail in line 9, so we achieve

15

! , (
1;
2) , (!1;!2) = !

Similarily ! , so since , is a transitive relation, ! , and the induction
step follows. 2

Based on Check-SPC, we can similarly devise an algorithm for checking weak
prevail-order-preservation. The algorithm, Check-WO, can be found in Fig-
ure 3.

Lemma 3.15 Let v be a shortest-path-consistent state variable. Then,
Check-WO accepts i� Gv is weakly prevail-order-preserving.

Proof: Analogous to the proof of Lemma 3.14. 2

Consider algorithm Check-O in Figure 3.4. The next theorem shows that it
accepts if and only if the given SAS+ instance (which must satisfy restriction
A) is prevail-order-preserving.

Theorem 3.16 Let � be a SAS+ instance satisfying restriction A. Then,
Check-O accepts i� � is prevail-order-preserving.

Proof: if: Arbitrarily select v 2 V. Since v satis�es restriction O, v
is shortest-path consistent by Lemma 3.13. Consequently, Check-O cannot
fail in line 3. Furthermore, v is weakly prevail-order-preserving by Theorem
3.10 so Check-O cannot fail in line 4. Hence, if v is prevail-order-preserving,
Check-O accepts.
only-if: Arbitrarily select v 2 V. Since Check-O did not fail in line 3, v
is shortest-path consistent by Lemma 3.14. Knowing that v is shortest-path
consistent and that Check-O did not fail in line 4, we can draw the conclu-
sion that v is weakly prevail-order-preserving by Lemma 3.15. Furthermore,
we know that GRO

v
v is acyclic. Hence, by Theorem 3.10, v is prevail-order-

preserving. 2

We proceed by analysing the worst-case time complexity of Check-O using
straightforward, non-optimal assumptions about data structures. As we do
not attempt proving an optimal bound on the complexity, we assume that
states are represented as arrays of values and operators as triples of states.
With this representation, we can �nd a shortest path between two values
in a domain-transition graph Gv in O(jD+

v jjOj) time, for example, by using
Dijkstra's algorithm [12]. (This follows from the fact that, in the worst case,
one single operator can introduce D+

v arcs into Gv.) Naturally, we can also
decide if there exists a path between two values in a domain-transition graph
in O(jD+

v jjOj) time. We leave the following theorem without proof.

16

1 procedure Check-SPC(v)
2 if there exist two operators o; o0 2 O such that all the following holds:

� pre(o)[v] = pre(o0)[v] or pre(o)[v] = u

� post(o)[v] = post(o0)[v] 6= u

� prv(o) 6= prv(o0)

then reject;
3 for i 2 to jD+

v j do
4 for all x 2 D+

v ; y 2 Dv s.t. there exists a shortest path from x to y
in Gv of length i do

5 let ! be any such path
6 for z 2 Dv � fx; yg do
7
1 a shortest path from x to z in Gv;
8
2 a shortest path from z to y in Gv;
9 if j(
1;
2)j = j!j and not ! , (
1;
2) then reject;
10 accept;

Figure 2: Algorithm for testing shortest-path consistency.

1 procedure Check-WO(v)
2 for i 2 to jD+

v j do
3 for all x 2 D+

v ; y 2 Dv s.t. there exists a shortest path ! from x to y
in Gv of length i do

4 let ! be any such path
5 for z 2 Dv � fx; yg do
6
1 a shortest path from x to z in Gv;
7
2 a shortest path from z to y in Gv;
8 if ! 6� (
1;
2) then reject;
9 accept;

Figure 3: Algorithm for testing weak prevail-order-preservation

1 procedure Check-O(�)
2 comment � = hV;O; s0; s�i satis�es restriction A.
3 for v 2 V do
4 Check-SPC(v);
5 Check-WO(v);
6 accept;

Figure 4: Algorithm for testing prevail-order-preservation.

17

Theorem 3.17 Check-O has a worst-case time complexity of O(jVj2jOj2M5)
where M = maxv2V jD+

v j.

The complexity �gure given in Theorem 3.17 is a coarse estimate. By a more
careful analysis and by using improved algorithms, this �gure could probably
be lowered substantially.

4 Planning Algorithm for SAS+-IAO

We begin this section by presenting the SAS+-IAO planning algorithm and
explaining how it works in informal terms. The formal correctness proofs
will be postponed to the next section. The algorithm is then illustrated with
a small workshop example. The section is concluded with a proof showing
that SAS+-IAO is strictly more general than the SAS+-PUS problem which
is the maximally tractable problem under the syntactical restrictions P, U,
B and S [6].

4.1 The Algorithm and its Complexity

Before describing the actual planning algorithm, we make the following ob-
servations about the solutions to arbitrary SAS+ instances.

Lemma 4.1 Let � = hB;��i be a partial-order plan solving some SAS+

instance � = hV;O; s0; s�i. Then for each v 2 V and for each action sequence
� which is a member of Paths(v; hB;��i), the operator sequence type(�) is
a path in Gv from s0[v] to s�[v] via RB

v .

Proof: It can be easily shown that type(�) is a path in Gv from s0[v] to
s�[v] (A proof for this can be found in [24, Lemma C.17].) so it remains to
show that this path goes via RB

v . Suppose there exists some z 2 RB
v with

no action a in � such that post(a)[v] = z and s0[v] 6= z. By the de�nition of
requestable value, we have two cases:

� There exists some action b 2 B such that prv(b)[v] = z. Since s0[v] 6= z
and no action in � achieves z, � is not a valid plan. Contradiction and
the lemma follows.

� There exists some non-unary action b 2 B such that pre(b)[v] = z or
post(b)[v] = z. Since s0[v] 6= z and no action in � achieves z, b cannot
be executed so � is not a valid plan. Contradiction arises and the
lemma follows.

18

2

This is part of a declarative characterization of the solutions and it cannot
be immediately cast in procedural terms|the main reason being that for a
solution hA;�i, we cannot know the RA

v sets in advance. These sets must,
hence, be computed incrementally, which can be done in polynomial time
under the restrictions I and A. The algorithm Plan (Figures 5 and 6) serves as
a plan generation algorithm under these restrictions. Henceforth, we assume
V = fv1; : : : ; vmg.

The heart of the algorithm is the procedure Extend, which operates on the
global variables X1 � Dv1 ; : : : ;Xm � Dvm , extending these monotonically. It
also returns operator sequences in the global variables !1; : : : ; !m, but only
their values after the last call are used by Plan. For each i, Extend �rst �nds
a shortest path !i in Gvi from s0[vi] to s�[vi] via Xi. (The empty path hi is
considered as the shortest path from any vertex x to u, since u v x). If no
such path exists, then Extend fails and, consequently, Plan fails. Otherwise,
each Xi is set to RO0

vi
, where O0 is the set of all operators along the paths

!1; : : : ; !m. The motivation for this is as follows: If prv(o)[vi] = x 6= u for
some i and some operator o in some !j , then some action in the �nal plan
must achieve this value, unless it holds initially. Hence, x is added to Xi

to ensure that Extend will �nd a path via x for vi in the next iteration.
Similarly, each non-unary operator o occurring in some !i must also appear
in !j for all j such that o a�ects vj.

Starting with all X1; : : : ;Xm initially empty, Plan calls Extend repeatedly
until nothing more is added to these sets or Extend fails. Viewing Extend as
a function Extend : 2Dv1 � : : :� 2Dvm ! 2Dv1 � : : :� 2Dvm , i.e. ignoring the
side-e�ect on !1; : : : ; !m, this process corresponds to constructing a �xpoint
for Extend in 2Dv1 � : : :� 2Dvm . The paths !1; : : : ; !m found in the last iter-
ation contain all the operators necessary in the �nal solution and procedure
Instantiate instantiates these as actions. This works in such a way that all
occurrences of a non-unary operator are merged into one unique instance
while all occurrences of unary operators are made into distinct instances. It
remains to compute the action ordering on the set A of all such operator
instances (actions). For each vi, the total order implicit in the operator se-
quence !i is kept as a total ordering on the corresponding actions. Finally,
each action a s.t. prv(a)[vi] = x 6= u for some i must be ordered after some
action a0 providing this condition. It turns out that there always is a unique
such action, or none if vi = x initially. Similarly, a must be ordered be-
fore the �rst action succeeding a0 that destroys its prevail-condition. Finally,
if the transitive closure �+ of � is irre
exive, then hA;�i is returned and
otherwise Plan fails.

We continue by stating the worst-case time complexity of the Plan algo-
rithm using straightforward, non-optimal assumptions about data structures.

19

1 procedure Plan(hV;O; s0; s�i);
2 hX1; : : : ;Xmi h?; : : : ;?i;
3 repeat
4 hX1; : : : ;Xmi Extend (hX1; : : : ;Xmi);
5 until no Xi is changed;
6 �1; : : : ; �m hi;
7 Instantiate;
8 comment Instantiate all operators s.t. all non-unary operators of the

same type are instantiated to the same occurence and unary operators
are always instantiated to di�erent occurences.

9 for 1 � i � m and a; b 2 �i do
10 Order a � b i� a immediately precedes b in �i;
11 A fa 2 �i j 1 � i � mg;
12 for 1 � i � m and a 2 A s.t. prv(a)[vi] 6= u do
13 Assume �i = ha1; : : : ; aki
14 if post(al)[vi] = prv(a)[vi] for some 1 � l � k then
15 Order al � a;
16 if l < k then Order a � al+1;
17 else Order a � a1;
18 if � is irre
exive then return hA;�i;
19 else fail;

1 function Extend (hX1; : : : ;Xmi)
2 comment The variables !1; : : : ; !m are implicitly used as output param-

eters.
3 for 1 � i � m do
4 !i Shortest-Path(vi; s0[vi]; s�[vi];Xi);
5 if no such path exists then fail;
6 for 1 � i � m do
7 for 1 � j � m and o 2 !j do
8 Xi Xi [fprv(o)[vi]g � fug;
9 for 1 � i � m do
10 for 1 � j � m and o 2 !j do
11 if o not unary then Xi Xi [fpre(o)[vi]; post(o)[vi]g � fug;
12 return hX1; : : : ;Xmi;

Figure 5: Planning algorithm and subroutine Extend.

20

1 procedure Shortest-Path(v; x; y;X)
2 if not every value in X is reachable from x then fail
3 X hxi; ! hi;
4 while X 6= ? do
5 if there exists a state z in X such that there exists a path in Gv from

z to all other states in X [fyg then
6 X (X; z);
7 X X � fzg;
8 else fail;
9 X (X ; y);
10 comment SP is some standard algorithm for �nding shortest paths in

graphs, e.g. Dijkstra's algorithm.
11 comment Assume X = hX1; : : : ;Xni.
12 for i 1 to n� 1 do
13 ! (!;SP (X i;X i+1));
14 return !;

1 procedure Instantiate
2 comment Modi�es �1; : : : ; �m
3 for 1 � i � m do
4 Assume !i = ho1; : : : ; oki
5 for 1 � l � k do
6 if ol not unary and there is some a of type ol in �j

for some j < i then al a;
7 else Let al be a new instance of type(al);
8 �i ha1; : : : ; aki;

Figure 6: Subroutines Shortest-Path and Instantiate.

21

As we do not attempt proving an optimal bound on the complexity, we make
the following assumptions about data representation: States are represented
as arrays of values, operators as triples of states, actions as tuples of labels
and operators, sets as lists and relations as adjacency lists. Remember that
we can �nd a shortest path between two values in a domain-transition graph
Gv in O(jD+

v jjOj) time, Naturally, we can also decide if there exists a path
between two values in a domain-transition graph in O(jD+

v jjOj) time.
Under these assumptions, we can prove the complexity of Plan:

Theorem 4.2 The P lan algorithm has a worst-case time complexity of
O(jVj3jOj2M5) where M = maxv2V jD

+
v j.

Proof sketch: It is straightforward to show that Extend and Instantiate
have worst-case complexities of O(jOj2jVj2M4) and O(jVj2jOj2) respectively.
Deciding whether a directed graph hV;Ai is irre
exive or not can be done in
O(jV j+ jEj) time [28, p. 4-7]. Hence, the irre
exivity test can be carried out
in O(jOj2) time since A can contain two actions of each type at most. The
repeat loop in lines 3-5 of Plan can call Extendmaximally

P
v2V jD

+
v j � jVjM

times. Hence, lines 3-5 run in O(jVj3jOj2M5) which dominates the running
time of the algorithm. 2

The complexity of Plan can probably be improved by employing a more
careful analysis and using better data structures.

4.2 An Example: The Manufacturing Workshop

In this subsection, we will present a small, somewhat contrived example of a
manufacturing workshop and show how the algorithm handles this example.
We assume that there is a supply of rough workpieces and a table for putting
�nished products on. There are also two workstations: a lathe and a drill.
To simplify matters, we will consider only one single workpiece. (It has been
suggested by Sandewall [30] that it may be more natural to model the
ow of a
single workpiece and then transform the plan for this workpiece into separate
cyclic plans for the workstations.) Two di�erent shapes can be made in the
lathe and one type of hole can be drilled. Furthermore, only workpieces of
shape 2 �t in the drill. This gives a total of four possible combinations for
the end product: rough (i.e. not worked on), shape 1 or shape 2 without a
hole and shape 2 with a hole. Note also that operator Shape2 is tougher on
the cutting tool than Shape1 is|only the former allows us to continue using
the cutting tool afterwards. Finally, both the lathe and the drill require that
the power is on. This is all modelled by �ve state variables, as shown in
Table 3, and nine operators, as shown in Table 4. This example is a SAS+-
IAO instance, but it does not satisfy either of the P, U and S restrictions in
B�ackstr�om and Nebel [6].

22

Variable Domain Denotes
v1 fSupply,Lathe,Drill,Tableg Position of workpiece
v2 fRough,1,2g Workpiece shape
v3 fMint,Usedg Condition of cutting tool
v4 fYes,Nog Hole in workpiece
v5 fYes,Nog Power on

Table 3: State variables for the workshop example.

Operator Precondition Postcondition Prevailcondition
MvSL v1 = S v1 = L
MvLT v1 = L v1 = T
MvLD v1 = L v1 = D v2 = 2
MvDT v1 = D v1 = T
Shape1 v2 = R v2 = 1 v1 = L; v3 =M;v5 = Y
Shape2 v2 = R; v3 =M v2 = 2; v3 = U v1 = L; v5 = Y
Drill v4 = N v4 = Y v1 = D; v5 = Y
Pon v5 = N v5 = Y
Po� v5 = Y v5 = N

Table 4: Operators for the workshop example. (Domain values are denoted
by their initial characters only.)

N Y

Po�

Gv1
:

S L T

D

MvSL MvLT

MvLD
MvDT

Gv2
:

R 1

2

Shape2

Shape1

Gv3
: Gv4

: Gv5
:

Shape2 Drill
Pon

M U N Y

Figure 7: Domain-transition graphs for the workshop example. The unde-
�ned value is excluded.

23

Suppose we start in s0 = hS;R;M;N;N i and set the goal s� = hT; 2; u; Y;Ni,
that is, we want to manufacture a product of shape 2 with a drilled hole. We
also know that the cutting tool for the lathe is initially in mint condition,
but we do not care about its condition after �nishing. Finally, the power
is initially o� and we are required to switch it o� again before leaving the
workshop.

Procedure Plan will make two calls to Extend before terminating the loop
successfully, with variable values as follows:

After the �rst iteration:
!1 = hMvSL;MvLTi; !2 = hShape2i; !3 = hi;
!4 = hDrilli; !5 = hi
X1 = fL;Dg;X2 = fR; 2g;X3 = fM;Ug;X4 = fg;X5 = fY g

After the second iteration:
!1 = hMvSL;MvLD;MvDTi; !2 = hShape2i; !3 = hShape2i;
!4 = hDrilli; !5 = hPon;Po�i
X1 = fL;Dg;X2 = fR; 2g;X3 = fM;Ug;X4 = fg;X5 = fY g

The operators in the operator sequences !1; : : : ; !5 will be instantiated to
actions, where both occurrences of Shape2 are instantiated as the same ac-
tion, since Shape2 is non-unary. Since there is not more than one action of
each type in this plan, we will use the name of the operators also as names
of the actions. The total orders in !1; : : : ; !m are retained in �1; : : : ; �m.
Furthermore, Shape2 must be ordered after MvSL and before MvLD, since
its prevailcondition on variable 1 equals the postcondition of MvSL for this
variable. Similarly, Drill must be ordered between MvLD and MvDT because
of its prevailcondition on variable 1 and both Shape2 and Drill must be or-
dered between Pon and Po� because of their prevailcondition on variable 5.
Furthermore, MvLD must be (redundantly) ordered after Shape2 because of
its prevailcondition on variable 2. The �nal partial-order plan is shown in
Figure 8.

4.3 The Relation Between SAS+-PUS and SAS+-IAO

The maximally tractable problem under the previous, syntactical restrictions
is the SAS+-PUS problem [6]. Before proceeding with the correctness of
algorithm Plan, we show that the SAS+-IAO problem is strictly more general
than the SAS+-PUS problem [2, 6]. We �rst show that every SAS+-PUS
instance is a SAS+-IAO instance; then we construct a SAS+-IAO instance
that does not satisfy either P, U or S.

24

Lemma 4.3 If � is a unary and single-valued SAS+instance, then GRO
v

v is
acyclic for all v 2 V.

Proof: Follows immediately from the fact that jRO
v j � 1 when an instance

is both unary and single-valued. 2

Lemma 4.4 If � is a unary SAS+instance, then � is interference-safe.

Proof: Immediate from the de�nition of interference-safeness. 2

Lemma 4.5 If a SAS+instance � is post-unique, unary and single-valued,
then it is prevail-order-preserving.

Proof: We show that v is weakly prevail-order-preserving and by Lemmata
4.3 and 3.10, the lemma follows. By the de�nition of weak prevail-order-
preservation, we have to show that there does not exist any x 2 D+

v ; y 2 Dv,
any shortest path ! from x to y and some other path from x to y such
that ! 6� . We show this by induction over n, the length of the shortest
path from x to y.
Basis step: Arbitrarily choose x 2 D+

v , y 2 Dv such that n = 0. Every
shortest-path ! from x to y equals hi so !� where is an arbitrary path
from x to y.
Induction hypothesis: Arbitrarily choose x 2 D+

v , y 2 Dv such that n = k,
k � 0. Let ! be a shortest path and let be any path from x to y. Assume
! � .
Induction step: Arbitrarily choose x 2 D+

v , y 2 Dv such that n = k+1, k � 0.
Let ! be a shortest path and let be any path from x to y. We have to show
that ! � . Let o = Last(!), p = Last() and z = pre(o)[v]. Let !0 denote
! without its last operator and let 0 denote without its last operator. If
y = u, then ! = hi which contradicts the fact that j!j = k + 1 > 0. Hence
y 6= u so, by post-uniqueness, o = p. We must consider two cases:

Pon Po�

MvSL

Shape2

MvLD

Drill

MvDT

Figure 8: The �nal partial-order plan (only �, not �+, is shown).

25

1. z = u. Since ! is minimal, it consists of the operator o. We know that
o = p and hence ! � .

2. z 6= u. Then, !0 is a minimal path from x to z and 0 is a path from x to
z. Since j!0j = k, we can apply the induction hypothesis and conclude
that !0 � 0. But ! = h!0; oi and = h 0; pi so ! � because o = p.

One of these cases must hold, which concludes the induction. 2

Theorem 4.6 Every SAS+-PUS instance is a SAS+-IAO instance.

Proof: Immediate from Lemmata 4.3, 4.4 and 4.5. 2

Theorem 4.7 There exists a SAS+-IAO instance that does not satisfy either
P, U or S.

Proof: Consider the previously de�ned SAS+-IAO instance �. � is
not post-unique since post(o1)[v1] = post(o2)[v1] = post(o3)[v1] = d, it is
not unary since o3 a�ects both v1 and v2 and it is not single-valued since
prv(o1)[v2] = e and prv(o2)[v2] = f . 2

Corollary 4.8 The SAS+IAO class is strictly more general than the SAS+-
PUS class.

5 Empirical Results

As a complement to the complexity analysis of algorithm Plan, we have also
performed an empirical study. The algorithm was implemented in C++ with
the aid of the LEDA data type and algorithm library3. Details concerning the
implementation, known as Sasplan, can be found in Kvarnstr�om [26]. In our
experiment, we compared Sasplan with Graphplan [8] which is recognized as
one of the fastest propositional planners available. It must be clearly under-
stood that any comparison between these two planners is by necessity unfair:
Graphplan is a general-purpose propositional planner which is applicable to
a wider range of problems than Sasplan.

We compared the planners on three domains and the detailed results can
be found below. The experiments were performed on a SUN Sparcstation
104. If a planner failed to solve a given instance within approximately 90
seconds, the experiment was aborted. Such aborted experiments are marked

3Information about LEDA can be found at http://mpi-sb.mpg.de/LEDA. Version 3.4
was used in our experiments.

4SUN and Sparcstation 10 are trademarks of SUN Microsystems.

26

n Graphplan Sasplan

20 0.8 0.4
40 5.0 1.2
60 15.6 2.7
80 38.8 5.2
90 75.0 6.8
100 * 8.8
150 * 25.0
200 * 54.5

Table 5: Empirical results of applying algorithm Plan on the D1S1 domain.
The running time (in seconds) is the mean value of �ve sample runs.

with an asterisk in the tables containing the results. It should be noted that
we have required that Sasplan test the restrictions I, A and O in each and
every experiment. Since Sasplan must perform these checks in a real-world
planning situation, it is reasonable that the tests are performed also in the
experimental setting.

5.0.1 The D1S1 Domain

The D1S1 domain was invented by Barrett and Weld [7]. A D1S1 domain of
size n, n � 2, consists of 2n propositional atoms I1; : : : ; In and G1; : : : ; Gn to-
gether with n operators A1; : : : ; An. In Strips-style notation, the operators
are de�ned as follows:

(:actionA1 :precond fI1g :add fG1g);

(:actionAi :precond fIig :add fGig :delete fIi�1g); i � 2:

The initial state is fI1; : : : ; Ing and the goal state fG1; : : : ; Gng. It is easy to
see that the plan A1; A2; : : : ; An is a solution to the instance. AD1S1 domain
can trivially be converted to an equivalent SAS+ instance by replacing each
propositional atom with a state variable with domain f0; 1g and modi�ying
the operators accordingly. It is easily veri�able that the resulting SAS+

instance satis�es restricitons I, A and O.
Blum and Furst [8] showed that Graphplan is competitive with the best

performance reported on the D1S1 domain [7]. In Table 5, we can see that
Sasplan outperforms Graphplan on this domain.

5.0.2 The Tunnel Example

The tunnel example is a toy domain that has been used in control theory. It
assumes a tunnel (see Figure 9) divided into n sections such that the light

27

can be switched on and o� independently in these. The only light switches
for a section are located at the two ends of that section. It is also assumed
that one can only pass through a section if the light is on in that section. As
a typical instance of this problem assume that all lights are o� and the task is
to turn the light on in the innermost section while not turning on any other
light. This can be achieved by going into the tunnel, repeatedly switching
on the light in each new section encountered until reaching the innermost
section. Then leave the tunnel again, repeatedly switching o� the light in
each section, except the innermost one, when leaving it.

Modelling this problem as a SAS+ instance is straightforward and we
follow the model suggested by Klein [24]. De�ne n state variables v1; : : : ; vn
such that

vi =

(
0 when the light in section i is o�
1 when the light in section i is on

for i = 1; : : : ; n. For each state variable vi we de�ne two actions Oni and
O�i with the obvious meanings: Oni turns the light on in section i and O�i
turns it o�. The operator Oni has the following de�nition:

pre(On i)[vk] =

(
0 if k = i
u otherwise

post(On i)[vk] =

(
1 if k = i
u otherwise

prv(On i)[vk] =

(
1 if 1 � k � i� 1
u otherwise

The O�i operator is de�ned analogously. Finally, we have the following initial
and goal states:

� s0[vi] = 0 for 1 � i � n;

� s�[vn] = 1 and s�[vi] = 0 for 1 � i � n� 1.

Unfortunately, this problem cannot be directly modelled as a STRIPS in-
stance suitable for Graphplan. The reason for this is that Graphplan does not
support negative goals. However, we can use a transformation proposed by
B�ackstr�om [3] to overcome this problem. The trick is to represent each state
variable vi with two propositions vi-0 and v1-1. The interpretations of these
new propositions is that vi = 1 i� vi-1 is true and v1-0 is false and analo-
gously for vi = 0. By using this representation, we get the following STRIPS
de�nition of Oni:

(:actionOni :precond fvk-1 j 1 � k � i� 1g :add fvi-1g) :del fvi-0g):

28

n Graphplan Sasplan

10 0.6 0.2
15 11.7 0.3
17 65.0 0.4
20 * 0.6
50 * 3.4
100 * 17.0
150 * 44.6

Table 6: Empirical results of applying algorithm Plan on the tunnel example.
The running time is the mean value of �ve sample runs.

The initial state is then fvk-0 j 1 � k � ng and the goal state fvn-1g [
fvk-0 j 1 � k � n� 1g.

Since we were forced to use this transformation, the comparison between
Graphplan and Sasplan in Table 6 is not completely fair; Graphplan must han-
dle a problem containing twice as many propositions as the problem Sasplan

considers. However, this discrepancy does not explain the remarkable di�er-
ence in performance.

Sec 2Sec 1 Sec 3 Sec n

Figure 9: The tunnel example.

5.0.3 Random Instances

Our last experiment considers a certain type of random planning instances.
Let 0 � � � 1 and de�ne the problem RAND(�) of size n as an instance
consisting of n propositional atoms P1; : : : ; Pn together with n operators
A1; : : : ; An. De�ne sets 	�

i such that they with probability � contain atom
Pk, 1 � k � i� 1 and de�ne the operators A1; : : : ; An as follows:

(:actionAi :precond	
�
i :add fPig):

The initial state is ? and the goal state fP1; : : : ; Png. While our two other
test domains have unique minimal solutions, this domain has (usually) many
di�erent minimal solution. It is straightforward to verify that, for instance,
the plan A1; A2; : : : ; An is a solution to the instance. However, it may or may
not be a minimal solution to the instance depending on the sets 	�

1; : : : ;	
�
n.

29

Graphplan Sasplan

n � = 0:2 � = 0:5 � = 0:2 � = 0:5
50 0.5 1.6 0.9 1.1
100 2.9 12.7 4.1 4.9
150 8.2 59.7 11.0 13.1
200 22.6 * 24.1 27.5
250 71.9 * 43.0 49.6
300 * * 71.1 81.3

Table 7: Empirical results of applying algorithm Plan on random instances.
The running time is the mean value of ten sample runs. For each sample
run, a new instance of RAND(�) was generated.

Note that the breadth-�rst search strategy of Graphplan should be well suited
for this kind of problems.

A RAND(�) instance can trivially be converted to an equivalent SAS+

instance by replacing each propositional atom with a state variable with
domain f0; 1g and modi�ying the operators accordingly. The resulting SAS+

instance satis�es restricitons I, A and O (in fact, it also satis�es P, U, B and
S).

In the experiment we used two choices of �. In the �rst experiment, where
� = 0:2, Graphplan was actually faster than Sasplan on small instances. As
the sizes increased, the gap was narrowed and, eventually, Sasplan became
faster than Graphplan. By choosing � = 0:5, Sasplan were consistently faster
than Graphplan.

6 Correctness of Planning Algorithm

This section contains all correctness and complexity results for algorithm
Plan in the previous section. Let A be a planning algorithm. A is said to be
sound i� whenever it generates a plan ! for a SAS+ instance �, ! is a solution
to �. A is complete i� for every solvable SAS+ instance �, A generates a
plan when applied to �.

We begin by stating that the algorithm is sound for SAS+-IA instances
and continue by proving that Plan generates minimal solutions and is com-
plete for SAS+-IAO instances.

6.1 Soundness for SAS+-IA Instances

We �rst prove that algorithm Plan is sound for SAS+-IA instances. That
is, if the algorithm has managed to produce a partially ordered plan � for
a SAS+-IA instances � = hV;O; s0; s�i, then every topological sort ! of

30

the result � satis�es Valid (!; s0; s�). We begin by showing correctness of
Shortest-Path.

Lemma 6.1 Let v 2 V, x; y 2 D+
v and let X � RO

v . Then, Shortest-
Path(v; x; y;X) generates a shortest path from x to y via X in Gv.

Proof: Trivial. 2

We will occasionally need the following two lemmata concerning irreplaceable
operators.

Lemma 6.2 Let � = hV;O; s0; s�i be a SAS+ instance. If o 2 O is an irre-
placeable operator, then there cannot exist any v 2 V such that pre(o)[v] = u

and post(o)[v] = y 6= u.

Lemma 6.3 Let � = hV;O; s0; s�i be a SAS
+ instance and let � = hB;�i

be a partial-order plan solving �. If o 2 O is an irreplaceable operator, then
there cannot exist more than one action of type o in B.

We continue by de�ning separability.

De�nition 6.4 Let � be a SAS+ instance. A partial-order plan � = hA;�i
is separable wrt. � i� for each topological sort ! of � and for each v 2 V,
the following holds

� if there exists at least one a 2 A such that prv(a)[v] 6= u then for each
such a there exist two paths in Gv � from s0[v] to prv(a)[v] and � from
prv(a)[v] to s�[v], such that Last(�) � a � First(�) and Paths(v; !) =
f(�;�)g.

� if there does not exist any a 2 A such that prv(a)[v] 6= u then
Paths(v; !) is a path in Gv from s0[v] to s�[v].

We can now show that if a partial-order plan is separable, then it solves �.

Theorem 6.5 A partial-order plan � = hA;�i for a SAS+ problem instance
� solves � if � is separable wrt. �.

Proof sketch: Let � = ha1; : : : ; ajAji be an arbitrary topological sort of A
which is consistent with �. Since � is a partial-order plan, at least one such
� exists. The proof consists of two parts: Showing that Valid (�; s0;?) holds
and showing that s� v result(s0; �). Showing that Valid (�; s0;?) is fairly
straightforward by induction over all initial sequences of �. Proving that
s� v result(s0; �) is an easy analysis of how the actions in � are ordered. 2

Henceforth, we assume that � = hA;�i is the result of applying Plan on
some arbitrary SAS+-IA problem instance �. Below we prove that � is a
separable plan.

31

Lemma 6.6 � is a partial-order plan.

Proof: Immediate from the algorithm Plan and the fact that it did not fail
in line 18. 2

Lemma 6.7 � is separable wrt. �.

Proof: Let � be an arbitrary topological sort of � and let �vi denote the
unique member of Paths(vi; �).

We begin by showing that �vi is a path in Gvi from s0[vi] to s�[vi] for
every vi 2 V. The operator sequence !i created in lines 3-5 is obviously a
path in Gvi from s0[vi] to s�[vi]. Clearly, the only potential problem that can
occur is the existence of a non-unary operator o in some !j, 1 � j � m that
a�ects vi. For every vj that o a�ects, it occurs exactly once in !j since o
is irreplaceable and lines 3-5 of Extend were successfully completed. Hence,
Instantiate can correctly collect the non-unary operators and collapse them
into one unique action. Thus, �vi is a path in Gvi from s0[vi] to s�[vi] for
every vi 2 V.

We have to show that for each v 2 V and every a 2 A such that
prv(a)[v] 6= u, there exist two paths in Gv, � from s0[v] to prv(a)[v] and
� from prv(a)[v] to s�[v] such that Last(�) � a � First(�) and �v = (�;�).
Choose an arbitrary action a 2 A and a state variable vi 2 V such that
prv(a)[vi] 6= u. We know there is a path in Gvi from s0[vi] to s�[vi]. Fur-
thermore, since the repeat loop of Plan succeeded, prv(a)[vi] is achieved
by some operator in !i or s0[vi] = prv(a)[vi] because prv(a)[vi] must have
been added to Xi by some Extend call. Hence, we can split the instantiated
version �i of !i, into two paths in Gvi , namely �i from s0[vi] to prv(a)[vi]
and
i from prv(a)[vi] to s�[vi]. This means that a will be ordered such that
Last(�i) � a � First(
i) by lines 11-16 in the algorithm. Finally, we know
that (�i;
i) = �i = �vi and, consequently, � is separable. 2

We can now show that Plan is sound for SAS+-IA instances:

Theorem 6.8 The algorithm Plan is sound for SAS+-IA instances.

Proof: Immediate from the fact that � is the result of a successful appli-
cation of the algorithm on an arbitrarily chosen SAS+-IA problem instance
and Lemmata 6.6, 6.7 and Theorem 6.5 2

6.2 Minimality for SAS+-IAO Instances

Showing that the result � of applying Plan to � is minimal (in the sense
of containing as few actions as possible) requires two parts: A closer study
of the structure of minimal plans solving SAS+-IAO instances and some

32

reasoning about �xpoints. We begin by showing some structural properties
of minimal plans and continue by investigating the properties of Extend,
leading to Theorem 6.21 which states that every minimal plan solving �
must achieve at least those requestable values that � achieves. Minimality
follows trivially in the concluding Theorem 6.22.

Let � = hA;�i be the result of applying Plan to some arbitrary SAS+-
IAO problem instance � = hV;O; s0; s�i. Let I(O0) denote the set of non-
unary operators (or actions) in the operator (or action) set O0 and de�ne the
u-�ltered union b[s.t.

X b[Y = (X [Y)� fug

for all sets of values X;Y . In order to simplify the forthcoming proofs, we
also de�ne the kernel of a plan:

De�nition 6.9 Let � = hV;O; s0; s�i be a SAS+ problem instance and let
� = hA;�i;�0 = hA0;�0i be partially ordered plans over �. The function
Ker : 2O ! 2Dv1 � : : :� 2Dvm is de�ned as

Ker(O0) = hRO0

v1
; : : : ;RO0

vm
i

where O0 � O. Ker can be extended to operate on sets of actions in the
natural way. By writing Ker(hA;�i), we mean Ker(A). Ker(�) is called
the kernel of �. The relation Ker(�) �Ker Ker(�0) holds i� Ker(�)[i] �
Ker(�0)[i] for 1 � i � m.

Lemma 6.10 Arbitrarily choose v 2 V and Z; Y � RO
v such that Z � Y .

Choose x; y 2 D+
v and let ! be a shortest path from x to y via Z in Gv and

let be a shortest path from x to y via Y in Gv. Then the following holds:

1. I(!) � I()

2. If Z = Y , then I(!) = I().

Proof: The �rst part is an easy proof by contradiction. The second part
follows trivially from the �rst. 2

We begin by showing that there exists a normal form (the R-unique form)
of every plan solving �.

De�nition 6.11 A partial-order plan � = hB;�i is R-unique i� for every
v 2 V, either

1. s0[v] 62 RB
v and for every x in RB

v there exists exactly one action b 2 B
such that post(b)[v] = x; or

33

2. s0[v] 2 RB
v and for every x in RB

v � fs0[v]g there exists exactly one
action b 2 B such that post(b)[v] = x and there exists no action c 2 B
such that post(c)[v] = s0[v].

Lemma 6.12 If � = hB;�i is a minimal plan solving � then � is R-unique.

Proof sketch: The proof boils down to showing that if two actions a
and b generates the same requestable value, then there is an equivalent, but
shorter, plan that only contains a. The transformation from the longer to
the shorter plan turns out to be trivial in the presence of restriction A. It
should be noted that this lemma holds for arbitrary SAS+-A instances, not
only SAS+-IAO instances. 2

R-uniqueness leads us to a method for decomposing minimal plans into sub-
sequences with certain properties, which forms the basis for the results in
both this and the next section.

Lemma 6.13 Let � = hB;��i be an arbitrary minimal plan solving �, let
� be an arbitrary topological sort of � and let �i denote the single member
of Paths(vi; �) for 1 � i � m. Given a subset R of RB

vi
, there exists a unique

subdivision h�i0; �
i
1; : : : ; �

i
ri of �i such that �i = h�i0;�

i
1; : : : ;�

i
ri and

� if s0[vi] 62 R then post(Last(�ij))[vi] 2 R for all 0 � j � jRj � 1

� if s0[vi] 2 R then post(Last(�ij))[vi] 2 R�fs0[v]g for all 0 � j � jRj�2.

Proof: We know that �i is a path in Gvi from s0[vi] to s�[vi] via RB
vi
. Since

R � RB
vi
, we can divide �i as described. By restriction A, the values in R

can be achieved in one unique order only. As we know that � is R-unique,
the subdivision is unique. 2

The previous lemma leads to the following de�nition.

De�nition 6.14 Let � = hB;��i be an arbitrary minimal plan solving �,
let � be an arbitrary topological sort of � and let �i denote the single member
of Paths(vi; �) for 1 � i � m. Then, for R � RB

vi
, �i==R denotes the unique

subdivision h�i0; �
i
1; : : : ; �

i
ri such that �i = (�i0;�

i
1; : : : ;�

i
r) and

� if s0[vi] 62 R then post(Last(�ij))[vi] 2 R for all 0 � j � jRj � 1,

� if z = s0[vi] 2 R then post(Last(�ij))[vi] 2 R � fzg for all 0 � j �
jRj � 2.

It is now possible to show an important structural property of minimal plans
solving SAS+-IAO instances.

34

Lemma 6.15 Let � = hB;��i be an arbitrary minimal plan solving �, let
� be an arbitrary topological sort of � and let �i denote the single member
of Paths(vi; �) for 1 � i � m. Then, �i is a shortest path from s0[vi] to s�[vi]
via RB

vi
in Gvi .

Proof: By Lemma 4.1, �i is a path from s0[vi] to s�[vi] via RB
vi
in Gvi .

Let �i==RB
vi

= h�0; : : : ; �ki. Assume �i is not a shortest path and assume
s�[vi] 6= u. (The case when s�[vi] = u is similar.)

Then there exists some p, 0 � p � k such that �p = ho1; : : : ; oqi is
not a shortest path from s to t in Gvi where s is the value of vi that �p
is applied to and t is the resulting value. Clearly, there exists a minimal
path
 = ho01; : : : ; o

0
ri from s to t in Gvi and, by prevail-order-preservation,

� �p. Consequently, we can substitute
 for �p in �i and reorder the actions
in B such that they satisfy the prevail-conditions of the actions in
. This
reordering is trivial since there exists a subsequence hoj1 ; : : : ; ojr i of �i such
that prv(o01) v prv(oj1); : : : ; prv(o

0
r) v prv(ojr) by restriction O. After having

done this, we have a valid plan but with a strictly smaller number of actions
than �, thus contradicting the minimality of �. Hence, �i is a shortest path
from s0[vi] to s�[vi] via RB

vi
in Gvi . 2

Next we prove that kernels of minimal plans are �xpoints of Extend.

Theorem 6.16 Let � = hB;�i be a minimal plan solving �. Then
Extend(Ker(�)) = Ker(�).

Proof: Let Ker(�) = Z = hZ1; : : : ; Zmi. Choose i arbitrarily between 1
and m. Let � be an arbitrary topological sort of � and let �i denote the single
member of Paths(vi; �). Now apply Extend to Z. The path !i computed in
line 4 of Extend is a shortest path from s0[vi] to s�[vi] via Zi. By Lemma
6.15, �i is also a shortest path from s0[vi] to s�[vi] via Zi. Hence, !i , �i, so
for 1 � j � m,

c[
o2!i
fprv(o)[vj]g =

c[
o2�i
fprv(o)[vj]g: (1)

By Lemma 6.10, I(!j) = I(�j) and consequently

c[
o2I(!i)

fpre(o)[vj]; post(o)[vj]g =
c[
o2I(�i)

fpre(o)[vj]; post(o)[vj]g: (2)

For 1 � j � m, the value of Xj returned from Extend(Ker(�)) equals

RB
vj
[

[
1�i�m

c[
o2!i
fprv(o)[vj]g [

c[
o2I(!i)

fpre(o)[vj]; post(o)[vj]g:

But by the de�nition of requestable value

35

RB
vj
=

[
1�i�m

c[
o2�i
fprv(o)[vj]g [

c[
o2I(�i)

fpre(o)[vj]; post(o)[vj]g:

Hence, by equations (1) and (2),

Xj =
[

1�i�m

c[
o2�i
fprv(o)[vj]g [

c[
o2I(�i)

fpre(o)[vj]; post(o)[vj]g:

Consequently, for all 1 � j � m, Extend(Ker(�))[j] = RB
vj
= Ker(�)[j] so

Extend(Ker(�)) = Ker(�). 2

We can now prove that Extend is a monotonic function on 2Dv1 � : : :� 2Dvm .
To simplify the proof, we �rst show that every SAS+-O instance is prevail-
monotonic.

De�nition 6.17 A SAS+ instance � is prevail-monotonic i� for all v 2 V, all
x; y 2 D+

v , all X � Dv and all ! = ho1; : : : ; omi, !0 = ho01; : : : ; o
0
ni 2 Seqs(O),

if ! is a shortest path from x to y via X and !0 is a path from x to y via X,
then (bSo2!prv(o)[v0]) � (bSo02!0prv(o0)[v0]) for all v0 2 V.
Lemma 6.18 Every SAS+-O instance is prevail-monotonic.

Proof: Immediate from the de�nitions of prevail-monotonicity and prevail-
order-preservation. 2

Lemma 6.19 Let � and �0 be plans over �. If Ker(�) �Ker Ker(�
0), then

Extend(Ker(�)) �Ker Extend(Ker(�0)).

Proof: Let Ker(�) = Z = hZ1; : : : ; Zmi and Ker(�0) = Y = hY1; : : : ; Ymi.
We �rst determine the value of Extend(Ker(�)). Let !1; : : : ; !m be the
shortest paths in Gvi via Zi for 1 � i � m as computed by lines 3-5 of the

Extend procedure. Let Z
+
= hZ+

1 ; : : : ; Z
+
mi be the values of all Xi variables

after the completion of lines 6-8 when Extend is called with Z. We see that
for 1 � i � m:

Z+
i = Zi [

[
1�j�m

c[
o2!j
fprv(o)[vi]g:

Further, let Z
++

= hZ++
1 ; : : : ; Z++

m i be the values of all Xi after the comple-
tion of lines 9-11. Then, for all 1 � i � m:

Z++
i = Z+

i [
[

1�j�m

c[
o2I(!j)

fpre(o)[vi]; post(o)[vi]g:

36

In the same manner, we determine the value of Extend(Ker(�0)): Let
 1; : : : ; m be the shortest paths in Gvi via Yi (1 � i � m) computed by

line 3-5 of the Extend procedure. Let Y
+
= hY +

1 ; : : : ; Y
+
m i be the values of

all Xi after the completion of line 6-8. For all 1 � i � m:

Y +
i = Yi [

[
1�j�m

c[
p2 j
fprv(p)[vi]g:

Let Y
++

= hY ++
1 ; : : : ; Y ++

m i be the values of all Xi after the completion of
line 9-11. For all 1 � i � m:

Y ++
i = Y +

i [
[

1�j�m

c[
p2I(j)

fpre(p)[vi]; post(p)[vi]g:

Select an arbitrary vi 2 V. By our premises, Zi � Yi and !i is a shortest
path in Gvi from s0[vi] to s�[vi] via Zi and i is a shortest path in Gvi from
s0[vi] to s�[vi] via Yi so by prevail-monotonicity,

[
1�j�m

c[
o2!j
fprv(o)[vi]g �

[
1�j�m

c[
p2 j
fprv(p)[vi]g

and hence Z+
i � Y +

i . Since Zi � Yi, we get I(!j) � I(j) for 1 � j � m
by Lemma 6.10 and, thus,

S
1�j�m

bS
o2I(!j)fpre(o)[vi]; post(o)[vi]g is a subset

of
S
1�j�m

bS
p2I(j)fpre(p)[vi]; post(p)[vi]g: Hence, Z

++
i � Y ++

i for 1 � i � m
and, thus, Extend(Ker(�)) �Ker Extend(Ker(�0)). 2

The next theorem ties together Lemma 6.19 and Theorem 6.16 in order to
show that � is R-minimal, to be de�ned below. The proof is a variant of
Theorem 1 in Paige & Henglein [29] which is derived from Tarski [33].

De�nition 6.20 A partial-order plan � solving � is R-minimal i� for every
minimal plan �0 solving �, Ker(�) �Ker Ker(�0).

Theorem 6.21 � is R-minimal.

Proof: Let � = hB;��i be an arbitrary minimal plan solving �. From
the algorithm, we know that Ker(�) = Extendn(h?; : : : ;?i) for some n.
We show that Extendn(h?; : : : ;?i) �Ker Ker(�) for all n � 0 by induction
over n.
Basis step: If n = 0, the claim holds trivially.
Induction hypothesis: Suppose Extendk(h?; : : : ;?i) �Ker Ker(�) for some
k � 0.
Induction step: We have to show that the claim holds for k + 1. By the
induction hypothesis, Extendk(h?; : : : ;?i) �Ker Ker(�) and by Lemma

37

6.19, Extend(Extendk(h?; : : : ;?i)) �Ker Extend(Ker(�)). As a conse-
quence, Extend(Ker(�)) = Ker(�) by Theorem 6.16 and it follows that
Extendk+1(h?; : : : ;?i) �Ker Ker(�). 2

The minimality of � follows immediately.

Theorem 6.22 � is minimal.

Proof: Choose vi 2 V arbitrarily. By Lemma 6.21, for every minimal
plan � solving �, every path in Paths(vi;�) must pass every state in RA

vi
.

Since � contains a shortest such path in Gvi and vi was chosen arbitrarily,
minimality follows. 2

6.3 Completeness for SAS+-IAO Instances

We have to show that if Plan fails when attempting to solve a SAS+-IAO
instance �, then there cannot exist any plan solving �. From the de�nition
of Plan, it is obvious that Plan can fail in only two cases: In the Extend
procedure and in the irre
exivity test. In Lemma 6.32, we show that for
every solution � for �, there exists a structure-preserving function ' from �
to �. Hence, if � is not irre
exive, then there cannot exist any plan solving
�. With this fresh in mind, we show that Plan is complete for SAS+-IAO
instances in Theorem 6.34.

Let � = hA;�i be the result of applying the Plan algorithm to some
SAS+-IAO instance � = hV;O; s0; s�i. Assume we have an arbitrary minimal
plan � = hB;��i solving �. Furthermore, let � be an arbitrary topological
sort of � and let � be an arbitrary topological sort of �. For each 1 � i � m,
let �i denote the single member of Paths(vi; �) and let �i denote the single
member of Paths(vi; �). Let �ki and �ki denote the k:th action in �i and �i
respectively. In order to de�ne ', we �rst have to establish some further
properties of minimal plans solving �.

Lemma 6.23 � and � are R-unique.

Proof: Trivial by Lemma 6.12. 2

Lemma 6.24 Ker(�) = Ker(�)

Proof: By Theorem 6.21, we know that Ker(�) �Ker Ker(�). Assume
there exists an x and an i such that x 2 Ker(�)[i] but x 62 Ker(�)[i]. We
have two cases:

38

1. There exists an action b 2 B such that prv(b)[vi] = x. Assume b a�ects
the variable vj. Then �j (which is a path in Gvj from s0[vj] to s�[vj]
via RA

vj
since RA

vj
� RB

vj
) contains the action b but �j (which is a

shortest path in Gvj from s0[vj] to s�[vj] via RA
vj
) does not contain any

action having the same prevail-conditions as b. In order not to violate
restriction O, j�jj > j�jj. Since � is a minimal plan, there must exist
some k, 1 � k � m such that j�kj < j�kj in order to compensate for the
length of �j. This leads to a contradiction since

� �k is a shortest path in Gvk from s0[vk] to s�[vk] viaRA
vk
by Lemma

6.15,

� �k is a shortest path in Gvk from s0[vk] to s�[vk] viaRB
vk
by Lemma

6.15,

� RA
vk
� RB

vk
.

2. There exists a non-unary action b 2 B such that pre(b)[vi] = x or
post(b)[vi] = x. Consequently b is a non-unary action that is not a
member of A. As RA

v � R
B
v , I(!) � I() by Lemma 6.10 so j�ij > j�ij.

Since � is a minimal plan, there must exist some k, 1 � k � m such
that j�kj < j�kj in order to compensate for the length of �i. This leads
to a contradiction by the same reasons as in the previous case.

In both cases the assumption leads to a contradiction and, consequently,
Ker(�) = Ker(�). 2

Lemma 6.25 For 1 � k � m, �k , �k.

Proof: Straightforward. 2

Lemma 6.26 type(I(A)) = type(I(B)).

Proof: Obvious by Lemma 6.10. 2

De�nition 6.27 Let ' : A ! B be de�ned such that:

� If a is non-unary, then '(a) = b where b 2 B and type(a) = type(b).

� If a is unary, then a = �ki for some 1 � i � m, 1 � k � j�ij. Let
'(a) = �ki .

Lemma 6.28 ' is a well-de�ned function from A to B.

Proof: For arbitrary non-unary a 2 A, '(a) is uniquely determined by a
by Lemma 6.26 and the fact that there can only be one non-unary action of
each type by irreplaceability. For arbitrary unary a 2 A, '(a) is uniquely
determined by a because, by Lemma 6.25, j�ij = j�ij for 1 � i � m. 2

39

Lemma 6.29 For all a 2 A, prv(a) = prv('(a)).

Proof: If a is non-unary the result trivially follows from the construction
of '. Suppose a is unary and a a�ects vi, 1 � i � m. Then, a is a member of
�i and '(a) is a member of �i. Furthermore, if a equals �ki , then '(a) equals
�ki by the construction of '. Obviously, prv(a) = prv('(a)) follows from the
fact that �i , �i by Lemma 6.25. 2

Lemma 6.30 Let a 2 A be such that x = post(a)[vi] 2 RA
vi
. Then,

post('(a))[vi] = x.

Proof: If a is non-unary the result trivially follows from the construction
of '. Suppose a is unary. Obviously, a is a member of �i and '(a) is a
member of �i. Suppose a equals �ki . Let R be the requestable values that
are achieved by �i=k. Since �i is a shortest path from s0[vi] to s�[vi] via
RA
vi
in Gvi , �i=k is a shortest path from s0[vi] to x via R which follows from

acyclicity wrt. requestable values. Let b be the unique (by R-uniqueness)
action in �i that achieves x and suppose b is the l:th action in �i. We know
that �i is a shortest path from s0[vi] to s�[vi] via RB

vi
in Gvi , but by Lemma

6.24, RB
vi
= RA

vi
. Hence, by restriction A, �i=l is a shortest path from s0[vi]

to x via R. Since both �i=k and �i=l are shortest paths, k = l and the lemma
follows. 2

Lemma 6.31 If a = �ki for some 1 � i � m, 1 � k � j�ij then '(a) = �ki .

Proof: Similar to Lemma 6.30. 2

Lemma 6.32 For arbitrary a; b 2 A, if a �� b then '(a) �� '(b).

Proof: The Plan algorithm orders actions in two cases: the ordering of the
�i action sequences in lines 9-10 and the prevail-condition ordering in lines
11-16.

The �rst case occurs when a; b 2 A and a immediately precedes b in some
�i. Consequently, a = �ki , b = �k+1i for some k. By Lemma 6.31, '(a) = �ki
and '(b) = �k+1i so '(a) �� '(b).

The second case is slightly more complex as it has several di�erent out-
comes. Suppose a; b; c 2 A and prv(b)[vi] = x 6= u for some variable vi. The
following orderings can be introduced by lines 11-16.

1. a is the unique (by R-minimality) action such that post(a)[vi] = x and
c is an action such that it a�ects vi and is ordered immediately after a
in �i.

2. x = s0[vi] and c is the �rst action of �i

40

3. x = post(a)[vi] and a is the last action a�ecting vi

4. there are no actions at all a�ecting vi

In these cases, the actions are ordered such that

1. a �� b �� c

2. b �� c

3. a �� b

4. no speci�c ordering is introduced

We show that if the �rst case holds, then '(a) �� '(b) �� '(c). The three
other cases are analogous. By Lemma 6.29, prv('(b))[vi] = x. By Lemma
6.30 and R-minimality, '(a) is the only action in B such that post('(a))[vi] =
s. Hence, '(a) �� '(b). Furthermore, a = �ki and c = �k+1i for some k. By
Lemma 6.31, '(a) = �ki and '(c) = �k+1i . Hence, '(b) must be ordered before
'(c) since '(c) a�ects vi and '(a) �� '(c). 2

To prove that there cannot exist any solution solving � if � is not irre
exive
is trivial with the aid of ':

Lemma 6.33 If � is not irre
exive, then there exists no plan solving �.

Proof: If � is not irre
exive, then there exist actions a1; : : : ; an 2 A such
that a1 �� : : : �� an �� a1. However, by Lemma 6.32, there exists a
function ' from A to B such that if a; b 2 A and a �� b, then '(a) ��

'(b). Hence, '(a1); : : : ; '(an) 2 B and '(a1) �� : : : �� '(an) �� '(a1).
Consequently, � is not a plan solving �. The lemma follows by contradiction.

2

We summarize the completeness of Plan in the following theorem:

Theorem 6.34 If there exists some partial-order plan solving �, then algo-
rithm Plan returns a plan solving �.

Proof: We prove that if the algorithm fails, then there is no plan solving �.
Suppose the algorithm fails but there exists some minimal plan � = hB;��i
solving �. The algorithm can fail in two cases: In line 4 or in line 18. We
consider the cases one at a time:

i) Assume Plan fails when attempting to construct a path in Gvi from s0[vi]
to s�[vi] via some set Xvi of requestable values. Suppose Plan fails after n

41

iterations of the while-loop and let Xn
i denote the value of Xi in the n:th

iteration. We begin by showing that Xn
i � R

B
vi
by induction over n.

Basis step: X1
i = ? so the claim holds trivially.

Induction hypothesis: Suppose Xk
i � R

B
vi
for some k � 1.

Induction step: We have to show that the claim holds for k+1. By the induc-
tion hypothesis, Xk

i � R
B
vi
= Ker(�)[i]. By the de�nition of the algorithm,

Xk+1
i = Extend(hXk

1 ; : : : ;X
k
i ; : : : ;X

k
mi)[i]. Hence, by Lemma 6.19,

Extend(hXk
1 ; : : : ;X

k
i ; : : : ;X

k
mi)[i] � Extend(Ker(�))[i]

but by Lemma 6.16, Extend(Ker(�)) = Ker(�). So,

Xk+1
i = Extend(hXk

1 ; : : : ;X
k
i ; : : : ;X

k
mi)[i] � Extend(Ker(�))[i] = RB

vi
:

If the algorithm fails in line 5 of the Extend procedure, then for some vi 2 V
there does not exist any path in Gvi from s0[vi] to s�[vi] via Xi. However,
Xi � R

B
v throughout the computation, so by Theorem 6.21 every member of

Paths(vi;�) must pass every value in Xi which contradicts the existence of
�.

ii) By Lemma 6.33, there cannot exist any plan solving �, which contradicts
the existence of �. 2

We can now conclude this section.

Theorem 6.35 Plan is sound, complete and generate minimal solutions for
SAS+-IAO instances. Furthermore, Plan is sound for SAS+-IA instances.

7 Complexity Results

This section presents an exhaustive complexity map for planning under all
combinations of our previously studied syntactical and structural restrictions.
Since we are ultimately interested in actually generating solutions, we will
only discuss the plan generation problem (�nding a solution) and not consider
the plan existence problem (deciding whether a solution exists).

7.1 Preliminaries

For technical reasons, we will need a restricted variant of the SAS+ formalism
in this section. It is de�ned as follows.

De�nition 7.1 An instance hV;O; s0; s�i of the SAS� problem is an instance
of the SAS+ problem satisfying the following two restrictions.

42

1. s0 2 S

2. for every operator o 2 O and variable v 2 V, if pre(o)[v] = u, then
post(o)[v] = u.

One of the reasons is that all previously described polynomial-time SAS+

planners require that the problem instance satisfy both restriction I and A.
This mixes badly with operators having u as precondition. For example,
restriction I prevents the existence of a path in Gv from u to any state
that is the precondition of a non-unary action and restriction A prevents the
existence of two requestable values which are both reachable from u. Another
reason is that, as we will see in Example 7.1, SAS�-P instances are always
SAS�-O instances whereas SAS+-P instances are not necessarily SAS+-O
instances. If we had studied the SAS+ case instead of SAS�, the presentation
would had been even more complex and cluttered with obscure special cases.
Hence, we believe that it is su�cient to study the SAS� formalism.

We begin by de�ning the problems we will consider. We de�ne the plan
existence problems as well as the plan generation problems since some of the
hardness results are stated in terms of the corresponding plan existence prob-
lems. The de�nitions given here follows the de�nitions given in B�ackstr�om [3]
and B�ackstr�om & Nebel [6].

De�nition 7.2 Given a SAS� instance �, we have the following problems:
The plan existence problem (PE) decides whether a solution for � exists or
not. The bounded plan existence problem (BPE) takes an integer k � 0 as
an additional parameter and decides whether a solution for � of length k or
shorter exists or not. The plan generation problem (PG) �nds a solution for
� or answers that no solution exists. The bounded plan generation problem
(BPG) takes an integer k � 0 as an additional parameter and �nds a solution
for � of length k or shorter or answers that no such solution exists.

The complexity results will be presented in lattices of the type shown in
Figure 10 which can be viewed as a three-dimensional cube. The �gure is
to be interpreted in the following way: The top-element of each diamond-
shaped sublattice corresponds to a combination of restrictions on the SAS�

problem de�ned by selecting at most one restriction from each of the sets
fA+=A;A�g, fP;Og and fU; Ig. As will be shown later on, this makes sense
because every unary instance is interference-safe, every post-unique instance
is prevail-order-preserving and so on. Furthermore, there is no need to dis-
tinguish between the A+ and A restrictions since every result holding for
SAS�-A+ holds also for SAS�-A instances and vice versa. These restrictions
are marked along the three axes in the �gure, where \-" denotes that neither
of the two restrictions on an axis applies. The other three points in each
sublattice further specialize the top element by adding one or both of the

43

restrictions B and S, as shown in the enlarged sublattice. As an example of
how to interpret the lattice, the SAS�-SA�O problem is indicated explicitly.
These lattices are perhaps quite detailed and awkward to interpret, so a more
intelligible summary will be given later on.

B S

BS

-

P

O

-

-
U

I

SAS�-SA�O

A+/A A�

-

Figure 10: The lattice of restricted SAS� problems.

7.2 Restriction Relationships

Before stating the complexity results, we have to investigate the relationships
between di�erent problem restrictions. We begin by studying the domain-
transition graphs of post-unique SAS� instances.

De�nition 7.3 A simple cycle is a one-component graph such that every
vertex has incoming and outgoing degree one.

De�nition 7.4 A directed graph G = hV;Ai is a P-graph i� for every com-
ponent C = hW;Bi in G,

1. there is some subset W 0 � W (the center of C) s.t. W 0 is either a
singleton or C restricted to W 0 is a simple cycle, and

2. each x 2 W 0 is the root of a (possibly empty) directed tree in C 0 =
hW;F � fhx; yi j x; y 2 W 0gi,

44

�

I�

W

z

6

6

>

~

�

s

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 11: A sample one-component P-graph. The center is within the dotted
box.

Theorem 7.5 The set of operators a�ecting a SAS� variable v is post-unique
(wrt. to v) i� Gv is a P-graph.

Proof: Straightforward. 2

Lemma 7.6 Let hV;O; s0; s�i be a SAS�-P instance. An operator o 2 O is
irreplaceable wrt. v 2 V i� it is not part of a cycle in Gv.

Proof: Obvious from the fact that Gv is a P-graph. 2

Before proving the main theorem of this subsection, we need the following
de�nition.

De�nition 7.7 A path ! = ho1; : : : ; oki in a domain-transition graph Gv is
loop-free i� post(ok)[v] 6= post(ol)[v] for k 6= l.

We can now state the relations that hold between di�erent sets of restrictions.
Statements of the type SAS�-X�SAS�-Y in the following theorem should be
read as every SAS� instance satisfying restriction X also satis�es restriction
Y. In the following, we will use this theorem several times without explicit
reference.

Theorem 7.8 The following subproblem relations hold:
1. SAS�-A+ � SAS�-A 2. SAS�-A � SAS�-A�

3. SAS�-U � SAS�-I 4. SAS�-US � SAS�-A
5. SAS�-S � SAS�-A� 6. SAS�-PA � SAS�-I
7. SAS�-P � SAS�-O

Proof: 1,2,3: Trivial.
4: Follows immediately from the fact that jRO

v j � 1 for all v 2 V.
5: If � is single-valued, then jPOv j � 1 for all v 2 V.

45

6: For every variable v 2 V, restriction A prevents that a non-unary operator
is on a cycle of Gv so the inclusion immediately follows from Lemma 7.6.
7: Arbitrarily choose x 2 Dv, y 2 D+

v and X � Dv. Let ! be a shortest path
from x to y via X in Gv and let be an arbitrary path from x to y via X in
Gv. Let C = hW;F i be the component of Gv where x is a member and let
W 0 be the center of C. We have two cases, y 6= u and y = u. We begin with
the case y 6= u. If x 62 W 0, then there exists a unique path from x to y by
Theorem 7.5 and, obviously, ! � . Suppose x 2 W 0. We have four cases to
investigate.

� ! is loop-free and is loop-free. As a consequence of Theorem 7.5,
! = and ! � follows.

� ! is loop-free but is not. The only cycle that can loop in is the
center of C. Hence, by Theorem 7.5, ! is a subpath of and ! � .

� ! is not loop-free and is not loop-free. As in the previous case, the
only cycle that ! and can loop in is the center of C so !� follows
immediately.

� ! is not loop-free but is. This case cannot occur since ! is a shortest
path from x to y via X.

The proof for the case y = u is similar. 2

A diagram summarizing the results in Theorem 7.8 can be found in Figure 12.
By the previous theorem, SAS�-P instances are always SAS�-O instances.
Unfortunately, it is not the case that SAS+-P instances are necessarily SAS+-
O instances.

Example 7.1 Suppose that we have a variable in a SAS+ instance with three
values, 1, 2 and 3, and three operators o1; : : : ; o3 a�ecting v s.t. pre(oi)[v] =
u and post(oi)[v] = i, 1 � i � 3. Clearly, the operators a�ecting v are
post-unique. Furthermore, suppose that these operators have incompatible
prevail-conditions. We then have two shortest paths from u to 3 via f1; 2g,
namely !1 = ho1; o2; o3i and !2 = ho2; o1; o3i. By our assumption, !1 6�!2 so
we do not have prevail-order-preservation although we have post-uniqueness.

7.3 Tractability Results

The �rst tractability result to be presented already appears in a previous
publication, as indicated below.

Theorem 7.9 [6] PG for SAS+-US is polynomial.

46

US

PA

I

S

A

U

O

P

A+

A�

Figure 12: Summary of Theorem 7.8.

Our second tractability result concerns the SAS+-IA�O class. We show that
it is tractable by making a Turing reduction using the SAS+-IAO algorithm.
In other words, we will devise a method that transforms an arbitrary SAS+-
IA�O instance into an equivalent SAS+-IAO instance, solve it with the SAS+-
IAO algorithm and convert the solution back to a solution of the original
problem. We begin by presenting the transform.

De�nition 7.10 Let � = hV;O; s0; s�i be a SAS+-I instance and let o 2 O
be a non-unary operator. Let s0 and t0 be two new domain values. Then,
New o = fo0g [foprev ; opostv j post(o)[v] 6= ug where

pre(o0)[v] =

(
s0 if pre(o)[v] = s 6= u

u otherwise

post(o0)[v] =

(
t0 if post(o)[v] = t 6= u

u otherwise
prv(o0)[v] = prv(o)[v]

pre(oprev)[w] =

(
pre(o)[w] if v = w
u otherwise

post(oprev)[w] =

(
s0 if v = w and pre(o)[w] = s 6= u

u otherwise
prv(oprev)[w] = u

pre(opostv)[w] =

(
t0 if v = w and post(o)[w] = t 6= u

u otherwise

post(opostv)[w] =

(
post(o)[w] if v = w
u otherwise

prv(opostv)[w] = u

47

Let O0 = fo 2 O o is non-unaryg and O00 = (O � O0) [
S
fNew o j o 2 O0g.

The A-transform of �, Atr(�), is de�ned as Atr(�) = hV;O00; s0; s�i with
the associated variable domains Dv, for v 2 V, changed to range over the
new operators.

By Lemma 6.2, the previous de�nition is sound. Note that the A-transform
can easily be carried out in polynomial time. The e�ect of the A-transform
is shown in Figure 13. The upper part of Figure 13 depicts the domain-
transition graphs of two variables v1 and v2. The operator o is non-unary and
a�ects both v1 and v2. Suppose the marked value in the domain-transition
graph of v1 is a requestable value. Then s1, which is a requestable value,
forms a cycle with the marked value. Hence, we do not have acyclicity wrt.
requestable values in this example. The lower part of Figure 13 shows the
domain-transition graphs for v1 and v2 after the A-transform. We can see
that the incorporation of the opre and opost operators (henceforth referred to
as arti�cial operators) has made the variables acyclic wrt. requestable states.
This leads us to the following lemma.

Lemma 7.11 Let � = hV;O; s0; s�i be a SAS+ instance. Then, � is a
SAS+-IA�O instance i� Atr(�) = hV;O0; s0; s�i is a SAS+-IAO instance.

Proof: Tedious but straightforward. The only-if part is performed by
induction over the length of the shortest path from x to y. The if part builds
on simple observations regarding irreplaceable operators. 2

Lemma 7.12 Let � be a SAS+-IA�O instance. Then, � has a solution i�
Atr(�) has a solution.

Proof: Trivial from the construction of Atr(�). 2

Theorem 7.13 Bounded plan generation for SAS+-IA�O is polynomial.

Proof: Let � be an arbitrary SAS+-IA�O instance. By Lemma 7.11,
�0 = Atr(�) is a SAS+-IAO instance. By our earlier results on SAS+-IAO
planning, we can generate a plan for �0 or report that no such plan exists
in polynomial time. By Lemma 7.12, we know that � has a solution i� �0

has one. Furthermore, we can take a minimal plan !0 for �0, remove the
arti�cial operators and substitute the modi�ed non-unary operators with the
original ones. By the construction of Atr , this is a valid and minimal plan
for �. Both the A-transform and the SAS+-IAO planning can be carried out
in polynomial time so the theorem follows. 2

We also need a polynomial-time algorithm that can decide if a SAS+-IA�

instance is prevail-order-preserving or not.

48

Gv1

Gv2

o

s1 t1

s2 t2

Gv1

Gv2

s1

s2

t1

t2

s0
1

s0
2

t0
1

t0
2

o
pre
1 o

post
1

o
pre
2 o

post
2

o0

Figure 13: Domain-transition graphs for v1 and v2 before and after the A-
transform.

49

Theorem 7.14 If a SAS+-IA� instance is prevail-order-preserving or not
can be decided in polynomial time.

Proof: Let � = hV;O; s0; s�i be a SAS+-IA� instance. Let �0 = Atr(�),
let G0

v denote the domain-transition graph of v in Atr(�) and let D0v denote
the domain of the variable v in �0. We know that Atr (�) is a SAS+-IA
instance. Hence, we can use the polynomial-time algorithm Check-O from
section 3 to decide whether Atr(�) is prevail-order-preserving or not. By
Lemma 7.11, Atr(�) is a SAS+-IAO instance i� � is a SAS+-IA�O instance
and the theorem follows. 2

7.4 Intractability Results

For the intractability results we have to distinguish between those problems
that are inherently intractable, i.e. can be proven to take exponential time,
and those which are NP-equivalent (i.e. intractable unless P=NP)5. See
Johnson [18] or Garey and Johnson [15] for formal details. We begin by
showing some results, concering NP-easiness.

Lemma 7.15 The length of minimal solutions for SAS�-A instances are
bounded by jVj � (1 + maxv2V Dv)2.

Proof sketch: There can be at mostDv requestable values and the shortest
paths between them can be of length Dv at most. 2

Lemma 7.16 Minimal solutions are always of polynomially bounded length
for SAS�-UA� instances.

Proof: If a SAS� instance � satis�es restrictions U and A�, then it sat-
is�es A as well since it has no non-unary operators. The lemma follows
immediately from Lemma 7.15. 2

Lemma 7.17 Minimal solutions are polynomially bounded for SAS�-IA�

instances.

Proof: Let � = hV;O; s0; s�i be an instance of the SAS�-IA� plan gen-
eration problem and suppose ! = ho1; : : : ; omi is a minimal solution to �.
Since every non-unary operator is irreplaceable, there is at most one such

5Since we consider the search problem (generating a solution) and not the decision
problem (whether a solution exists) we cannot use the term NP-complete, which is used
only for decision problems. A search problem is NP-easy if it can be Turing reduced to
some NP-complete problem, NP-hard if some NP-complete problem can be reduced to it
and NP-equivalent if it is both NP-easy and NP-hard. Loosely speaking, NP-equivalence
is to search problems what NP-completeness is to decision problems.

50

operator of each type in !. That is, there is at most jOj non-unary actions
in !. Hence, we can divide ! the following way:

! = h!1; p1;!2; : : : ; pk;!k+1i

where pk is the k:th non-unary operator (0 � k � jOj) and !l (0 � l �
k+1) is a plan fragment only containing unary operators. Each !l is then a
solution to some SAS�-UA� problem instance and, by Theorem 7.16, every
!l is bounded by jVj � (1 + maxv2V Dv)2 . Hence, ! itself is bounded by
jOjjVj � (1 + maxv2V Dv)2 2

Corollary 7.18 BPG is NP-easy for SAS�-A, SAS�-UA� and SAS�-IA�.

In the following hardness results, we use three problems,Minimum Cover,
Exact Cover by 3-Sets and Satisfiability, all three known to be NP-
complete [15], as the basis for our reductions. They are de�ned as follows:

De�nition 7.19 An instance of the Minimum Cover problem is given by
a �nite set X = fx1; : : : ; xmg, a set C = fC1; : : : ; Cng of subsets of X and a
positive integer K � jCj. The question is whether there exists a cover for X,
i.e., a subset C 0 � C with jC 0j � K such that every element of X belongs to
at least one member of C 0.

De�nition 7.20 An instance of theExact Cover by 3-Sets (X3C) prob-
lem is given by a �nite set X = fx1; : : : ; x3mg and a set C = fC1; : : : ; Cng of
3-element subsets of X. The question is whether there exists an exact cover
for X, i.e., a subset C 0 � C such that every element of X belongs to exactly
one member of C 0.

De�nition 7.21 An instance of the Satisfiability (SAT) problem is given
by a set U = u1; : : : ; um of boolean variables and a set C = fc1; : : : ; cng of
clauses over U . The question is whether there is a satisfying truth assignment
for C.

Theorem 7.22 BPE is NP-hard for SAS�-UBSA+.

Proof: Proof by reduction fromMinimum Cover. Let X = fx1; : : : ; xmg
be a set, let C = fC1; : : : ; Cng be a set of subsets of X and let K be an
integer. De�ne a SAS�-UBSA+ instance � = hV;O; s0; s�i such that

� V = fxk j 1 � k � mg [fck j 1 � k � ng;

� Dv = f0; 1g for all v 2 V;

51

� O = fo+k j 1 � k � ng [fok;l j 1 � k � n and xl 2 Ckg, where for
1 � k � n and v 2 V,

pre(o+k)[v] =

(
0 if v = ck
u otherwise

post(o+k)[v] =

(
1 if v = ck
u otherwise

prv(o+k)[v] = u

and for 1 � k � n, xl 2 Ck and v 2 V,

pre(ok;l)[v] =

(
0 if v = xl
u otherwise

post(ok;l)[v] =

(
1 if v = xl
u otherwise

prv(ok;l)[v] =

(
1 if v = ck
u otherwise

� s0[ck] = 0 for 1 � k � n, s0[xl] = 0 for 1 � l � m,

� s�[ck] = u for 1 � k � n, s�[xl] = 1 for 1 � l � m.

It is obvious that X has a cover C 0 such that jC 0j � K i� there is a plan of
size jXj +K or less solving �. 2

Theorem 7.23 PE is NP-hard for SAS�-BSA+O.

Proof: Proof by reduction from X3C. Let X = fx1; : : : ; x3mg be a set, let
C = fC1; : : : ; Cng be a set of 3-element subsets of X. De�ne a SAS�-BSA+O
instance � = hV;O; s0; s�i such that

� V = fxk j 1 � k � 3mg;

� Dv = f0; 1g for all v 2 V;

� O = fo+k j 1 � l � ng where for 1 � k � 3m and 1 � l � n,

pre(o+l)[xk] =

(
0 if xk 2 Cl
u otherwise

post(o+l)[xk] =

(
1 if xk 2 Cl
u otherwise

prv(o+l)[v] = u

� s0[xk] = 0 for 1 � k � 3m,

52

� s�[xk] = 1 for 1 � k � 3m.

Observe that restriction O is trivially satis�ed since no operator has any
prevail-conditions. By the construction of the instance, X has an exact cover
i� there is a plan solving � so the theorem follows. 2

Theorem 7.24 PE is NP-hard for SAS�-UBA+.

Proof: Proof by reduction from SAT. Let U = fu1; : : : ; umg be a set of
boolean variables and let C = fC1; : : : ; Cng be a set of clauses over U . De�ne
a SAS�-UBA+ instance � = hV;O; s0; s�i such that

� V = fuk j 1 � k � mg [fcl j 1 � l � ng.

� Duk = fF; Tg for 1 � k � m and Dcl = fF; Tg for 1 � l � n.

� O = fo+k j 1 � k � mg [fol;p j 1 � l � n and up 2 Clg where for
1 � i � m, 1 � j � n and up 2 Cl,

pre(o+k)[ui] =

(
F if i = k
u otherwise

pre(o+k)[cj] = u

post(o+k)[ui] =

(
T if i = k
u otherwise

post(o+k)[cj] = u

prv(o+k)[ui] = u

prv(o+k)[cj] = F

pre(ol;p)[ui] = u

pre(ol;p)[cj] =

(
F if j = l
u otherwise

post(ol;p)[ui] = u

post(ol;p)[cj] =

(
T if j = l
u otherwise

prv(ol;p)[ui] =

8><>:
F if i = l and ui 2 Cl
T if i = l and ui 2 Cl
u otherwise

prv(hl;p)[cj] = u

� s0[uk] = F for 1 � k � m. s0[cl] = F for 1 � l � n.

� s�[uk] = u for 1 � k � m. s�[cl] = T for 1 � l � n.

53

Obviously there exists a satisfying truth assignment for C i� there exists a
plan solving �. 2

Theorem 7.25 PE is NP-hard for SAS�-BSIA+.

Proof: Proof by reduction from SAT. The construction is similar to the
one used in the previous theorem. 2

Finally, we state a result about inherently intractable problems, previously
found in the literature as indicated.

Theorem 7.26 [6] Both SAS�-PUB and SAS�-PBS have instances with ex-
ponentially sized minimal solutions (and are thus inherently intractable).

The original proof [5] of Theorem 7.26 is somewhat stronger and shows that
SAS-PUB and SAS-PBS have instances with exponentially sized minimal
solutions.

7.5 Summary

By combining the hardness and easiness results of the previous sections, we
attain an exhaustive map over the complexity results. The resulting lattice
is shown in Figure 14.

By inspecting the lattice more closely, we can provide a simple character-
ization of when the problems are tractable and intractable, respectively. The
simpli�ed presentation is shown in Table 8. We see that if an instance � does
not satisfy the I and A� restrictions, then we cannot solve it in polynomial
time with any of the methods presented here. If it satis�es IA� but not re-
striction O, then it must also satisfy US in order to be tractable. Note that,
in this case, we still cannot �nd a minimal solution to the instance in poly-
nomial time. Finally, if � satis�es IA� and is prevail-order-preserving, then
we can �nd a minimal solution in polynomial time by using the A-transform
and the SAS+-IAO algorithm.

O -
US BPG tractable PG tractable
IA� BPG tractable Intractable
- Intractable Intractable

Table 8: Simpli�ed map of the complexity of SAS� plan generation.

54

P

O

-

-
U

I

-

Inherently intractable.

Polynomial for PG and BPG

NP-equivalent for PG and BPG

Polynomial for PG, NP-equivalent for BPG

A+/A A�

Figure 14: Complexity of SAS� plan generation.

8 Concluding Remarks

8.1 Conclusion

We have identi�ed two sets of restrictions, IAO and IA�O, allowing for the
generation of minimal plans in polynomial time for a planning formalism,
SAS+, using multi-valued state variables. This extends the tractability bor-
derline for planning, by allowing for more general problems than previously
reported in the literature to be solved tractably. In contrast to most restric-
tions in the literature, ours are structural restrictions. However, they are
restrictions on the transition graph for each state variable in isolation, rather
than for the whole state space, so they can be tested in polynomial time.

By analysing the complexity of plan generation under all combinations of
restrictions, considering both these new structural restrictions and the previ-
ously analysed syntactical ones, we can conclude that SAS+-IA�O bounded
plan generation is maximally tractable under the nine di�erent restrictions
studied in this article. We have also shown SAS�-US (and consequently
SAS+-US) unbounded plan generation cannot be further generalized with
preserved tractability by replacing US with any combination of our studied
syntactical or structural restrictions. By providing some additional hardness

55

results, we have built a map over the complexity of planning for all combi-
nations of both the syntactical and structural restrictions, considering both
bounded and unbounded plan generation.

8.2 Discussion

Having read this far, the reader may rightfully ask whether we believe it pos-
sible to eventually �nd tractable classes covering most application problems.
The answer, however, is not as simple as the question. While we believe that
many application problems in structured environments, such as industry, are
inherently tractable, this fact may not be easily exploited. Finding and ex-
ploiting the underlying structure causing tractability may be non-trivial. In
other cases, tractability may only hold for certain values of parameters which
cannot be easily bounded, but can be assumed from experience to have rea-
sonable values.6 While this latter case does not guarantee formal tractability,
it may guarantee tractability under a certain hypothesis, which may be quite
reasonable in many cases. It is also worth pointing out that in many cases of
NP-complete planning problems, NP-completeness is likely to stem from a
scheduling and/or resource allocation subproblem, while planning, i.e. �nd-
ing the actions, is simple. In this case, a deliberate separation of the problems
may enable the use of an e�cient scheduler/resource allocator and a simple
planner in combination. A concrete example of how to use the SAS+-IAO
planner in a setting having many similarities with industrial processes can
be found in Klein et al. [25].

Furthermore, we should neither be too obsessed by formal tractability
only. The search for tractable subclasses and the complexity analysis of
restrictions can provide useful information about how to �nd e�cient, al-
though not polynomial, algorithms for other restricted classes (c.f. results in
temporal reasoning [34]). For instance, in some of our algorithms it may be
possible to relax some restriction and introduce a limited form of search. An-
other possibility is to build up a library of algorithms for tractable subclasses
and then use these as subroutines in a more general search-based planner, or
to use a classi�er and invoke one of these algorithms whenever possible and
otherwise use a general search-based planner.

It may be worth pointing out that the restricted-problem approach is
somewhat similar to knowledge-based planning as used in HTN planners such
as O-Plan [11]. In an HTN planner, expert knowledge is encoded as task
reduction schemata having the e�ect of allowing only a small portion of the
whole search-space of plans to be explored. Tate [pers. comm. 1995] argues
that search should be avoided entirely whenever possible. In principle, the

6An example of a constant-by-experience parameter limiting the plan length appears in
manufacturing planning [27].

56

main di�erence between this approach and ours is whether the information
used to avoid or reducing search comes from expert knowledge or from a
formal analysis of the problem. The HTN approach is more general, but not
formally veri�able, while our approach requires special algorithms tailored
to subclasses, but provides formal guarantees.

Similarly, using a general search-based planner like Tweak or Snlp
equipped with heuristics to prune or reorder the search tree is also a comple-
mentary approach. In principle, it may be possible to tailor such a planner
to a tractable class, but the heuristic needed for this may be quite complex
and non-trivial to �nd, and a tailored algorithm is most likely more e�cient.

Another issue is whether our approach scales up to handle more realis-
tic applications requiring reasoning about uncertainty, resources and metric
time. This question remains to be satisfactorily answered for the other ap-
proaches we have just discussed, too. As far as our approach is concerned,
the truth is that we have hope but no guarantee. However, even if our ap-
proach does not scale up, our research is hardly wasted; we strongly believe
that we have to thoroughly understand these simpler formalisms before we
can formally attack and understand more expressive ones, and that many
lessons learned will carry over. An example supporting this is the paper on
temporal projection by Lin and Dean [17]. Dean [pers. comm. 1993] says
that the problem they are trying to solve is temporal projection with uncer-
tainty, but after having spent some years trying this they found the problem
so di�cult they had to switch back, analysing the basic case �rst.

Acknowledgements

We would like to thank Marco Cadoli for helpful comments and Jonas Kvarn-
str�om for implementing the Plan algorithm. This research has been spon-
sored by the Swedish Research Council for the Engineering Sciences (TFR)
under grants Dnr. 92-143 and Dnr. 93-00291.

57

References

[1] C. B�ackstr�om, Computational complexity of reasoning about plans,
Ph.D. Thesis, Link�oping University, Link�oping, Sweden (1992).

[2] C. B�ackstr�om, Equivalence and tractability results for SAS+ planning,
in: Proc. 3rd Int'l Conf. on Principles of Knowledge Repr. and Reasoning
(KR-92), Cambridge, MA, USA (1992) 126{137.

[3] C. B�ackstr�om, Expressive equivalence of planning formalisms, Artif.
Intell. 76(1{2) (1995) 17{34.

[4] C. B�ackstr�om, Five years of tractable planning, in: Ghallab and Milani
[16], pages 19{33.

[5] C. B�ackstr�om and I. Klein, Planning in polynomial time: The SAS-
PUBS class, Comput. Intell. 7(3) (1991) 181{197.

[6] C. B�ackstr�om and B. Nebel, Complexity results for SAS+ planning,
Comput. Intell. 11(4) (1995) 625{655.

[7] A. Barrett and D. S. Weld, Partial-order planning: Evaluating possible
e�ciency gains, Artif. Intell. 67(1) (1994) 71{112.

[8] A. L. Blum and M. L. Furst, Fast planning through planning graph
analysis, Artif. Intell. 90 (1997) 281{300.

[9] T. Bylander, The computational complexity of propositional STRIPS
planning, Artif. Intell. 69 (1994) 165{204.

[10] D. Chapman, Planning for conjunctive goals, Artif. Intell. 32 (1987)
333{377.

[11] K. Currie and A. Tate, O-Plan: The open planning architecture, Artif.
Intell. 52 (1991) 49{86.

[12] E. W. Dijkstra, A note on two problems in connection with graphs,
Numerische Mathematik 1 (1959).

[13] K. Erol, D. S. Nau and V. S. Subrahmanian, When is planning decid-
able?, in: Proc. 1st Int'l Conf. on Artif. Intell. Planning Sys. (AIPS-92),
College Park, MD, USA (1992) 222{227.

[14] R. E. Fikes and N. J. Nilsson, STRIPS: A new approach to the appli-
cation of theorem proving to problem solving, Artif. Intell., 2 (1971)
189{208.

58

[15] M. Garey and D. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness (Freeman, New York, 1979).

[16] M. Ghallab and A.Milani, editors, NewDirections in AI Planning: Proc.
3rd Eur. WS. Planning (EWSP'95), Assisi, Italy (IOS Press, 1995).

[17] S. Hong Lin and T. Dean, Exploiting locality in temporal reasoning, in:
C. B�ackstr�om and E. Sandewall, editors, Current Trends in AI Planning:
Proc. 2nd Eur. WS. Planning (EWSP'93), Vadstena, Sweden (1993)
199{212.

[18] D. S. Johnson, A catalog of complexity classes, in: J. van Leeuwen,
editor, Handbook of Theoretical Computer Science: Algorithms and
Complexity, volume A (Elsevier, Amsterdam, 1990) 67{161.

[19] P. Jonsson, Complexity of state-variable planning under structural re-
strictions, Licentiate thesis, Link�oping University, Link�oping, Sweden
(1995).

[20] P. Jonsson and C. B�ackstr�om, Complexity results for state-variable
planning under mixed syntactical and structural restrictions, in: Proc.
6th Int'l Conf. on Artif. Intell.: Methodology, Systems, Applications
(AIMSA-94), So�a, Bulgaria (1994) 205{213.

[21] P. Jonsson and C. B�ackstr�om, Complexity results for state-variable
planning under mixed syntactical and structural restrictions, Research
Report R-95-17, Department of Computer and Information Science,
Link�oping University (1995).

[22] P. Jonsson and C. B�ackstr�om, Tractable planning with state variables
by exploiting structural restrictions, in: Proc. 12th (US) Nat'l Conf. on
Artif. Intell. (AAAI-94), Seattle, WA, USA (1994) 998{1003.

[23] P. Jonsson and C. B�ackstr�om, Tractable planning with state variables by
exploiting structural restrictions, Research Report R-95-16, Department
of Computer and Information Science, Link�oping University (1995).

[24] I. Klein, Automatic synthesis of sequential control schemes, Ph.D.
Thesis, Link�oping University, Link�oping, Sweden (1993).

[25] I. Klein, P. Jonsson, and C. B�ackstr�om, Tractable planning for an as-
sembly line, in: Ghallab and Milani [16], pages 313{324.

[26] J. Kvarnstr�om, Implementation of a tractable planner, Master thesis
report, Department of Computer and Information Science, Link�oping
University, Link�oping, Sweden (1996).

59

[27] A. M�arkus and J. V�ancza, Inference and optimization methods for man-
ufacturing process planning, in: A. G. Cohn, editor, Proc. 11th Eur.
Conf. on Artif. Intell. (ECAI-94), Amsterdam, Netherlands (1994) 595{
599.

[28] K. Mehlhorn, Graph Algorithms and NP-Comleteness, volume 2
(Springer, Berlin, 1984).

[29] R. Paige and F. Henglein, Mechanical translation of set theoretic prob-
lem speci�cations into e�cient RAM code|A case study, Journal of
Symbolic Computation 4 (1987) 207{232.

[30] E. Sandewall, The pipelining transformation on plans for manufacturing
cells with robots, in: Proc. 10th Int'l Joint Conf. on Artif. Intell. (IJCAI-
87), Milano, Italy (1987) 1055{1062.

[31] E. Sandewall and R. R�onnquist, A representation of action structures,
in: Proc. 5th (US) Nat'l Conf. on Artif. Intell. (AAAI-86), Philadelphia,
PA, USA (1986) 89{97.

[32] R. Tarjan, Depth-�rst search and linear graph algorithms, SIAM J.
Comput. 1 (1972) 146{160.

[33] A. Tarski, A lattice-theoretical �xpoint theorem and its applications,
Paci�c Journal of Mathematics 5 (1955) 285{309.

[34] P. van Beek, Reasoning about qualitative temporal information, in:
Proc. 8th (US) Nat'l Conf. on Artif. Intell. (AAAI-90), Boston, MA,
USA (1990) 728{734.

60

