
Expressive Equivalence of Planning Formalisms

Christer B�ackstr�om
1

Department of Computer and Information Science, Link�oping University,
S-581 83 Link�oping, Sweden, email: cba@ida.liu.se

Abstract

A concept of expressive equivalence for planning formalisms based on polynomial
transformations is de�ned. It is argued that this de�nition is reasonable and use-
ful both from a theoretical and from a practical perspective; if two languages are
equivalent, then theoretical results carry over and, more practically, we can model
an application problem in one language and then easily use a planner for the other
language. In order to cope with the problem of exponentially sized solutions for
planning problems an even stronger concept of expressive equivalence is introduced,
using the novel ESP-reduction. Four di�erent formalisms for propositional plan-
ning are then analyzed, namely two variants of STRIPS, ground TWEAK and the
SAS+ formalism. Although these may seem to exhibit di�erent degrees of expressive
power, it is proven that they are, in fact, expressively equivalent under ESP reduc-
tion. This means that neither negative goals, partial initial states nor multi-valued
state variables increase the expressiveness of `standard' propositional STRIPS.

This article is published in Arti�cial Intelligence, vol. 76(1{2):17{34, 1995,
ARTINT 1234.

1 Introduction

This article analyzes and compares four formalisms for propositional plan-
ning with respect to expressive power. The reason for this analysis is twofold.
Firstly, if two formalisms can be proven equally expressive, under some rea-
sonable notion of expressive equivalence, then various theoretical results will
carry over between these formalisms. We may, for instance, desire that com-
plexity results carry over. Furthermore, there will also be the more practical
consequence that a planning algorithm designed for one of the formalisms can

1 Supported by the Swedish Research Council for Engineering Sciences (TFR)
under grant Dnr. 92-143.

Preprint submitted to Elsevier Science 9 October 1995

be easily used also for planning in the other formalism. Secondly, by formally
analysing the expressive power of the formalisms, we are able to prove or
disprove some `folklore' assumptions about the relative expressiveness of the
formalisms.

There is hardly any consensus about what expressive equivalence between
formalisms means. We have chosen in this article to say that two planning for-
malisms are expressively equivalent if the planning problem expressed in one
of the formalisms can be polynomially transformed into the planning prob-
lem expressed in the other formalism. (Actually, we will use an even stronger
form of polynomial reduction for the equivalence proofs in this article). That
is, an instance of the planning problem in one formalism can be converted
to an equivalent instance of the planning problem in the other formalism
in polynomial time. Although other de�nitions may also be reasonable from
some perspective, our de�nition is very appealing. It gives us the properties
we wished above, that is, complexity results carry over immediately and a
planning algorithm designed for one formalism can be easily and reasonably
e�ciently used also for another formalism.

The four formalisms we have chosen to analyze are all propositional variants
of the STRIPS formalism [14]. The �rst two formalisms are both plain propo-
sitional variants of STRIPS, di�ering only in whether negative preconditions
and goals are allowed or not. We refer to these formalisms as Common Propo-
sitional STRIPS (CPS) and Propositional STRIPS with Negative goals (PSN)
respectively. The third formalism is the ground (ie. propositional) variant of
TWEAK [11] and it is, thus, closely related to the �rst two formalisms. We
refer to this formalism as Ground TWEAK (GT). The fourth, and �nal, for-
malism in our analysis is the extended simpli�ed action structures (SAS+)
formalism [2,3,6,17], which derives from the SAS formalism [4,5] and the orig-
inal action structures formalism [23].

These four formalism seem to form a sequence of successively more and more
expressive power, in the order presented above. The PSN formalism adds to
the CPS formalism the capability of expressing negative goals and subgoals
(preconditions), ie. we may not only state what must be true in the goal,
but also what must not be true. The GT formalism further adds incomplete
initial states, ie., the truth value of a proposition may be unde�ned not only
in the goal state but also in the initial state. The SAS+ formalism, �nally,
generalizes the propositions to multi-valued state variables. All these features
are summarized in Table 1.

Although it looks as if the four formalisms actually are of di�erent and increas-
ing expressive power, this turns out not to be the case. All four formalisms
are, in fact, equally expressive for planning, as we will prove in Section 4 of
this article. That is, neither of the features listed in Table 1 (negative goals

2

Table 1
A comparison of the CPS, PSN, GT and SAS+ formalisms.

CPS PSN GT SAS+

Partial goals � � � �

Negative preconditions � � �

Negative goals � � �

Partial initial states � �

Multi-valued state variables �

and subgoals, incomplete initial states and multi-valued state variables) adds
to the expressiveness of propositional planning. 2 This does not necessarily
imply that we should always restrict ourselves to using one of these formalism
only, perhaps elevating one of them to the status of being a `standard'. There
may be good reasons for using either formalism, depending on the purpose.
One formalism may, for conceptual reasons, be better suited than another for
modelling a certain application|perhaps making it easier and more natural
to model this application. How the equivalence results should be interpreted is
rather as follows. There is no a priori reason for choosing one formalism over
the other; rather, knowing that they are all equally expressive, we know that
it does not matter which one we use to model an application, we can always
transform and compare our modelling to others done in the other formalisms.
For instance, we may �nd it conceptually appealing and natural to use state
variables, that is, the SAS+ formalism, to model a certain application. At the
same time, we may have a very good planning system for, say, the CPS formal-
ism, perhaps providing us with a good user interface and other facilities. We
then know that this is no con
ict; we can go ahead and model our application
in the SAS+ formalism and it is then trivial to convert this modelling auto-
matically to an equivalent modelling in the CPS formalism. That is, we can
use both our favourite formalism for modelling and our favourite formalism
for planning even when these do not coincide.

Since all four formalisms analyzed in this article are very basic and simple
it may perhaps deserve some motivation why it is interesting to restrict an
analysis to these four only. One reason is that much of the theoretical work
in planning is still based on these formalisms, for good reasons; they are sim-
ple and clean enough for analyzing various theoretical issues, most of which
could not be analyzed for more complex formalisms until sorted out for these
simpler ones. Furthermore, even for these restricted formalisms, the relative
expressive power is not obvious to most people. Hence, this analysis provides

2Actually, it is not important for the expressiveness whether the goals are allowed
to be partial or negative, it only matters whether subgoals (ie. operator precondi-
tions) are.

3

a good starting point for carrying on with analysing other features of planning
formalisms.

The rest of this article is laid out as follows. Section 2 formally de�nes the four
planning formalisms and Section 3 formally de�nes the concepts of planning
problem and equal expressiveness. In Section 4 the four formalisms are proven
expressively equivalent and Section 5 ends the article with a brief discussion
and conclusions.

2 Four Planning Formalisms

This section introduces formally the four formalisms mentioned in the intro-
duction. In order to simplify the analysis, we will only be concerned with total-
order plans (linear plans) in this article. This does not restrict the analysis,
however, since the set of partial-order plans solving an instance of a planning
problem can be viewed as a compact representation of the set of total-order
plans solving the same instance. Before introducing the four formalisms, we
de�ne some formalism-independent concepts.

De�nition 1 Given a set of operators O, we de�ne the set of all operator
sequences over O as

Seqs(O) = fhig [fhoi;! j o 2 O and! 2 Seqs(O)g;

where ; is the sequence concatenation operator.

De�nition 2 Given a set P = fp1; : : : ; png of propositional atoms, LP de-
notes the corresponding set of literals, ie. LP = fp;:p j p 2 Pg. A set S � LP
of literals is consistent i� there is no atom p such that fp;:pg � S. The func-
tion Neg : 2LP ! 2LP is de�ned for consistent S � LP as

Neg(S) = fp j :p 2 Sg [f:p j p 2 Sg:

The function ComplP : 2P ! 2LP is de�ned for all S � P as

ComplP(S) = S [Neg(P � S):

In other words, Neg(S) denotes the negation of S as this is de�ned in, for
instance, Kleene's three-valued logics [18]. Note that Neg is well-de�ned also
for S � P since P � LP . Further, ComplP(S) denotes the completion of S,
ie., it converts a total state of atoms into a total state of literals.

4

2.1 Common Propositional STRIPS

In the Common Propositional STRIPS (CPS) formalism 3 a planning prob-
lem is modelled by a set of propositional atoms, a set of operators, an initial
state and a goal state. Operators are modelled by a precondition, a positive
postcondition (the add list) and a negative postcondition (the delete list). The
initial state and any state resulting from executing an operator is represented
by a set of atoms|interpreted such that an atom is true in this state i� it
is present there. The goal state is interpreted as a positive partial state, ie.,
those atoms mentioned in the goal must be true. The atoms not mentioned
are interpreted as `don't care', ie., we do not commit ourselves to any partic-
ular truth value for these; they may be either true or false after executing the
plan. The goal is, thus, not the exact state we want to hold after executing
the plan, but a minimum requirement for what that state must look like. The
preconditions act as subgoals and are, thus, interpreted in the same way as
the goal state. An operator can be executed in a state if its precondition is
satis�ed there|ie., the precondition is a minimum requirement for what must
hold in the state where the operator is executed. Finally, if an operator is ex-
ecuted in a state where its precondition is satis�ed, then the resulting state is
calculated from the current state by adding those atoms mentioned in the add
list and removing those mentioned in the delete list. Hence, all atoms that are
not explicitly deleted remain true after executing an operator|the so called
STRIPS assumption.

The Propositional STRIPS with Negative Goals (PSN) formalism 4 is a gen-
eralization of the CPS formalism, allowing negative goals and negative pre-
conditions. Hence, we cannot only specify what atoms must be true in the
�nal state, but also which atoms must be false there. This is done by dividing
the goal into one set of atoms that must be present in the �nal state and one
set of atoms that must not be present in the �nal state. Preconditions are
divided in the same way. Note that both the goal and the preconditions are
still partial states since an atom need not be mentioned at all; such an atom
may be either true or false.

Since the the CPS formalism can be viewed as a restriction of the PSN for-
malism, we de�ne the PSN formalism �rst.

De�nition 3 An instance of the PSN planning problem is a quadruple � =
hP;O;I; hG+;G�ii where

{ P is a �nite set of atoms;

3 So called because it is probably the most frequent propositional variant of
STRIPS, used by, for instance, Minton et al. [20] and McAllester and Rosenblitt [19].
4Used by, for instance, Bylander [9] and Nebel and Koehler [21].

5

{ O is a �nite set of operators of the form h'; �; �; �i, where '; � � P denote
the positive and negative precondition respectively, satisfying '\� = ;, and
�; � � P denote the positive and negative postcondition (add and delete list)
respectively, satisfying � \ � = ;;

{ I � P denotes the initial state and G+;G� � P denote the positive and
negative goal respectively, satisfying G+ \ G� = ;.

For o = h'; �; �; �i � O, we write '(o), �(o), �(o) and �(o) to denote ', �, �
and � respectively. A sequence ho1; : : : ; oni 2 Seqs(O) of operators is called a
PSN plan (or simply plan) over �.

De�nition 4 The ternary relation ValidPSN � Seqs(O) � 2P � (2P � 2P)
is de�ned s.t. for arbitrary ho1; : : : ; oni 2 Seqs(O) and S; T+; T� � P,
ValidPSN (ho1; : : : ; oni; S; hT+; T�i) i� either

(i) n = 0, T+ � S and T� \ S = ; or
(ii) n > 0, '(o1) � S, �(o1) \ S = ; and

ValidPSN (ho2; : : : ; oni; (S � �(o1)) [�(o1); hT+; T�i).

A plan ho1; : : : ; oni 2 Seqs(O) is a solution to � i�
ValidPSN (ho1; : : : ; oni;I;G).

The CPS planning problem can now be de�ned as the restriction of the PSN
planning problem to instances having no negative goals and operator sets
consisting only of operators with no negative preconditions.

De�nition 5 An instance of the CPS planning problem is a tuple � =
hP;O;I;Gi s.t. hP;O0;I; hG; ;ii, where O0 = fh'; ;; �; �i j h';�; �i 2 Og, is
an instance of the PSN planning problem.

2.2 Ground TWEAK

The Ground TWEAK (GT) formalism is the ground (or propositional) version
of the TWEAK formalism [11], that is, the TWEAK formalism restricted to
only ground literals. 5 In this formalism the initial state and the intermediate
states resulting from executing operators are also partial states. 6 Hence, we
can distinguish between atoms that are true, false and unknown respectively

5Chapman uses the word proposition instead of the more standard word literal.
6 It seems not quite clear whether Chapman intended to allow incomplete initial

states and whether the TWEAK planner makes use of this|his de�nitions are some-
what unclear at this point. However, the TWEAK formalism per se incorporates
this feature, and this is also our interpretation of Chapman's de�nitions. Hence,
we use the TWEAK formalism under this interpretation rather than introducing
incomplete initial states into the PSN formalism.

6

also in these states. Since TWEAK uses literals, an operator need only be
modelled by a precondition and a postcondition, both being sets of literals,
that is, partial states. The initial state and the goal state are also partial
states. We require states to be consistent, ie., we do not allow both an atom
and its negation to be present in a state.

De�nition 6 An instance of the GT planning problem is a quadruple � =
hP;O;I;Gi where

{ P is a �nite set of atoms;
{ O is a �nite set of operators of the form hpre; posti where pre; post � LP
are consistent and denote the pre and post condition respectively;

{ I;G � LP are consistent and denote the initial and goal state respectively.

For o = hpre; posti � O, we write pre(o) and post(o) to denote pre and post
respectively. A sequence ho1; : : : ; oni 2 Seqs(O) of operators is called a GT
plan (or simply a plan) over �.

De�nition 7 The ternary relation ValidGT � Seqs(O) � 2LP � 2LP

is de�ned s.t. for arbitrary ho1; : : : ; oni 2 Seqs(O) and S; T � LP ,
ValidGT (ho1; : : : ; oni; S; T) i� either

(i) n = 0 and T � S or
(ii) n > 0, pre(o1) � S and

ValidGT (ho2; : : : ; oni; (S � Neg(post(o1)) [post(o1); T).

A plan ho1; : : : ; oni 2 Seqs(O) is a solution to � i� ValidGT (ho1; : : : ; oni;I;G).

2.3 The SAS+ Formalism

There are two main di�erences between the SAS+ formalism and the other
three formalisms. The �rst one is that the SAS+ formalism uses partial, multi-
valued state variables instead of propositional atoms or literals. In the GT
formalism, an atom can, in principle, have three possible values in a state,
namely true, false and unknown, depending on whether p, :p or neither re-
spectively is present in the state. In the SAS+ formalism, this is generalized
so that a state variable can have an arbitrary number of de�ned values in
addition to the unde�ned value u. The second di�erence is that the opera-
tors have a prevail-condition in addition to the usual pre- and postconditions.
This makes it possible to distinguish easily between those variables in the
(STRIPS) precondition that are changed by the operator and those that re-

7

main unchanged. 7 That is, the (SAS+) precondition of an operator speci�es
those state variables which must have a certain de�ned value in order to ex-
ecute the operator and that will also be changed to some other value by the
operator. The prevail-condition, on the other hand, speci�es those state vari-
ables that must have a certain value but will remain unchanged after execut-
ing the operator. An operator can be executed in a state if both the pre- and
prevail-condition are satis�ed there, that is, all variables having some de�ned
value in either of these conditions (a variable cannot be de�ned in both these
conditions) has the same value in the state. When the operator is executed,
then every variable that is de�ned in the postcondition of the operator will
have that particular value in the resulting state; all other variables will have
the same value as they had in the state the operator was executed in, which
essentially is the STRIPS assumption.

In this article we will present a somewhat simpli�ed and modi�ed account of
the SAS+ formalism, ignoring all technical details not absolutely necessary for
the proofs in Section 4.

De�nition 8 An instance of the SAS+ planning problem is given by a quadru-
ple � = hV;O; s0; s�i with components de�ned as follows:

{ V = fv1; : : : ; vmg is a set of state variables. Each variable v 2 V has an
associated domain of values Dv, which implicitly de�nes an extended domain
D+
v = Dv[fug, where u denotes the unde�ned value. Further, the total state

space S = Dv1 � : : :�Dvm and the partial state space S+ = D+
v1
� : : :�D+

vm

are implicitly de�ned. We write s[v] to denote the value of the variable v in
a state s.

{ O is a set of operators of the form hb; e; fi, where b; e; f 2 S+ denote the
pre-, post- and prevail-condition respectively. O is subject to the following
two restrictions
(R1) for all hb; e; fi 2 O and v 2 V if b[v] 6= u, then b[v] 6= e[v] 6= u,
(R2) for all hb; e; fi 2 O and v 2 V, e[v] = u or f[v] = u.

{ s0 2 S
+ and s� 2 S

+ denote the initial and goal state respectively.

Restriction R1 essentially says that a state variable can never be made unde-
�ned, once made de�ned by some operator. Restriction R2 says that the pre-
and prevail-conditions of an operator must never de�ne the same variable. We
further write s v t if the state s is subsumed (or satis�ed) by state t, ie. if

7Although not technically necessary, this distinction between the precondition and
the prevail-condition has shown to have conceptual advantages in some cases. For
instance, it has been possible to identify certain restrictions that result in computa-
tionally tractable subcases of the SAS+ planning problem [2{6,17]. Distinguishing
the changed and unchanged parts of the preconditions has also made it easier to
de�ne criteria for possible parallel execution of operators [2,4,5].

8

s[v] = u or s[v] = t[v]. We extend this notion to states, de�ning

s v t i� forall v 2 V; s[v] = u or s[v] = t[v]:

For o = hb; e; fi is a SAS+ operator, we write b(o), e(o) and f(o) to denote b,
e and f respectively. A sequence ho1; : : : ; oni 2 Seqs(O) of operators is called
a SAS+ plan (or simply a plan) over �.

De�nition 9 Given two states s; t 2 S+, we de�ne for all v 2 V,

(s� t)[v] =

8><
>:
t[v]; if t[v] 6= u;

s[v]; otherwise.

The ternary relation Valid SAS+ � Seqs(O) � S+ � S+ is de�ned recursively
s.t. for arbitrary operator sequence ho1; : : : ; oni 2 Seqs(O) and arbitrary states
s; t 2 S+, ValidSAS+(ho1; : : : ; oni; s; t) i� either

(i) n = 0 and t v s or
(ii) n > 0, b(o1) v s, f(o1) v s and

ValidSAS+(ho2; : : : ; oni; (s� e(o1)); t).

A plan ho1; : : : ; oni 2 Seqs(O) is a solution to � i�
ValidSAS+(ho1; : : : ; oni; s0; s�).

3 Planning Problems and Equal Expressiveness

For each of the formalisms presented above, we have de�ned the concept of
a planning problem implicitly by de�ning what its instances look like. More
precisely, we de�ne a planning problem as follows.

De�nition 10 Given a planning formalism X, the (general) planning prob-
lem in X (X-GPP) consists of a set of instances, each instance � having an
associated set Sol (�) of solutions. Furthermore, given a solution set Sol (�),
for each k � 0, Sol k(�) denotes the subset of Sol (�) restricted to solutions of
length k only (ie. valid plans with k operators).

We specialize this problem into the corresponding bounded and unbounded
decision (ie. existence) and search (ie. generation) problems. The bounded
problems are the optimization versions, ie. �nding or deciding the existence

9

of a minimal-length plan.

De�nition 11 Given a planning formalism X, the planning problem in X

can be specialized as follows. The plan existence problem in X (X-PE) is:
given an instance �, decide whether Sol (�) 6= ; or not, ie. whether � has a
solution or not. The bounded plan existence problem in X (X-BPE) takes
an integer k � 0 as an additional parameter and asks if Soln(�) 6= ; for some
n � k, ie. whether � has a solution of length k or shorter. The plan generation
problem in X (X-PG) is: given an instance �, �nd a member of Sol (�) or
answer that Sol (�) is empty. The bounded plan generation problem in X

(X-BPG) takes an integer k � 0 as an additional parameter and returns a
member of Soln(�) for some n � k or answers that Soln(�) is empty for all
n � k.

As mentioned in the introduction, we have chosen to de�ne the concept equal
expressiveness using polynomial transformations. 8 As long as we consider only
the (bounded) plan existence problems, it is straightforward to de�ne equal
expressiveness under polynomial transformation.

De�nition 12 Given two planning formalisms X and Y , we say that X is
at least as expressive as Y wrt. plan existence if Y -GPP �p X-GPP, ie.
Y -GPP polynomially transforms into X-GPP. Further, X and Y are equally
expressive with respect to plan existence i� both X-GPP �p Y -GPP and
Y -GPP �p X-GPP. The corresponding de�nitions for bounded plan exis-
tence are analogous.

The motivation for this de�nition of equal expressiveness is as follows. If we
know that formalisms X and Y are equally expressive with respect to plan
existence, then a proof that X-PE belongs to a certain complexity class im-
mediately allows us to conclude that also Y -PE belongs to that complexity
class, and vice versa. Similarly, hardness and completeness results for com-
plexity classes also carry over immediately.

We are mostly interested in �nding a plan, however, not only �nding out
whether one exists. Hence, we must also consider expressive equivalence with
respect to plan generation. Usually there is a strong relationship between a
decision problem and its corresponding search problem. For instance, if a deci-
sion problem is NP-complete, then the search problem is usually NP-equivalent
and if two search problems can be polynomially transformed into each other,
then the corresponding search problems can usually be Turing reduced to each
other. Furthermore, the bounded plan generation problem can be solved by
employing an oracle (or an algorithm) for the bounded plan existence prob-
lem and using pre�x search [8,15]. For most problems, such a pre�x search

8The reader not being familiar with the concepts of problems and polynomial
transformations may wish to consult the literature [8,15,16].

10

strategy is a Turing reduction. This is not the case for the planning, however,
since instances of the planning problems may have even minimal solutions of
exponential length in the size of the instance [2,6]. It has been argued that
such instances should be regarded as unrealistic in most cases [2,15]. Yet, such
instances are allowed by the formalisms considered in this article and it seems
non-trivial (or even impossible) to restrict the planning problem to instances
with polynomially sized minimal solutions only. Hence, we must take these
exponential solutions into account, even if they are not of any practical in-
terest. For the formalisms considered in this article we will prove expressive
equivalence in a very strong sense, using the novel exact structure-preserving
reduction (ESP-reduction). This reduction is a modi�cation of the structure-
preserving reduction invented by Ausiello, D'Atri and Protasi [1] and is de�ned
as follows.

De�nition 13 Given two planning formalisms X and Y , an ESP-reduction
of X-GPP into Y -GPP, with instance sets InstX and InstY respectively, is a
polynomial-time computable function f : InstX ! InstY s.t. for all � 2 InstX ,
(1) f(�) 2 InstY and (2) for all k � 0, jSolk(�)j = jSol k(f(�))j. We denote
ESP-reducibility by �ESP .

ESP-reductions enjoy the usual properties for reductions and imply polyno-
mial transformability between existence problems.

Theorem 14 (1) ESP-reductions are re
exive and transitive. (2) Given two
planning formalisms X and Y , if X-GPP �ESP Y -GPP, then X-PE �p

Y -PE and X-BPE �p Y -BPE.

Using ESP-reductions, an even stronger concept of equal expressiveness of
planning formalisms can be de�ned, preserving the size distribution of the
solution set, thus also preserving exponentially sized solutions.

De�nition 15 Given two planning formalisms X and Y , we say that X is
at least as expressive as Y under ESP-reduction if Y -GPP �ESP X-GPP.
Further, X and Y are equally expressive under ESP reduction i� both
X-GPP �ESP Y -GPP and Y -GPP �ESP X-GPP.

We will use this concept of expressive equivalence for the formalism considered
in this paper. However, in general this may be an overly strong condition for
expressive equivalence, since it requires that the structure of the solution set
is preserved, and a more general and tolerant concept which still preserves
exponentially sized solutions can be found in B�ackstr�om [2, Section 5]. How-
ever, from another perspective, it may, to the contrary, seem that basing the
concept of equal expressiveness on polynomial reductions of various kinds is
too weak, for the following reason. Suppose A is an algorithm solving size n
instances of Y -PG in O(f(n)) time, for some function f , and � is an ESP
reduction converting size n instances of X-PG to size O(p(n)) instances of

11

Y -PG, for some polynomial p. Then we can solve a size n instance � ofX-PG
with at most a polynomial blow-up in instance size, ie. in time O(f(p(n))), by
solving the instance �(�) using algorithm A. If we could solve � directly also
in O(f(n)) time by some algorithm A0 for X-PG, which need not be possible,
and f is an exponential function, then we risk an exponential slow-down by
applying A to �(�) instead of solving � directly using A0. It thus seems de-
sirable to base a concept of equal expressiveness on an even more �ne grained
criterion. However, it seems hard to de�ne such a criterion and our de�nition
at least preserves membership in the usual complexity classes.

Finally, the de�nition of equal expressiveness should ideally also be accompa-
nied by some requirement for constructive evidence that a su�ciently simple
and natural ESP-reduction exists. Otherwise, we would get very contrived
cases like the language of quanti�ed Boolean formulae, considered as a plan-
ning formalism, being expressively equivalent to the CPS language since the
existence problems are PSPACE-complete in both cases. Such equivalences
were not intended by our concept, but are non trivial to de�ne away since we
can hardly de�ne what \simple and natural" means. However, all equivalence
proofs in this article are constructive, providing simple and straightforward
reductions.

4 Equivalence Proofs

In this section we will prove 9 that the four formalisms de�ned in Section 2
are all equally expressive under ESP-reduction, that is, we will prove that
the planning problem expressed in any of the four formalisms ESP-reduces to
the planning problem expressed in either of the other three formalisms. More
speci�cally, we will explicitly construct the ESP-reductions shown in Figure 1
where each �X

Y
is an ESP-reduction from X-GPP to Y -GPP. The rest follows

from transitivity.

Bylander [9,10] has shown that plan existence is PSPACE-complete for both
CPS plan existence and PSN plan existence. Hence, we know that there ex-
ist polynomial transformations between these problems, but we have no idea
what these may look like. That is, we do not know how to solve one of these
problems given an algorithm for the other one, with only polynomial over-
head; we only know that this is possible. In contrast, the proofs given below
are constructive in the sense that they provide explicit transformations. That
is, they tell us how to convert a problem instance in one formalism to an
equivalent instance in another formalism. Furthermore, they also handle the

9By request from the editors, most proofs are omitted in this article. Full proofs
are provided in B�ackstr�om [2] (using a slightly di�erent type of reduction, though).

12

CPS

PSN

GT

SAS+

�
�
����CPS

PSN
@
@
@
@R

�PSN
GT

�
�

�
�	

�GT
SAS

+

@
@

@
@I

�SAS
+

CPS
= �SAS

+

GT
��GT

CPS

Fig. 1. ESP-reductions to be proven between the planning problemexpressed in the
four formalisms.

(bounded) plan generation problem implicitly by using ESP-reduction instead
of polynomial transformations.

Reducing CPS instances into equivalent PSN instances and PSN instances
into equivalent GT instances respectively is straightforward.

De�nition 16 (CPS to PSN) Given a CPS instance � = hP;O;I;Gi, we
de�ne �CPS

PSN
(�) = hP;O0;I; hG; ;ii, where O0 = fh'; ;; �; �i j h';�; �i 2 Og.

Theorem 17 �CPS
PSN

is an ESP-reduction from CPS-GPP to PSN-GPP.

De�nition 18 (PSN to GT) Given a PSN instance
� = hP;O;I; hG+;G�ii, we de�ne

�PSN
GT

(�) = hP;O0;ComplP(I);G
+ [Neg(G�)i;

where

O0 = fh' [Neg(�); � [Neg(�)i j h'; �; �; �i 2 Og:

Theorem 19 �PSN
GT

is an ESP-reduction from PSN-GPP to GT -GPP.

GT planning can be straightforwardly ESP-reduced into SAS+ planning by
mapping each propositional atom onto a binary state variable. Also, the pre-
condition of an operator has to be split into the pre- and prevail-conditions
for the corresponding operator type depending on whether this atom appears
in the postcondition or not, but this is straightforward.

De�nition 20 (GT to SAS+) Let � = hP;O;I;Gi be an arbitrary instance
of the GT planning problem. Wlg. assume P = fp1; : : : ; pmg. Further de�ne
Li = fpi;:pig for 1 � i � m. Now de�ne the set of variables V = fv1; : : : ; vmg,
s.t. for 1 � i � m, Dvi = fxi; x0ig and de�ne the partial function � : 2LP ! S+

13

for all consistent S � LP s.t. for 1 � i � m,

�(S)[vi] =

8>>>>><
>>>>>:

xi; ifS \ Li = fpig;

x0i; ifS \ Li = f:pig;

u; otherwise (ie: S \ Li = ;):

We de�ne �GT
SAS

+ (�) = hV;O0; �(I); �(G)i, s.t. O0 = fo0jo 2 Og, where for each
o = hpre; posti 2 O, the corresponding operator o0 = hb; e; fi 2 O0 is de�ned
s.t. for 1 � i � m,

b(o)[vi] =

8><
>:
�(pre)[vi]; if post \ Li 6= ;;

u; otherwise ;

e(o)[vi];=�(post)[vi];

f(o)[vi] =

8><
>:
�(pre)[vi]; if post \ Li = ;;

u; otherwise :

Theorem 21 �GT
SAS

+ is an ESP-reduction from GT -GPP to SAS+-GPP.

The reduction �SAS
+

CPS
will be constructed as the composition of two reductions

�SAS
+

GT
and �GT

CPS
as follows. Starting with �SAS

+

GT
, it may seem as if SAS+-GPP

could easily be reduced to GT -GPP by mapping every state variable onto
n atoms, where n is the number of values in the domain of the state vari-
able. However, this would not be guaranteed to yield an ESP-reduction in
the general case, for the following reason. Suppose � = hV;O; s0; s�i is an
instance of the SAS+ planning problem. We let m = jVj, n = maxv2V jDvj
and l = jOj. We make the usual assumption of `conciseness' [15] for the en-
coding of �. For each v 2 V we must represent Dv, so the representation of
V is of size O(m log n). Obviously, also each state takes O(m log n) space to
represent, so O requires O(l m log n) space, thus dominating the size of �.
Now let �0 = hP;O0;I;Gi be a corresponding GT instance. Encoding each
state variable domain as a set of mutually exclusive atoms requires O(mn)
atoms, so both P and each state requires O(mn) space each. Furthermore,O0

requires O(l mn) space, thus dominating the size of �0. We see that �0 may
require an exponentially larger representation than � if n is the dominating
factor, so we have no guarantee that � can be converted to �0 in polynomial
time if we use the mapping above. Hence, we must map each state variable
domain onto a logarithmic number of atoms, as follows.

De�nition 22 Let � = hV;O; s0; s�i be an arbitrary instance of the SAS+

planning problem. Wlg. assume V = fv1; : : : ; vmg. For all v 2 V, de�ne kv =

14

dlog2 jDvje and Pv = fpv;1; : : : ; pv;kvg. Also de�ne the set P = Pv1 [: : : [Pvm
of all such atoms. Further de�ne the partial function �v : D+

v ! 2LPv as
an arbitrary injection satisfying that �v(u) = ; and for all x 2 Dv, �v(x)
is consistent and j�v(x)j = kv. 10 Then de�ne the composite partial function
� : S+ ! 2LP s.t. for all consistent s 2 S+,

�(s) = �v1(s[v1]) [: : : [�vm(s[vm]):

Finally, de�ne

�SAS
+

GT
(�) = hP;O0; �(s0); �(s�)i;

where

O0 = fh�(b(o)) [�(f(o)); �(e(o))i j o 2 Og:

To prove that �SAS
+

GT
is an ESP-reduction, we �rst need to prove some properties

of the function �.

Lemma 23 The following properties hold for the function �:

(i) The inverse ��1 of � is de�ned for all consistent states S � LP , ie. � is
a bijection from S+ to the set of consistent states in LP .

(ii) For all s; t 2 S+, s v t i� �(s) � �(t).
(iii) For arbitrary s; t 2 S+, �(s� t) = �(s)� Neg(�(t)) [�(t).

Proof. 1 and 2 are trivial. To prove 3 it su�ces to prove that for all v 2 V,

�(s� t) \ LPv
=�v((s� t)[v])

=

8><
>:
�v(t[v]); if t[v] 6= u;

�v(s[v]); otherwise ;

=

8><
>:
�v(t[v]); if�v(t[v]) 6= ;;

�v(s[v]); otherwise ;

10 For instance, if assuming D+
v = f0; : : : ; jD+

v j � 1g, then for all de�ned x 2 D+
v we

can let �v(x) be the binary encoding of x s.t. for 1 � i � kv, the literals pv;i and
:pv;i encode the values 1 and 0 respectively for bit i� 1 in this encoding.

15

=

8><
>:
�(t) \ LPv ; if�(t) \ LPv 6= ;;

�(s) \ LPv ; otherwise ;

=

8><
>:
(�(s) \ LPv)� (Neg(�(t) \ LPv)) [(�(t) \ LPv); if�(t) \ LPv 6= ;;

�(s) \ LPv ; otherwise ;

=

8><
>:
(�(s) �Neg(�(t)) [�(t)) \ LPv ; if�(t) \ LPv 6= ;;

(�(s) �Neg(�(t)) [�(t)) \ LPv ; otherwise ;

=(�(s)� Neg(�(t)) [�(t)) \ LPv

and, hence, �(s � t) = �(s)� Neg(�(t)) [�(t). 2

Theorem 24 �SAS
+

GT
is an ESP-reduction from SAS+-GPP to GT -GPP.

Proof. Let � = hV;O; s0; s�i be an arbitrary SAS+ instance and let �0 =
�SAS

+

GT
(�) = hP;O0;I;Gi. Obviously, �SAS

+

GT
can be computed in polynomial

time, so it remains to prove that for each k � 0, jSol k(�)j = jSolk(�0)j, ie.
that there exists a bijection between Sol (�) and Sol (�0). We prove this by
showing that for all states s; t 2 S+ and for every plan ho1; : : : ; oni 2 Seqs(O)
and its corresponding plan ho01; : : : ; o

0
ni 2 Seqs(O0),

ValidSAS+(ho1; : : : ; oni; s; t) i�ValidGT (ho
0

1; : : : ; o
0

ni; �(s); �(t)):

Proof by induction over n.

Basis: For the case where n = 0 it is su�cient to prove that t v s i� �(t) �
�(s), which is immediate from Lemma 23, parts 1 and 2.

Induction: Suppose the claim holds for all n � k for some k > 0. We prove
that the claim holds also for n = k + 1, tacitly using Lemma 23(1).

ValidSAS+(ho1; : : : ; oni; s; t)

i� b(o1) v s; f(o1) v s andValidSAS+(ho2; : : : ; oni; (s� e(o1)); t)

i� (Using Lemma 23(2) and def. �SAS
+

GT
)

�(b(o1)) � �(s); �(f(o1)) � �(s) and

ValidGT (ho
0

2; : : : ; o
0

ni; �(s � e(o1)); �(t))

i� (Using Lemma 23(3))

�(b(o1)) [�(f(o1)) � �(s) and

ValidGT (ho
0

2; : : : ; o
0

ni; (�(s) �Neg(�(e(o1)))) [�(e(o1)); �(t))

i� (Using def. �SAS
+

GT
)

16

pre(o01) � �(s) andValid SAS+(ho2; : : : ; oni; s� e(o1); t)

i� ValidGT (ho
0

1; : : : ; o
0

ni; �(s); �(t)):

It is now immediate that �SAS
+

GT
is an ESP-reduction. 2

A perhaps more surprising result is that GT planning ESP-reduces to CPS
planning. The trick used is to represent each literal in a GT problem instance
with a unique atom in the corresponding CPS problem instance.

De�nition 25 (GT to CPS) Given an instance � = hP;O;I;Gi of the
GT planning problem, we de�ne �GT

CPS
(�) = hLP ;O0;I;Gi, where O0 =

fhpre; post;Neg(post)i j hpre; posti 2 Og.

Note that all literals are treated as distinct, unrelated atoms in �GT
CPS

(�). 11

Theorem 26 �GT
CPS

is an ESP-reduction from GT -GPP to CPS-GPP.

Proof. Let � = hP;O;I;Gi be an arbitrary GT instance and let �0 =
�GT
CPS

(�) = hLP ;O0;I;Gi. Obviously, �GT
CPS

can be computed in polynomial
time, so it remains to prove that for each k � 0, jSolk(�)j = jSolk(�0)j, ie. that
there exists a bijection between Sol (�) and Sol (�0). We prove this by showing
that for all states S; T � LP , and for every plan ho1; : : : ; oni 2 Seqs(O) and
its corresponding plan ho01; : : : ; o

0
ni 2 Seqs(O0),

ValidCPS (ho1; : : : ; oni; S; T) i�ValidGT (ho
0

1; : : : ; o
0

ni; S; T):

Proof by induction over n.

Basis: The case where n = 0 is trivial.

Induction: Suppose the claim holds for all n � k for some k > 0. We prove
that the claim holds also for n = k + 1.

ValidCPS (ho1; : : : ; oni; S; T)

i� '(o1) � S andValidCPS (ho2; : : : ; oni; (S � �(o1)) [�(o1); T)

i� pre(o01) � S andValidGT (ho
0

2; : : : ; o
0

ni; (S �Neg(post(o01))) [post(o01); T)

i� ValidGT (ho
0

1; : : : ; o
0

ni; S; T): 2

11To be precise, we should introduce a new atom in the CPS instance for each
negative literal in LP , but in order to keep the proof short and simple we make this
implicitly by treating each negative literal as a unique atom in the CPS instance,
trusting the benevolent reader to see how to make this distinction explicit.

17

Corollary 27 (SAS+ to CPS) The composite function �SAS
+

CPS
= �SAS

+

GT
��GT

CPS

is an ESP-reduction from SAS+-GPP to CPS-GPP.

Interreducibility between all pairs of formalisms then follows from transitivity
of ESP-reductions.

Corollary 28 The formalisms CPS, PSN, GT and SAS+ are equally expres-
sive under ESP-reduction.

The equalities are not invariant with respect to further restrictions, though.
For example, negative preconditions do add to the expressiveness if the delete
lists are required to be empty. 12

5 Discussion

Although the analysis in this article is restricted to four very basic formalisms,
the results are nevertheless interesting. Many planning researchers seem to
have assumed that at least some of these formalism exhibit di�erent expres-
sive power. The discovery that this is, in fact, not the case lead us to pose the
question of which features actually do add to the expressiveness of a planning
formalism. Complexity analyses have been presented [6,9,12] for restricted
versions of the formalisms in this article, thus telling us something about the
relative expressive power of restricted cases within some of the formalisms.
However, even the unrestricted cases considered in this article are often con-
sidered too limited for most practical applications. One may, hence, ask which
of the features that have been added to these basic formalisms in the literature
actually do increase the expressive power.

It is beyond the scope of this article to make a thorough investigation of all
such additions, but some observations are fairly easy to make. For instance,
one simple extension to the GT formalism would be to allow sets of disjunc-
tions of literals in the precondition, ie. allowing preconditions in conjunctive
normal form. The only obvious way to encode such an extended GT operator
in the `standard' GT formalism seems to be to split it into several operators
for each disjunction, resulting in an exponential blow-up of the problem in-
stance. There seems to be no way of avoiding this exponentiality and it is thus
highly unlikely that there should exist a polynomial transformation from the
GT plan existence problem to this extended GT plan existence problem, al-

12This follows from the fact that PSN plan existence with empty delete lists is
NP-complete [9, Theorem 4], but becomes polynomial if negative preconditions are
not allowed [9, Footnote 2]. Hence, there can exist no polynomial transformation of
the �rst problem to the second, unless P=NP.

18

lowing disjunctive preconditions. That is, disjunctive preconditions most likely
increase the expressive power.

Another common and simple extension is to add variables to the GT for-
malism, resulting in the standard TWEAK formalism [11]. Allowing in�nite
variable domains makes plan existence undecidable [11,13] and, thus, trivially
adds to the expressive power. For most real-world applications it will likely
su�ce to use �nite variable domains, though, which, in principle, would cor-
respond to the propositional case. Things are not quite that simple, however,
since it seems that a TWEAK operator with the precondition P (x), say, must
be split into a number of operators, one for each object in the domain. That
is, the operator with P (x) in its preconditions must be replaced with several
operators having preconditions P (c1); : : : ; P (cn) respectively, where c1; : : : ; cn
are constants denoting the objects in the domain. If an operator has several
variables in its precondition, we get an exponential blow-up also in this case.
Hence, it seems that variables also add to the expressive power of the planning
formalisms, even if restricted to �nite domains.

To conclude, we have argued that it is appealing and useful to base the concept
of expressive equivalence of formalisms on the concept of polynomial trans-
formations. Using this de�nition, we have, further, proven that four common
propositional planning formalisms that seem to exhibit various degrees of ex-
pressive power are in fact equally expressive.We believe that this may serve as
a starting point for asking and analysing which of all the features incorporated
into planning formalisms in the literature actually do add to the expressive
power. It may, of course, be motivated to add a certain feature for concep-
tual reasons, making it easier and more natural to model certain applications.
However, if claiming that this addition is necessary, one should also prove that
it indeed adds to the expressive power.

Acknowledgement

The author would like to thank Bernhard Nebel, Bart Selman, Andrzej Lingas,
Christos Levcopoulos and the anonymous reviewers for helpful comments and
discussions on this article and earlier versions of it.

References

[1] G. Ausiello, A. D'Atri, and M. Protasi. Structure preserving reductions among
convex optimizations problems. J. Comput. Syst. Sci., 21:136{153, 1980.

19

[2] C. B�ackstr�om. Computational Complexity of Reasoning about Plans. Doctoral
dissertation, Link�oping University, Link�oping, Sweden, June 1992.

[3] C. B�ackstr�om. Equivalence and tractability results for SAS+ planning. In
B. Swartout and B. Nebel, editors, Proceedings of the 3rd International
Conference on Principles on Knowledge Representation and Reasoning (KR-
92), pages 126{137, Cambridge, MA, USA, Oct. 1992. Morgan Kaufmann.

[4] C. B�ackstr�om and I. Klein. Parallel non-binary planning in polynomial time.
In Reiter and Mylopoulos [22], pages 268{273.

[5] C. B�ackstr�om and I. Klein. Planning in polynomial time: The SAS-PUBS class.
Computational Intelligence, 7(3):181{197, Aug. 1991.

[6] C. B�ackstr�om and B. Nebel. Complexity results for SAS+ planning. In Bajcsy
[7].

[7] R. Bajcsy, editor. Proceedings of the 13th International Joint Conference on
Arti�cial Intelligence (IJCAI-93), Chamb�ery, France, Aug.{Sept. 1993. Morgan
Kaufmann.

[8] J. L. Balc�azar, J. Diaz, and J. Gabarr�o. Structural Complexity I. Springer,
1988.

[9] T. Bylander. Complexity results for planning. In Reiter and Mylopoulos [22],
pages 274{279.

[10] T. Bylander. The computational complexity of propositional STRIPS planning.
Research technical report, Laboratory for Arti�cial Intelligence Research, The
Ohio State University, Columbus, OH, USA, May 1992. To appear in Arti�cial
Intelligence.

[11] D. Chapman. Planning for conjunctive goals. Arti�cial Intelligence, 32:333{
377, 1987.

[12] K. Erol, D. S. Nau, and V. S. Subrahmanian. On the complexity of domain-
independent planning. In Proceedings of the 10th (US) National Conference
on Arti�cial Intelligence (AAAI-92), pages 381{386, San Jos�e, CA, USA, July
1992. American Association for Arti�cial Intelligence.

[13] K. Erol, D. S. Nau, and V. S. Subrahmanian. When is planning decidable?
In J. Hendler, editor, Arti�cial Intelligence Planning Systems: Proceedings of
the 1st International Conference, pages 222{227, College Park, MD, USA, June
1992. Morgan Kaufmann.

[14] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Arti�cial Intelligence, 2:189{208, 1971.

[15] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York, 1979.

[16] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science: Algorithms and Complexity,
volume A, chapter 2, pages 67{161. Elsevier, Amsterdam, 1990.

20

[17] P. Jonsson and C. B�ackstr�om. Tractable planning with state variables by
exploiting structural restrictions. In Proceedings of the 12th (US) National
Conference on Arti�cial Intelligence (AAAI-94), Seattle, WA, USA, July{Aug.
1994. American Association for Arti�cial Intelligence.

[18] S. C. Kleene. Introduction to Metamathematics. van Nostrand, 1952.

[19] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proceedings
of the 9th (US) National Conference on Arti�cial Intelligence (AAAI-91), pages
634{639, Anaheim, CA, USA, July 1991. American Association for Arti�cial
Intelligence, AAAI Press/MIT Press.

[20] S. Minton, J. Bresina, and M. Drummond. Commitment strategies in planning:
A comparative analysis. In Reiter and Mylopoulos [22], pages 259{265.

[21] B. Nebel and J. Koehler. Plan modi�cation versus plan generation: A
complexity-theoretic perspective. In Bajcsy [7], pages 1436{1441.

[22] R. Reiter and J. Mylopoulos, editors. Proceedings of the 12th International
Joint Conference on Arti�cial Intelligence (IJCAI-91), Sydney, Australia, Aug.
1991. Morgan Kaufmann.

[23] E. Sandewall and R. R�onnquist. A representation of action structures. In
Proceedings of the 5th (US) National Conference on Arti�cial Intelligence
(AAAI-86), pages 89{97, Philadelphia, PA, USA, Aug. 1986. American
Association for Arti�cial Intelligence, Morgan Kaufmann.

21

