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Abstract

One kind of temporal reasoning is temporal projection|the computa-

tion of the consequences of a set of events. This problem is related

to a number of other temporal reasoning tasks such as plan validation

and planning. We show that one particular, simple case of temporal

projection on partially ordered events turns out to be harder than

previously conjectured, while planning is easy under the same restric-

tions. Additionally, we show that plan validation is tractable for an

even larger class of plans|the unconditional plans|for which tem-

poral projection is NP-hard, thus indicating that temporal projection

may not be a necessary ingredient in planning and plan validation.

Analyzing the partial decision procedure for the temporal projection

problem that has been proposed by other authors, we notice that it

fails to be complete for unconditional plans, a case where we have

shown plan validation tractable.
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1 Introduction

The problem of temporal projection is to compute the consequences of a
set of events. Dean and Boddy [15] formalize and analyze this problem
for sets of partially ordered events assuming a propositional strips-like [19]
representation of events. They investigate the computational complexity of a
number of restricted problems and conclude that even for severely restricted
cases the problem is NP-hard, which motivated them to develop a partial
decision procedure for the temporal projection problem.

It turns out that the temporal projection problem is even harder than
it was originally believed. Among the restricted problems Dean and Boddy
analyzed, there is a particular \simple" one they conjectured to be solvable in
polynomial time. However, even in this case temporal projection is NP-hard,
as is shown below.

The main motivation for the isolation and analysis of the temporal pro-
jection problem [15] is the hypothesis that \a signi�cant part of this process
[nonlinear planning] involves some means for predicting the consequences of
actions and using these consequences to verify whether or not a given par-
tially constructed plan is likely to succeed" [14, p. 196].1 To verify this hy-
pothesis, we have taken a closer look at the complexity of nonlinear planning
in relation to that of temporal projection. Our analysis shows that temporal
projection is not necessarily a useful subproblem for solving the nonlinear
planning problem. In particular, we identify cases were nonlinear planning
is computationally easy, whereas the corresponding temporal projection task
is intractable (assuming P 6= NP).

The planning problem is de�ned as follows: Given an initial world state, a
desired world state, and a set of possible actions, �nd a (partially or totally
ordered) set of of actions that, if executed in the initial world state, will
bring about the desired world state [33].2 Planning is a very di�cult problem
[9, 11, 12, 18, 17, 22]. However, the planning problem turns out to be trivial
if we apply the restrictions of the \simple" temporal projection problem to it.
Plans of minimal length are derivable in polynomial time in this case. Thus,
under these restrictions, planning is strictly easier than temporal projection.

We also considered the plan validation problem. This is the problem of
verifying that given a plan, an initial state, and a desired state, all actions
mentioned in the plan can be successfully executed, i.e., their preconditions

1One of the mainmotivations for our analysis is the development of e�cient methods for
solving a generalized plan validation problem that comes up in the context of representing
and managing plans in a terminological representation system [23] that is used in the
multi-media presentation system WIP [35].

2This means, we adopt the \classical" perspective on planning, i.e., we assume that
there is complete knowledge and the world is only changed by the actions of the agent
executing the plan.
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are satis�ed, and the actions of the plan lead to the desired state [33, p. 29].
Since planning proceeds incrementally, one is usually not only interested in
deciding the validity of a plan, but also in �nding the reason for a failure if
the plan is not yet valid. These \diagnoses of failure" can then be used to
further develop the plan. In our paper, we abstract from these more practical
considerations, however.

In the general case, plan validation and temporal projection of necessary
consequences in the form as de�ned by Dean and Boddy belong to the same
complexity class, but there does not seem to exist a natural decomposition of
validation problems into projection problems. In the special case where only
context-independent e�ects of actions are allowed, there exists a straightfor-
ward decomposition of plan validation into temporal projection problems.
However, from a complexity point of view, this decomposition does not make
much sense. Plan validation is a polynomial-time problem in this case, as
can be shown using the techniques developed by Chapman [11], while solving
the temporal projection problems is NP-hard.

The key idea in proving tractability of plan validation for context-inde-
pendent actions is that any valid plan must be coherent, i.e., all preconditions
must be necessarily satis�ed. Based on the tentative assumption that a plan
is coherent, it is easy to decide whether it is indeed coherent. This notion can
be quite naturally applied to prove a modi�ed form of temporal projection for
context-independent actions to be tractable, provided we are only interested
in necessary consequences. Further, the notion of coherence can also be
applied to plan validation for more expressive action languages, which leads
to tractable but incomplete plan validation criteria.

The remainder of the paper is structured as follows. Section 2 contains
the de�nition of the general temporal projection problem for partially ordered
events as formalized by Dean and Boddy [15]. In Section 3, a simple form of
temporal projection that was conjectured to be tractable by Dean and Boddy
[15] is shown to be NP-hard. The corresponding planning problem permits
a polynomial-time planning algorithm, however, as is shown in Section 4.
In Section 5, we show that plan validation is tractable if all events are un-
conditional and analyze the relationship between this result and Chapman's
[11]. In order to put this result into perspective, we analyze in Section 6 why
plan validation appears to be easier than projection in this special case and
de�ne an alternative form of temporal projection that is tractable for neces-
sary consequences. In addition, we discuss in how far the tractability results
could be exploited in more general causal structures. Finally, in Section 7,
we examine the partial decision algorithm proposed by Dean and Boddy [15].
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2 Temporal Projection

Given a description of the state of the world and a description of which events
will occur, we are usually able to predict what the world will look like. This
kind of reasoning is called temporal projection. It seems to be the easiest and
most basic kind of temporal reasoning. Depending on the representation,
however, there are subtle di�culties hidden in this reasoning task.

The formalization of the temporal projection problem for partially or-
dered events given below is equivalent to the formalization given by Dean
and Boddy [15, Sect. 2] but more tailored to meet our needs for proving dif-
ferent properties about temporal projection. We start with the de�nition of
what a causal structure is, which �xes our vocabulary to talk about states,
event types, and rules of change. We con�ne ourselves to a particular simple
form of causal structures, where world states are represented by sets of propo-
sitional atoms and rules of change are described as propositional strips-like
operators. As a second step, we introduce sets of partially ordered events
over causal structures that denote all event sequences that satisfy the partial
order over the event set. Finally, the notion of event systems will be intro-
duced that consist of an initial state and a partially ordered event set. The
problem of temporal projection is to decide whether a given propositional
atom holds, possibly or necessarily, after or before a given event in an event
system.

De�nition 1 A causal structure is given by a tuple � = hP; E;Ri, where

� P = fp1; : : : ; png is a set of propositional atoms, the conditions,

� E = f�1; : : : ; �mg is a set of event types,

� R = fr1; : : : ; rog is a set of causal rules of the form ri = h�i; 'i; �i; �ii,
where

{ �i 2 E is the triggering event type,

{ 'i � P is a set of preconditions,

{ �i � P is the add list,

{ and �i � P is the delete list.

In order to illustrate this de�nition, assume a toy scenario as depicted in
Figure 1. There is a hall, a room A, and another room B. Room A contains
a public phone, and room B contains an electric outlet. The robot Robby
can be in the hall (denoted by the atom h), in room A (a), or in room B (b).
Robby can have a phone card (p) or coins (c). Additionally, when Robby
uses the phone, he can inform his master on the phone that he was �nally
successful in proving the di�cult theorem (i). Robby's batteries can be fully
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Figure 1: A toy scenario

charged (f), almost empty (e), or, in unlucky circumstances, be damaged
(d). Summarizing, the set of conditions for our tiny causal structure is the
following:

P = fa; b; h; p; c; i; d;e; fg:

Robby can do the following. He can move from the hall to either room
(�h!a, �h!b) and vice versa (�a!h, �b!h). Provided he is in room A and he has
a phone card or coins, he can call his master (�call). Additionally, if Robby
is in room B, he can recharge himself (�charge ). However, if Robby is already
fully charged, this results in damaging his batteries. Summarizing, we have
the following set of event types:

E = f�h!a; �h!b; �a!h; �b!h; �call ; �chargeg;

and the following set of causal rules:

R =
n
h�h!a; fhg; fag; fhgi; h�h!b; fhg; fbg; fhgi;
h�a!h; fag; fhg; fagi; h�b!h; fbg; fhg; fbgi;
h�call ; fa; pg; fig; ;i; h�call ; fa; cg; fig; fcgi;

h�charge ; fb; eg; ffg; fegi; h�charge ; fb; fg; fdg; ffgi
o
:

In order to talk about sets of concrete events and temporal constraints
over them, the notion of a partially ordered event set is introduced.3

De�nition 2 Assuming a causal structure � = hP; E;Ri, a partially or-

dered event set (POE) over � is a pair �� = hA�;�i consisting of

1. a set of actual events A� = fe1; : : : ; epg with an associated function
type:A� ! E, and

3This notion is similar to the notion of a nonlinear plan.
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2. a strict partial order4 � over A�.

In the following, we will often drop the subscript � in �� and A� if it
is clear from the context which causal structure we mean. Continuing our
example, we assume a set of six actual events A = fA; B; C; D; E; Fg, such that

type(A) = �h!a type(D) = �h!b

type(B) = �call type(E) = �charge
type(C) = �a!h type(F) = �b!h;

with the following temporal constraints

A � B � C and D � E � F:

POEs denote sets of possible sequences of events satisfying the partial
order. A partial event sequence of length m over such a POE hA;�i is
a sequence f = hf1; : : : ; fmi such that (1) ff1; : : : ; fmg � A, (2) fi 6= fj if
i 6= j, and (3) for each pair fi; fj of events appearing in f , if fi � fj then
i < j. For instance, hA; B; Ci is a partial event sequence of length three over
the POE given above, while hA; C; Bi is not. If the event sequence is of length
jAj, it is called a complete event sequence over the POE. The sequences
hA; B; C; D; E; Fi and hA; D; B; E; C; Fi are complete event sequences, for instance.
The set of all complete event sequences over a POE � is denoted by CS (�).

We say that a partial event sequence f can be extended to an event
sequence g if jf j < jgj and for all fi; fj with i < j there exists gk = fi and
gl = fj such that k < l. If f = hf1; : : : ; fk; : : : ; fmi is an event sequence, then
hf1; : : : ; fki is the initial sequence of f up to fk, written f=fk. Similarly, fnfk
denotes the initial sequence hf1; : : : ; fk�1i consisting of all events before fk.
Further, we write f ; g to denote hf1; : : : ; fm; gi.

Each event maps states (subsets of P) to states. Let S � P denote a state
and let e be an event. Then we say that the causal rule r is applicable in

state S i� r = htype(e); '; �; �i and ' � S. Given e and S, app(S; e) denotes
the set of all applicable rules for e in state S. An event e is said to be
admissible in a state S i� app(S; e) 6= ;. In order to simplify notation, we
write '(r), �(r), �(r) to denote the sets ', �, and �, respectively, appearing
in the rule r = h�; '; �; �i. If there is only one causal rule associated with
the event type type(e), we will also use the notation '(e), �(e), and �(e).
Based on this notation, we de�ne what we mean by the result of a sequence
of events relative to a state S.

De�nition 3 The function \Result" from states and event sequences to
states is de�ned recursively by:

Result
�
S; hi

�
= S

4A strict partial order is a transitive and irre
exive relation.
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Result
�
S; (f ; g)

�
= Result(S; f)�

f�(r)j r 2 app(Result(S; f); g)g [

f�(r)j r 2 app(Result(S; f); g)g:

It is easy to verify that the following equation holds for our example
scenario:

Result(fh; e; cg; hA; B; C; D; E; Fi) = fh; f; ig:

There are some points in De�nition 3 that may appear to be problemat-
ical to the attentive reader. First, it is possible that two rules are applicable
where one rules adds an atom and the other one deletes it. Although un-
desirable, this is permitted. In this case, we adopted in De�nition 3 the
(admittedly arbitrary) convention that the atom will be added (following
Dean and Boddy [15]). A second arguable point is that the de�nition of the
function Result permits sequences of events where events occur that are not
admissible. For instance, it is possible to ask what the result of hA; D; B; E; C; Fi
in state fh; e; cg will be:

Result(fh; e; cg; hA; D; B; E; C; Fi) = fh; e; ig:

Although perfectly well-de�ned, this result seems to be strange because the
events D, E, and F occurred without being admissible in the states they occur
in. In fact, it seems to be quite unintuitive that event D, i.e., a movement of
Robby from the hall to room B, can occur in a world state where Robby is in
room A. In a natural language understanding context, one would take such
a state of a�airs as an incoherency, and perhaps attempt to �ll in the missing
event of Robby returning to the hall. In a planning context, the occurrence
of D could be interpreted as a failed action attempt.

De�nition 4 An event sequence f = hf1; : : : fmi is called admissible in

state S i� each event fi, 1 � i � m, is admissible in Result(S; fnfi).

Depending on one's intuition, it may be preferable to de�ne the function
\Result" as a partial instead of a total function. The domain of \Result"
would then be de�ned only over states and event sequences that are admissi-
ble in this state, a point we will return to in Section 6. The set of all complete
event sequences over � that are admissible in S is denoted by ACS (�; S).
If CS (�) = ACS (�; S), we will say that � is coherent relative to S.

In the following, we will often talk about which consequences a POE will
have on some initial state. For this purpose, the notion of an event system
is introduced.

De�nition 5 An event system � is a pair h��; Ii, where �� is a POE
over the causal structure � = hP; E;Ri, and I � P is the initial state.
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In order to simplify notation, the functions CS and ACS are extended
to event systems with the obvious meaning, i.e., CS (h�; Si) = CS (�) and
ACS (h�; Si) = ACS (�; S). Further, if CS (�) = ACS (�), � is called co-

herent.
The problem of temporal projection as formulated by Dean and Boddy

[15] is to determine whether some condition p holds, possibly or necessarily,
after a particular event e of an event system �, written p 2 Poss+(e;�)
and p 2 Nec+(e;�), respectively. We will also consider the problems of
determining the sets of conditions that hold, possibly or necessarily, before a
given event, written Poss�(e;�) and Nec�(e;�).

De�nition 6 Given an event system �, an event e 2 A, and a condition
p 2 P:

p 2 Poss+(e;�) i� 9f 2 CS (�): p 2 Result(I; f=e)

p 2 Nec+(e;�) i� 8f 2 CS (�): p 2 Result(I; f=e)

p 2 Poss�(e;�) i� 9f 2 CS (�): p 2 Result(I; fne)

p 2 Nec�(e;�) i� 8f 2 CS (�): p 2 Result(I; fne):

Hence, we have in fact four instead of one temporal projection problem.
From a computational point of view, however, Nec+ and Nec� are equivalent
(under polynomial transformations), a property that also holds for Poss+

and Poss�. Further, this property seems to extend to all restrictions on
event systems.

Continuing our example, let us assume the initial state I = fh; e; cg.
Then the following can be easily veri�ed:

i 2 Poss+(B;�) i 62 Nec+(B;�)
d 62 Poss+(E;�) d 62 Nec+(E;�):

In plain words, Robby is only possibly but not necessarily successful in in-
forming his master about his success. On the positive side, however, we know
that Robby's batteries will not be damaged, regardless of in which order the
events happen.

3 A \Simple" Temporal Projection Problem

Given a set of conditions S and a sequence f , Result(S; f) can be computed in
polynomial time by interpreting the de�nition of Result procedurally. Since
the set CS (�) may contain exponentially many sequences, however, it is
not obvious whether p 2 Poss+(e;�) and p 2 Nec+(e;�) can be decided in
polynomial time.
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In the general case, temporal projection as de�ned above is quite di�-
cult. Dean and Boddy [15] show that the decision problems p 2 Poss+(e;�)
and p 2 Nec+(e;�) are NP-complete and co-NP-complete, respectively, even
under some severe restrictions, such as restricting � or � to be empty for
all rules, or requiring that there is only one causal rule associated with each
event type. Considering the proofs of these results [15], they hold, quite ob-
viously, also for the corresponding problems of deciding p 2 Poss�(e;�) and
p 2 Nec�(e;�).

De�nition 7 A causal structure � is called unconditional i� for each
� 2 E, there exists only one causal rule with the triggering event type �. An
event system h��; Ii is called unconditional i� � is unconditional. An
event system is called almost simple i� it is unconditional and for each
causal rule r = h�; '; �; �i, the sets � and � are singletons and � � '. An
event system is called simple i� it is unconditional, I is a singleton, and
for each causal rule r = h�; '; �; �i, the sets ', �, and � are singletons and
' = �.

Dean and Boddy [15, Theorem 2.4] prove that the decision problem
p 2 Poss+(e;�) is NP-complete for almost simple event systems and con-
jecture that it is a polynomial-time problem for simple event systems [15,
p. 379]. As it turns out, however, also this problem is computationally dif-
�cult since the problem of path with forbidden pairs can be polynomially
transformed to the simple temporal projection problem.

De�nition 8 An instance of the path with forbidden pairs (PWFP)
problem is given by a directed directed graph G = (V;A), two vertices s; t 2 V ,

and a collection C =
n
fa1; b1g; : : : ; fan; bng

o
of pairs of arcs from A. The

question is: Does there exist a directed path from s to t in G that contains
at most one arc from each pair in C?

This problem is NP-complete as shown by Gabow et al [20], even if the
graph is acyclic and all pairs are disjoint (see also [21, p. 203]).

Theorem 1 Deciding p 2 Poss+(e;�) for simple event systems � is NP-
complete.

Proof Sketch. Membership in NP is obvious. Assume an acyclic directed
graph with forbidden pairs of arcs such that all forbidden pairs are pairwise
disjoint, and two nodes s and t. Assume without loss of generality that the
�nal node t has no outgoing and only one incoming arc. In order to generate
a temporal projection problem, nodes vi are transformed to propositional
atoms vi, arcs ai;j = (vi; vj) are transformed to events ai;j with the associated
causal rule htype(ai;j); fvig; fvjg; fvigi, and the source node s is transformed
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to the initial state fsg. A forbidden pair fa; bg, where we assume without
loss of generality that there is path from a to b, is interpreted as the temporal
restriction b � a. Based on this transformation, it can be shown that there
exists a path without forbidden pairs from s to t i� t is a possible consequence
of the generated event system.5

In order to demonstrate the above sketched transformation, let us consider
the graph with forbidden pairs in Figure 2. The temporal constraints in the
generated event system would be

(x; y) � (v; x); (w; y) � (v; w):

@
@
@
@
@
@

@
@
@
@
@

�
�
�
�
�

�
�
�
�
�
�

v

x

w

y z

forbidden pair

forbidden pair

Figure 2: A graph with forbidden pairs

The only path from the source node v to the terminal node z that does
not contain a forbidden pair is the path v,w,x,y,z. It is easy to see that this
path could be used to generate a complete event sequence with z as its �nal
consequence. As a �rst step, we use the partial event sequence consisting of
all events corresponding to the arcs on this path:

D
(v; w); (w; x); (x; y); (y; z)

E
:

This sequence can be extended by the remaining events in a way such that
they meet the temporal constraints and are not admissible in this sequence.
These conditions can be easily satis�ed because the temporal constraints in-
volve only pairwise disjoint pairs of events. In our case the following complete
sequence leads to the desired result:

D
(w; y); (v; w); (w; x); (x; y); (v; x); (y; z)

E
:

5Full proofs are given in the appendix.
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Conversely, it is easy to see that a complete event sequence leading to the
atom corresponding to the terminal node implies the existence of a path
without forbidden pairs. The subsequence consisting of all admissible events
corresponds to a path from the source node to the terminal node (in our
case, from v to z). Since this subsequence satis�es all temporal constraints,
the corresponding path cannot contain forbidden paths.

Using a slight modi�cation of the above sketched transformation, it can
be easily shown that p 2 Nec+(e;�) is computationally equivalent to p 62
Poss+(e;�), i.e., it is co-NP-complete.

Corollary 2 Deciding p 2 Nec+(e;�) for simple event systems � is co-NP-
complete.

From the above, it follows that the corresponding problems of deciding
p 2 Poss�(e;�) and p 2 Nec�(e;�) are also complete for NP and co-NP,
respectively.

An interesting observation in this context is that the sources of complexity
identi�ed by Dean and Boddy [15, p. 380], namely, conjunction by means of
multiple preconditions (j'j > 1) and disjunction in the form of multiple
causal rules for one event, are not responsible for the intractability of the
temporal projection problem. These sources of complexity are not present in
our case. The sole source of complexity seems to be the partial ordering of
events.

These results are somewhat surprising because one might suspect that
planning and plan validation are easy under the restrictions imposed on the
structure of event systems. We will analyze this point more thoroughly in
the following sections.

4 Restricted Planning Problems

One reason for analyzing the temporal projection problem is that it seems
to constitute the heart of nonlinear planning [14, p. 196]. If we now consider
the restrictions placed on the simple temporal projection problem, it turns
out that planning itself is quite easy under the same restrictions.

In the context of planning, events as introduced above are usually called
actions and POEs are called nonlinear plans, or simply plans. In the
following, we use these terms interchangeably.

De�nition 9 A planning task � is given by h�; I;Gi, where � = hP; E;Ri
is a causal structure as de�ned above, and I � P and G � P are the initial
state and goal state, respectively. A plan �� solves � i�

1. the plan necessarily achieves the goal, i.e., G � Result(I; f) for all
f 2 CS (��), and
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2. the plan is coherent, i.e., ACS (��; I) = CS (��).

Note that we only allow plans where all actions are admissible (i.e. are
guaranteed to have their preconditions satis�ed), which coincides with the
traditional de�nition [11, 33, 13]. Dean and Boddy [15], on the other hand, do
not require valid plans to be coherent and de�ne that non-admissible actions
have no e�ect. Such a de�nition, however, makes very strong (implicit)
assumptions about the underlying execution model, namely, that a failed
action attempt does not lead to any unintended e�ects. Requiring coherence
for validity is thus a safe approach since non-admissible actions are avoided
in valid plans, making assumptions about the underlying execution model
unnecessary.

The problem of planning is to decide whether there exists a solution for
a planning task6 (or, ultimately, to �nd a solution). If one is interested in
plans of minimal length, the corresponding decision problem is to ask for the
existence of a plan with a given length.

De�nition 10 An instance of the plan existence problem is a planning
task �. The question is: Does there exists a plan that solves �?

An instance of the plan optimization problem is given by an integer k
and a planning task �. The question is: Does there exists a plan � = hA;�i
such that � solves � and jAj � k?

The computational complexity of planning has been investigated only
recently. Bylander [9] analyzed the general problem of deciding the existence
of a solution for a planning task in the context of propositional strips-
like representations7 and showed that the general problem is PSPACE-com-
plete. A number of restricted problems turn out to be tractable, however.
For instance, plan existence for unconditional causal structures and causal
rules restricted by j(�(r) [ �(r))j = 1 is tractable [9, Theorem 7]. Similarly,
planning with causal rules such that the preconditions are always empty [9,
Theorem 9] and planning with unconditional causal structures such that the
goal state is restricted in size and all rules contain only one precondition
[9, Theorem 8] are tractable. It should be noted, however, that Bylander
[9] considers only the existence problem and not the associated optimization
problem, which is often harder. For example, his Theorem 9 does not apply to

6Note that we use the complexity-theoretic terminology here, where problems are sets
of instances. In the terminology of planning research, instances of the planning problem
are often called \planning problems." In order to avoid confusion, we called the latter
planning tasks.

7Bylander allows incoherent plans and assumes that non-admissible actions have no
e�ect. Since he considers only the existence of linear plans that solve a given task, such non-
admissible actions can be safely removed from his solutions, however. Hence, Bylander's
complexity results carry over also to the case where plans are required to be coherent.
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the corresponding optimization problem because theminimum cover problem
[21, p. 222] can be reduced to this planning problem [16, 10].

Proposition 3 The plan optimization problem for planning tasks such that
the preconditions of all causal rules are empty is NP-complete.

Returning to the problem we analyzed in the previous section, similarly
to simple event systems we de�ne simple planning tasks to be planning
tasks that meet the following restrictions: (1) there is only one causal rule
associated with each event type, (2) for all causal rules j'j = j�j = j�j = 1
and ' = �, and (3) jIj = 1. Using Bylander's [9] Theorem 8, the tractability
of the plan existence problem follows immediately. In this case, also plan
optimization is tractable, however, since in this case planning can be reduced
to a graph searching problem with a graph that is linearly bounded by the
instance size.

Proposition 4 For simple planning tasks, it can be decided in polynomial
time whether there exists a solution. Further, plan optimization for simple
planning tasks is also a polynomial-time problem.

This result leads to the question why temporal projection, which is sup-
posed to be the underlying problem in plan validation, is more di�cult than
planning itself in some cases. One explanation could be that a planner could
create the complicated structure we used in the proof of Theorem 1, but
it never would do so. Hence, the theoretical complexity never shows up in
reality. In fact, all solutions of simple planning tasks are linear plans, i.e.,
event sequences, for which temporal projection is tractable.

The natural question coming up is whether there are tractable planning
problems that have truly nonlinear plans as solutions. Examples for such
problems are the SAS-PUBS and SAS-PUS problems analyzed by B�ackstr�om
and Klein [6, 7].

The interesting point about these problems is that they are not de�ned
by local restrictions on the causal rules, that the restrictions do not come up
naturally in the formalism for specifying causal structures we use here, and
that they are supposedly of more practical interest than the restricted classes
of planning problems we have considered above. The SAS-PUBS and SAS-
PUS planning problems are aimed at capturing planning tasks that come up
in the domain of sequential control8, where the action representation may be
relatively simple, but the problem size makes computational complexity an
important issue.

The SAS-PUS planning problem was originally formulated in the simpli-
�ed action structures (SAS) formalism [6, 7], which is based on earlier work

8Sequential control is a subdiscipline of discrete event dynamical systems within auto-

matic control.
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on action structures [3, 32]. In the following, we re-express the SAS-PUS re-
strictions in the formalism from Section 2 in order to facilitate a comparison
with the planning problems we have considered so far.

De�nition 11 A planning task � = hhP; E;Ri; I;Gi is SAS-PUS equiv-

alent i� it satis�es the following restrictions:

1. hP; E;Ri is unconditional;

2. P can be partitioned into m disjoint subsets P1; : : : ; Pm s.t. jPij > 1 for
1 � i � m and for all causal rules h�; '; �; �i 2 R

(a) � � ',

(b) j�j = 1;

(c) j' \ Pij � 1 for all i,

(d) j� \ Pij = j� \ Pij � 1 for all i, and

(e) � \ � = ;.

3. jI \ Pij = jG \ Pij = 1 for all i.

4. for all pairs of causal rules
h�; '; �; �i; h�0; '0; �0; �0i 2 R

(a) if ' = '0, � = �0, and � = �0, then � = �0;

(b) if � 6= �0, then � \ �0 = ;; and

(c) for all 1 � i � m, if ('� �) \ Pi 6= ; and ('0 � �0) \ Pi 6= ; then
('� �) \ Pi = ('0 � �0) \ Pi.

The restrictions can be understood as follows. Each partition Pi can be
viewed as the value domain of a state variable xi, an action can change the
value of a state variable only if it already has a de�ned value, an action can
only change the value of one state variable, there must be no two di�erent
action types changing the same state variable to the same value (4b), and
the initial state and the goal state are fully speci�ed. Finally, restriction (4c)
captures the notion of single-valuedness [6, 7]. Comparing these restrictions
with the corresponding, but simpler restrictions in the SAS formalism [6, 7]
it is easy to see why the SAS formalism was originally preferred for de�ning
the SAS-PUS problem.

Theorem 5 The plan optimization problem for SAS-PUS equivalent plan-
ning tasks is a polynomial-time problem.
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The SAS-PUS problem is not comparable with either Bylander's re-
stricted problems or our simple planning problem, i.e., the SAS-PUS problem
is neither subsumed by nor does it subsume any of the those problems. In
order to get an idea about the expressiveness of SAS-PUS planning tasks, it
may be worthwhile to note that it permits formulating the restricted primitive
blocks world planning problem [29], a problem Bylander used as an example
for one of his restricted planning problems9 [9, Theorem 10].

Although the SAS-PUS problem is incomparable to the other restricted
planning problems mentioned in this section with respect to expressivity, we
know that it presents an (almost) optimal tradeo� between expressivity and
e�ciency. Except for the conditions that the initial and goal states must
be completely speci�ed (condition (3)) and the requirement that an action
may not change a state variable from the unde�ned (i.e. an arbitrary) value
to a de�ned value (conditions (2a), (2b), and (2d)), which can be relaxed
without endangering tractability [4, 5], all other conditions are necessary to
guarantee tractability [8], provided we are interested in optimal plans.

While it is not obvious whether temporal projection as de�ned in Section 2
is NP-hard or not for SAS-PUS event systems, it isNP-hard for a slightlymore
general class of event systems. The SAS-US class of event systems/planning
tasks, which may violate condition (4b), subsumes the class of simple event
systems/planning tasks. Hence, SAS-US temporal projection is NP-hard,
while SAS-US planning is solvable in polynomial time [8].

The restricted planning problems we have discussed here may appear
to be expressively quite restricted. However, the research in identifying
tractable planning problems is nevertheless one important aspect in \under-
standing the expressive and computational requirements for e�ective tempo-
ral reasoning" [14], we believe. Apart from the obvious advantage of iden-
tifying e�cient algorithms for special cases, it also contributes to our un-
derstanding of where sources of complexity arise in planning. Interestingly,
however, temporal projection in the general form as de�ned in Section 2 is
not at all needed in these cases.

5 Temporal Projection and Plan Validation

As mentioned in the Introduction, the interest in the temporal projection
problem stems from its assumed relevance to the plan validation problem.
For this reason, it seems worthwhile to explore the relationships between
temporal projection and plan validation.

9To be precise, the blocks-world problem Bylander studied is slightly more expressive
than the restricted primitive blocks-world problem. However, a blocks-world problem
subsuming both these problems can be solved in polynomial time by encoding it as a
SAS+-PUS problem [4, 5].
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De�nition 12 An instance of the plan validation problem is given by a
planning task � and a plan �. The question is: Does � solve �?

In the general case, i.e., for unrestricted causal structures, it is well-known
that plan validation is NP-hard [11, Intractability Theorem]. However, it is
also not harder than the temporal projection of necessary consequences.

Proposition 6 The plan validation problem for general causal structures is
co-NP-complete.

So, from a complexity-theoretic point of view, the two problems are sim-
ply equivalent. It may be the case, however, that from a conceptual point
of view projection appears to be a subproblem of validation, i.e., there ex-
ists a natural and elegant decomposition of the plan validation problem into
subproblems that involve temporal projection.

Deciding whether a plan achieves the desired goals can be straightfor-
wardly reduced to temporal projection. Given a planning task � = h�; I;Gi,
and a plan ��, we extend the plan by an event e� that is not associated
with any causal rule and occurs after all other events. The resulting plan
is called �0

�. Now it is easy to see that �� achieves G if, and only if,
G � Nec�(e�; h�

0
�; Ii).

The second condition on a solution of a planning task (cf. De�nition 9),
namely, that all actions are executable in all linearizations of the nonlinear
plan|that the plan is coherent|cannot be easily decomposed into temporal
projection problems. Testing whether an action is executable amounts to
testing whether necessarily at least one of the causal rules associated with
the action can be applied. This cannot be expressed as a temporal projection
problem as de�ned in Section 2 because it involves a disjunction over the
preconditions of the rules associated with one event. In order to express
this problem, we would have to extend the de�nition of temporal projection
in a way such that one can test whether some (strictly positive) formula in
disjunctive normal form holds necessarily before a given event.10

If we restrict ourselves to unconditional causal structures, coherence of a
nonlinear plan can be easily reduced to a conjunction of temporal projection
problems.

Proposition 7 An unconditional event system � is coherent i�

8e 2 A: '(e) � Nec�(e;�):

10Of course, there exists a polynomial transformation from plan validation to temporal
projection as de�ned in Section 2 because both problems belong to the same complexity
class. However, this reduction is probably not a \natural" decomposition of the plan
validation problem.
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Although this looks like an elegant divide and conquer strategy, it turns
out to be just the opposite from a computational point of view. While it
is NP-hard to solve the temporal projection problems for all events in the
event system, the original problem of deciding coherence of a plan can be
solved in polynomial time, as we show below. Further, since plan validation
can easily be reduced to the coherence problem, the entire plan validation
problem turns out to be solvable in polynomial time.

In order to simplify the following discussion, we will restrict ourselves to
consistent unconditional event systems, which have to meet the restrictions
that �(e)\�(e) = ;, for all e 2 A. Note that any unconditional event system
� can be transformed into a consistent unconditional event system �0 in
polynomial time by setting

'0(e) = '(e)

�0(e) = �(e)

�0(e) = �(e)� �(e);

for all e 2 A. Consulting the de�nition of Result , it is obvious that this
modi�cation does not change the outcome of Result(S; f) for all S � P and
all partial event sequences f over �.

As a �rst step to specifying a polynomial-time algorithm that decides
coherence for unconditional event systems, we de�ne a simple syntactic cri-
terion, written Maybe�(e;�), that approximates Nec�(e;�).

De�nition 13 Given a consistent, unconditional event system �, an atom
p 2 P, and an event e 2 A, Maybe�(e;�) is de�ned as follows:

p 2 Maybe�(e;�) i� (1) p 2 I _ 9e0 2 A: (e0 � e ^ p 2 �(e0))^
(2) :9e0 2 A� feg: (e0 6� e ^ e 6� e0 ^ p 2 �(e0))^

(3) 8e0 2 A:
�
(e0 � e ^ p 2 �(e0))!

9e00 2 A: (e0 � e00 � e ^ p 2 �(e00))
�
:

This de�nition resembles Chapman's [11] modal truth criterion. The �rst
condition states that p has to be established before e. The second condition
makes sure that there is no event unordered w.r.t. e that could delete p, and
the third condition enforces that for all events that could delete p and that
occur before e, some other event will reestablish p. It is obvious that this
criterion can be checked in low-order polynomial time.

Proposition 8 p 2 Maybe�(e;�) can be decided in polynomial time.

Note thatMaybe� is neither sound nor complete w.r.t.Nec� in the general
case because we do not know whether the events referred to in the de�nition
are admissible in all linearizations. However,Maybe� coincides with Nec� in
the important special case that the event system is consistent and coherent.
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Lemma 9 Let � be an consistent unconditional event system. If � is co-
herent, then

8e 2 A:Nec�(e;�) = Maybe�(e;�):

Proof Sketch. \�": Suppose p 62 Maybe�(e;�). Then one of the conditions
in the De�nition of Maybe� is not satis�ed. Exploiting the fact that � is
coherent, it is possible to show by case analysis that there exists always a
sequence f such that p 62 Result(I; fne), hence p 62 Nec�(e;�).

\�": Suppose p 2 Maybe�(e;�). Then by condition (1) it follows that for
all event sequences f , there is an event e0 before e or identical to it such that p
holds before e0. There must be a latest such event. By condition (2) and (3)
it follows that the latest such event is identical to e. Hence, p 2 Nec�(e;�).

Now we can give a necessary and su�cient condition for coherence of
consistent unconditional event systems.

Theorem 10 A consistent unconditional event system � is coherent i�

8e 2 A: '(e) � Maybe�(e;�):

Proof Sketch. \)": Follows from Lemma 9.
\(": This is the tricky part. We want to derive that � is coherent

without relying on the fact that � is already coherent. Using induction over
the number of preconditions appearing in event systems solves the problem.

By Proposition 7, Theorem 10, the fact that p 2 Maybe�(e;�) can be
decided in polynomial time, and the fact that any unconditional event sys-
tem can be transformed into a consistent one in polynomial time, it follows
straightforwardly that coherence can be decided in polynomial time.

Corollary 11 Coherence of unconditional event systems can be decided in
polynomial time.

Plan validation can easily be reduced to coherence, so it is a polynomial-
time problem if the causal structure is unconditional.

Theorem 12 Deciding whether a plan �� is a solution for a planning task
� with an unconditional causal structure is a polynomial-time problem.

The surprising point about this result is that it appears to be easier to
solve a problem in its entirety than to decompose it into subproblems (tem-
poral projection problems) and to solve these problems in isolation. There
seems to be a certain synergy at work provided by the required coherence of

17



an event system that allows us to solve the problem by deciding some simple
syntactic conditions, which when taken together provide the solution.

Although maybe surprising, the essence of our result is not new. Chap-
man [11] used a similar technique to prove that deciding necessary truth
in unconditional plans generated by the tweak planning system is a poly-
nomial-time problem for a slightly di�erent formalism. It should be noted,
however, that Chapman's proof of the completeness and correctness of his
modal truth criterion relies on the assumption that all events he refers to in
his criterion are already (or will become eventually) necessarily admissible.
Hence, Chapman's notion of necessary truth is not identical with Nec�, but
coincides with Maybe�.

Since the planning strategy of tweak is aimed at satisfying all precon-
ditions, this assumption seems to be reasonable. However, it sounds like
a circular argument to base the decision of whether a plan is coherent on
the property that it is already coherent. So, it seems to be the case that
Chapman missed to prove something similar to our Theorem 10.

6 The Role of Coherence

There are at least two points which seem to deserve further analysis. First,
the notions of validation and projection seem to be very closely related and
the complexity results for unconditional causal structures may appear to be
somehow surprising. In particular, it would be interesting to �nd out the
reason why projection seems to be so much harder than validation. Second,
the notion of coherence played an important rule in all proofs of the previous
section and it seems to be interesting to explore whether and how this notion
could be applied to more general causal structures.

Comparing the notions of validation and projection, the �rst di�erence
one notes is that projection makes more �ne grained distinctions than plan
validation. While plan validation considers all event structures that contain
just one event that is not admissible in one possible complete event sequence
as invalid, temporal projection as de�ned in Section 2 gives results even in
the presence of events that are not admissible. Consider, for instance, the
following event system �:

P = fp; qg

E = f�1; �2; ��g

R = fh�1; fqg; fpg; ;i; h�2; fpg; ;; fqgi; h��; ;; ;; ;ig

A = fE1; E2; E�g

I = fqg

The types of the events and the partial order over the events is speci�ed by
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Figure 3: An incoherent structure

While plan validation would simply fail on � regardless of whether p

or q is the desired goal, temporal projection yields p 2 Nec+(e�;�) and
q 62 Nec+(e�;�). Since there does not seem to be any obvious bene�t in
making these distinctions, one might look for an alternative de�nition of
temporal projection that is more in line with the intuition that unadmissible
event sequences lead to unde�ned states as spelled in Section 2.

When studying the NP-hardness proofs for projection problems over un-
conditional causal structures by Dean and Boddy [15] and our proof of The-
orem 1, it turns out that all these proofs rely on event sequences that are
not admissible. Hence, an alternative de�nition of temporal projection could
perhaps be also more attractive from a computational point of view.

The answer we will give is quite interesting. Assuming a modi�ed de�ni-
tion of temporal projection along the lines sketched above, necessary conse-
quences can be easily computed by making again use of the synergy provided
by the coherence of an event system. Possible consequences are, however, still
di�cult to compute. Hence, in this case the duality for the complexity of
the temporal projection problems (NP-completeness for possible and co-NP-
completeness for necessary consequences) does not hold any longer.

Instead of rede�ning the function Result as a partial function, we will
rede�ne the projection problems to be based on admissible execution se-
quences. For this purpose, let us de�ne a predicate Adm that is true just
in case the �rst argument is a state and the second argument is an event
sequence admissible in the �rst argument. Temporal projection can then be
de�ned relative to admissible event sequences.

De�nition 14 Given an event system �, an event e 2 A, and a condition
p 2 P:

p 2 Poss+A(e;�) i� 9f 2 CS (�) : Adm(I; f=e) ^ p 2 Result(I; f=e)

p 2 Nec+A(e;�) i� 8f 2 CS (�) : Adm(I; f=e) ^ p 2 Result(I; f=e)
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p 2 Poss�A(e;�) i� 9f 2 CS (�) : Adm(I; fne) ^ p 2 Result(I; fne)

p 2 Nec�A(e;�) i� 8f 2 CS (�) : Adm(I; fne) ^ p 2 Result(I; fne):

This de�nition captures the intuition spelled out above, namely, that an
event sequence should only have a result if all its events are admissible.11

Consequently, a condition holds necessarily after or before a particular event
e i� all possible event sequences up to this event e are in fact admissible and
lead to the desired result. Similarly, possible consequences have to be based
on possible event sequences that are admissible.

In order to show tractability of Nec+A and Nec�A, let us �rst consider a
special case, namely, the projection of necessary consequences before an event
which is always admissible and does not add or delete anything and which is
a maximal element w.r.t. �.

Lemma 13 Let � be an unconditional event system and let e� 2 A be an
event such that e� 6� e for all e 2 A and '(e�) = �(e�) = �(e�) = ;. Then

p 2 Nec�A(e�;�) i� p 2 Maybe�(e�;�) and CS (�) = ACS (�):

Proof Sketch. \(": Follows by Lemma 9.
\)": Since e� is always admissible, does not change anything, and is a

maximal element w.r.t. �, every complete sequence must be admissible, i.e.,
� is coherent. By Lemma 9 it follows that p 2 Maybe�(e;�).

This special case can quite obviously be used to solve the general prob-
lem. Since events that appear necessarily after the event e� cannot in
uence
the state before e�, it su�ces to consider a sub-event system that contains
only events that are not constrained to happen after the particular event e�.
Further, because deciding the coherence of an unconditional event system
and deciding Maybe� are polynomial-time problems, the entire problem can
be decided in polynomial time.

Theorem 14 Deciding p 2 Nec�A(e;�) and p 2 Nec+A(e;�) are polynomial-
time problems.

As mentioned above, all the NP-hardness proofs of temporal projection
for possible consequences in unconditional event systems make use of event
sequences that are not admissible. Hence, one may hope to carry over the
positive result for Nec+A to Poss+A. However, for possible consequences the
modi�cation of the de�nition of temporal projection does not result in a
tractable problem. The main reason for the di�culty seems to be that it is
already a di�cult problem to decide whether an event system permits some
admissible sequence.

11Interestingly, this modi�ed de�nition of temporal projection seems also to be more in
line with the informal de�nition of temporal projection given in a survey paper by Tate
et al [33].
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Theorem 15 The problem of deciding ACS (�) 6= ; is NP-complete, even if
� is an unconditional event system.

From that it follows straightforwardly that the computation of possible
consequences under the modi�ed de�nition of temporal projection is NP-
complete.

Corollary 16 Deciding p 2 Poss�A(e;�) or p 2 Poss+A(e;�) is NP-com-
plete.12

Another interpretation of this result is that although it is easy to de-
termine the validity of an unconditional plan, it is hard to check whether a
plan is satis�able, i.e., whether it has an admissible and successful execution
sequence, even if the goal is a singleton set.

As mentioned in the beginning of this section and emphasized by the theo-
rems above, coherence of event structures does seem to play a very prominent
role for the tractability of temporal reasoning tasks. It is obvious, however,
that in the context of more general causal structure the coherence of event
structures is not su�cient for tractability. Every event system over condi-
tional causal structures could be made coherent simply by adding vacuous
causal rules (see also Proposition 6).

However, it seems to be possible to formulate validation criteria that are
su�cient but not necessary for the success of a plan that are based on the key
idea of the tractability proofs in this and the previous section. This key idea
is apparently to verify some simple condition for an action that guarantees
the \correct behavior" of this action|provided this condition holds also for
all other actions.

Such a criterion might, for instance, require that in all linearizations the
same causal rules for each event get applied, a requirement one could call
strong coherence. As a matter of fact, Pednault's [31] approach to nonlinear
planning could be understood in this way.

This means, of course, that some correct plans may not be recognized
as valid plans. However, as pointed out by McAllester and Rosenblitt [25],
in order to drive the planning process it may be undesirable to use a plan
validation criterion that is complete|even in the case where plan validation
is tractable|because a complete criterion may not lead to a systematic ex-
ploration of the search space. In fact, using a complete criterion may be
considerably less e�cient than using an incomplete but (almost) systematic
one [26].

12Note that this does not contradict Chapman's claim that his modal truth criterion is
also tractable in its dual form (for possibility). Since he makes the assumption that the
plan is already (or will become eventually) coherent, his criterion for possibility di�ers
from Poss�

A
(e;�).
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When investigating this problem in the formal framework of our paper,
one will note that the above described notion of strong coherence|the same
set of causal rules for each event gets applied in every linearization|is again
an NP-hard problem. The main problem is that deciding whether a set of
atoms could hold possibly simultaneously before an event is NP-hard, even if
the event system is unconditional and coherent.13 Hence, in order to achieve
tractability an even stronger (and less complete) validation criterion has to
be used. One way could be to add a \safeness" condition that requires that
for each rule that is not applied, there exists one atom in its precondition
that never even possibly holds before the event.14

As a �nal remark, it should be noted that neither the complete plan vali-
dation method for unconditional plans described in the previous section nor
the incomplete methods we have sketched here rely on temporal projection as
de�ned in Section 2. Rather, computationally they are based on simple syn-
tactic checks. Assuming that all events satisfy these checks, a global property
of the plan can be derived. This is, of course, also a way of predicting the
consequences of actions, but it may be incorrect as long as there are actions
that do not satisfy the syntactic criterion. Nevertheless, it can be employed
to incrementally generate a nonlinear plan.

7 Approximate Temporal Projection

Based on the observation that temporal projection is di�cult even for severe-
ly restricted cases, Dean and Boddy [15] developed an incomplete decision
procedure that computes its results in polynomial time. Reconsidering the
re
ections from the previous sections, a natural question is whether the as-
sumptions behind the design of the incomplete decision procedure led to a
procedure that gives reasonable results. Such a judgement is, of course, quite
di�cult and depends heavily on the application setting.

In the area of reasoning about temporal relations between events [2], it
was possible to identify tractable special cases that are natural for uncer-
tain observations and text understanding [30, 34]. Further, the incomplete
decision procedure for the full problem turned out to be complete for the
tractable special case. Thus, we have a good justi�cation for using the in-
complete algorithm in this case.

If we consider the incomplete decision procedure for temporal projection,
there is the question what the interesting special cases are where we want the
procedure to be complete. Dean and Boddy [15, Theorem 3.4] prove their

13The proof of this claim is left as a not completely trivial exercise to the reader.
14As can be shown, this leads indeed to a polynomial-time and sound plan validation

criterion. Further, this criterion is more general than that sketched in [27] because in our
case the e�ects of rules that are not applied are ignored.
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procedure to be complete if the events are totally ordered, which gives us
one characterization of the behavior of the procedure.

It is, of course, interesting to characterize the procedure by additional
cases for which it is complete. Such a characterization of an incomplete deci-
sion procedure gives the user of such a procedure some feeling of what he can
expect. Under the assumption that the validation of nonlinear planning is the
main application, the case of nonlinear plans containing only unconditional
actions seems to be a nontrivial special case that deserves some attention.

From the discussions in the previous sections one is probably inclined to
conjecture that the incomplete decision procedure by Dean and Boddy is not
able to deal with this case in a complete manner. All in all, the procedure
is based on the formalization of Section 2, which leads to computational
problems in this case. Indeed, when tracing the procedure speci�ed by Dean
and Boddy, it turns out that the procedure does not lead to the projection
of propositions that necessarily hold. The main reason for this failure is that
the procedure considers all events unordered with respect to a given event as
equally likely to appear. Condition (3) in the de�nition of Maybe�, however,
tells us that sometimes the deletion of an atom can be ignored.

Since we cannot reproduce the entire procedure because of space limi-
tations, the reader is referred to the presentation in the original article [15,
p. 380-392]. Here we will only sketch the ideas of the procedure. For every
event e, two sets are computed, namely, Strong(e;�) and Weak(e;�), such
that

Strong(e;�) � Nec+(e;�) � Poss+(e;�) �Weak(e;�);

where Strong(e;�) is intended to contain only conditions that hold after e
in all complete event sequences, while Weak(e;�) is meant to contain all
conditions that might hold after e in some complete event sequence.

In addition, the sets S-Strong(e;�) and S-Weak(e;�) are computed. The
�rst set contains all of Strong(e;�) except those conditions that could be
deleted by an event unordered with respect to e. Similarly, S-Weak(e;�)
contains all of Weak(e;�) plus those conditions that could be added by
events unordered with respect to e.

Consider now the following unconditional event system:

P = fp; q; rg

E = f�a; �b; �cg

R = fh�a; fqg; fg; frgi;
h�b; fqg; frg; fgi;
h�c; fq; rg; fpg; fgig

A = fA; B; C; D; Eg

I = fqg

The types of the events and the partial order is given in Figure 4.
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Figure 4: A valid nonlinear plan

It is easy to see that this unconditional event system is coherent and
achieves fp; q; rg. Using Theorem 12, this could be easily checked. However,
the incomplete decision procedure is too conservative. It misses to report
that r and p are among the necessary consequences, as can be seen from
Table 1.15

Event Type S-Strong Strong Nec+ Poss+ Weak S-Weak

fqg fqg fqg fqg fqg fqg

A �a fqg fqg fqg fqg fqg fq; rg
B �b fqg fq; rg fq; rg fq; rg fq; rg fq; rg
C �a fqg fqg fqg fqg fqg fq; rg

D �b fqg fq; rg fq; rg fq; rg fq; rg fq; rg

E �c fqg fqg fp; q; rg fp; q; rg fp; q; rg fp; q; rg

Table 1: Results of the incomplete decision procedure

In the computation of S-Strong(B) and S-Strong(D), the procedure is
overly pessimistic with respect to the occurrence of the events A and C. Since
these could delete the condition r, it may be the case that r does not hold
before the occurrence of the event E. However, it is easy to see that r is
necessarily added before occurrence of E.

Summarizing, we note that the procedure is not designed to handle some
special case where plan validation is tractable. Although this is not surprising
given our observations in the previous sections, it nevertheless provides a
characterization of this procedure. In the case that only unconditional actions
are of interest, the procedure is incomplete. One of the open problems we

15As the attentive reader will notice, there are some unmentioned assumptions in the
speci�cation of the partial decision procedure [15], e.g., that there exists an initial event
before all other events|symbolized by the �rst row in our table. Besides that, we have to
admit that the procedure is highly nontrivial and that we were unable to understand the
procedure in all its details.
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see here|as with other incomplete decision procedures|is to give an easy
to understand characterization of when the procedure is complete and when
and why incompleteness arises.

8 Conclusions

Reconsidering the problem of temporal projection for sets of partially ordered
events as de�ned by Dean and Boddy [15], we noted that this problem is
harder than originally believed. A particular, simple special case conjectured
to be tractable turns out to be NP-complete. This result demonstrates that
the only source of complexity for the temporal projection problem is the
partial ordering of events and not, as conjectured by Dean and Boddy [15],
multiple causal rules or multiple preconditions.

Since the original interest in the analysis of the computational properties
of temporal projection originates from the hypothesis that temporal projec-
tion is a signi�cant part of planning and plan validation [14, p. 196], we took
a closer look at these problems. It turned out that planning is tractable
under some restrictions on the representation of causal structures where we
have shown temporal projection to be intractable. Turning to plan valida-
tion, we noted that in the general case (w.r.t. the framework set up by Dean
and Boddy [14, 15]) temporal projection is not of much help. Its complexity
is identical to the complexity of plan validation and there does not appear
to be an elegant and natural decomposition of the plan validation problem
that involves temporal projection problems.

Considering the special case of plans over unconditional structures, plan
validation turns out to be decomposable into temporal projection problems.
However, what looks like a divide and conquer strategy at a �rst glance is
rather the opposite. Plan validation is a polynomial-time problem in this
case, as we have shown, while the corresponding temporal projection prob-
lems are NP-hard.

Since temporal projection and plan validation seem to be very closely
related, this result may appear to be counter-intuitive because it implies
that it is impossible to reduce temporal projection to plan validation in case
of unconditional causal structures. Analyzing the reasons for this result, it
turns out that one particular assumption can be blamed for the di�erence in
complexity, as long as we consider only the computation of necessary con-
sequences. The original formulation of the temporal projection problem by
Dean and Boddy permits event systems that are not coherent, i.e., systems
containing events that are not executable in some linearizations of the partial
ordering. If we regard the result in such cases as unde�ned, temporal pro-
jection becomes tractable for necessary consequences. Computing possible
consequences is still NP-hard, however.
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Although the tractability results described above apply only to uncondi-
tional causal structures, the techniques used in the proofs might be used for
designing tractable plan validation criteria for more general causal structures
that are correct but incomplete. In exploring this issue we note again that
temporal projection as de�ned in Section 2 is not essential for verifying that
such a criterion is satis�ed.

These observations lead to the question in how far the formalization of
the temporal projection problem in
uenced the design of the partial decision
procedure for temporal projection developed by Dean and Boddy [15]. As
we demonstrate, the procedure fails to be complete on cases where we have
shown plan validation to be tractable.

Summarizing, in the context of classical planning the hypothesis that
temporal projection over partially ordered events as de�ned in Section 2 is
a signi�cant part of nonlinear planning and plan validation turns out to be
invalid in some special cases. It is an interesting open problem, however, to
determine whether the hypothesis holds under a modi�ed de�nition of the
temporal projection problem or for other forms of planning.
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Appendix: Proofs

Theorem 1 Deciding p 2 Poss+(e;�) for simple event systems � is NP-
complete.

Proof. Membership in NP is obvious. Guess an event sequence f and verify
in polynomial time that f 2 CS (�) and p 2 Result(I; f=e).

In order to prove NP-hardness, we give a polynomial transformation from
path with forbidden pairs (see De�nition 8), where we assume that the graph
is acyclic and all forbidden pairs are disjoint.

First of all, we specify a transformation from directed acyclic graphs
(DAG) to simple event systems. Let G = (V;A) be a DAG, where
V = fv1; : : : ; vkg. Then de�ne

P = fv1; : : : ; vkg [ f�g

E = f�i;jj (vi; vj) 2 Ag [ f��g

R = fh�i;j; fvig; fvjg; fvigij (vi; vj) 2 Ag [

fh��; f�g; f�g; f�gig

A = fei;jj (vi; vj) 2 Ag [ fe�g
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type(ei;j) = �i;j for all ei;j 2 A� fe�g

type(e�) = ��

e � e� for all e 2 A� fe�g:

Note that such event systems, which we will call DAG event systems, are
simple, provided jIj = 1.

Let G = (V;A) be a DAG, let C =
n
fa1; b1g; : : : ; fan; bng

o
be a collection

of \forbidden pairs" of arcs from A such that each pair consists of di�erent
arcs and the pairs are pairwise disjoint. Further, let s and t be two nodes
from V and assume without loss of generality that there is no arc (t; vi) 2 A.

Let � be the corresponding DAG event system with I = fsg. For each
pair of arcs f(vi; vj); (vk; vl)g 2 C,

1. if there is a (possibly empty) path from vj to vk in G add ek;l � ei;j as
a temporal constraint to �,

2. if there is a (possibly empty) path from vl to vi in G, add ei;j � ek;l as
a temporal constraint to �.

Since the graph is acyclic, it is impossible that (1) and (2) apply simultane-
ously to a pair of arcs. Further, since the forbidden pairs are pairwise disjoint,
there is no set of events ff1; f2; f3g � A�fe�g such that f1 � f2 � f3. Note
that the entire transformation can obviously be computed in polynomial
time.

For the resulting event system, we claim that there is a path from s to t
in G that contains at most one arc from each pair in C i� t 2 Poss+(e�;�).

\)": Let v1; : : : ; vm, 1 � m � jV j, be a path in G, where v1 = s
and vm = t, without forbidden pairs from C. Then by construction
of �, there exists a sequence of events g = hg1; : : : ; gm�1i such that
htype(gi); fvig; fvi+1g; fvigi 2 R. Note that this sequence is indeed a partial
event sequence over � because the path does not contain forbidden pairs,
and, hence there are no temporal constraints for the events appearing in g.
Furthermore, we have for �(gm�1) = ftg. By the construction of �, it holds
that

Result(I; (g; e�)=e�) = ftg:

The sequence g; e� can be extended to a complete event sequence h over �
in the following way:

1. add all events f that are not temporally constrained and do not appear
in g immediately before e�,

2. add all pairs of events f; f 0 such that f � f 0 and such that f and f 0 do
not appear in g immediately before e� respecting �,

27



3. add all events f that do not appear in g and f � gi for some gi
appearing in g immediately before gi,

4. add all events f that do not appear in g and gi � f for some gi
appearing in g immediately after gi.

Note that for extensions of the forms (1) and (2) it holds trivially that

Result(I;h=e�) = ftg i� Result(I; (g; e�)=e�) = ftg

since no precondition of any rule contains t by assumption. For extensions
of the form (3) it holds that ei;j � ek;l only if there is path from vl to vi in G.
Hence, if ei;j is placed immediately before ek;l, the precondition of the causal
rule associated with ei;j cannot be satis�ed. Thus, the above equivalence also
holds for case (3). Since (4) is the converse case, the equivalence also holds.

Summarizing, we have for the complete event sequence h

Result(I;h=e�) = ftg:

Thus, t 2 Poss+(e�;�).
\(": Assume t 2 Poss+(e�;�). Then there exists a complete event

sequence g such that
Result(I;g=e�) = ftg:

Consider the subsequence h containing only admissible events:

h = hh1; h2; : : : ; hm�1i:

By the construction of the causal rules in � and the form of the initial state it
is evident that each event in the subsequence h has an add list that is identical
to the precondition of the immediately following event. Since the initial state
is I = fsg and Result(I;h) = ftg; there must be a path v1; v2; : : : ; vm in G,
where s = v1 and t = vm.

Finally, this path cannot contain any forbidden pair. Suppose the
contrary, i.e., the path is of the form s; : : : ; vi; vj; : : : ; vk; vl; : : : ; t and
f(vi; vj); (vk; vl)g 2 C. Thus, there is a path from vj to vk. In this case,
however, we have ek;l � ei;j by the construction of � in �. This means,
however, that h cannot be a possible event sequence over �. Hence, there
cannot be any event sequences leading to t that contain forbidden pairs.

Corollary 2 Deciding p 2 Nec+(e;�) for simple event systems � is co-NP-
complete.

Proof. We show that p 62 Nec+(e;�) is NP-complete. Membership in NP is
obvious. For the NP-hardness part, we start with the same transformation
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as in the proof of Theorem 1. We add to � a new condition p and a number
of events fv with associated causal rules of the form:

htype(fv); fvg; fpg; fvgi;

for all v 2 V � ftg. These events are constrained to happen before e� and
after all other events constructed in the above reduction.

Now, it follows by the same arguments as in the proof of Theorem 1 that
p 62 Nec+(e�;�) i� there is a path from s to t without forbidden pairs.

Theorem 5 The plan optimization problem for SAS-PUS equivalent plan-
ning tasks is a polynomial-time problem.

Proof Sketch. De�ne a transformation between sets of propositions and
partial states in the SAS formalism and also map action conditions in the
obvious way. Prove that a SAS-PUS-equivalent planning task � can be
transformed into a SAS-PUS planning task �0 in this way s.t. the solutions
for �0 are exactly the solutions for �. Since the plan optimization problem for
SAS-PUS tasks is a polynomial-time problem [6, Theorem 4.2], the theorem
follows.

Lemma 9 Let � be an consistent unconditional event system. If � is co-
herent, then

8e 2 A:Nec�(e;�) = Maybe�(e;�):

Proof. \�": We will show that all three conditions of p 2 Maybe�(e;�) in
De�nition 13 are true for all e 2 A and all p 2 Nec�(e;�).

Suppose that the �rst condition does not hold for some event e and atom
p 2 Nec�(e;�), i.e., p 62 I and :9e0: e0 � e^p 2 �(e0). Since � is coherent, we
can construct an admissible complete event sequence f = hf1; : : : ; e; : : :i such
that g = fne contains only events gi such that gi � e. By induction over the
length of the length of fne, we get p 62 Result(I; fne), hence p 62 Nec�(e;�),
which is a contradiction.

Suppose that the second condition does not hold for some event e and
atom p 2 Nec�(e;�), i.e., there exists an event e0 unordered with respect
to e such that p 2 �(e0). Since e0 is unordered with respect to e, there
exists a complete event sequence f = hf1; : : : ; e0; e; : : :i. Since � is coherent,
and thus e0 necessarily admissible, it is obvious that p 62 Result(I; f=e0) =
Result(I; fne) � Nec�(e;�), which is a contradiction.

Suppose the third condition is not satis�ed, i.e., there exists p 2
Nec�(e;�) and an event e0 � e such that p 2 �(e0), but there is no e00

such that e0 � e00 � e and p 2 �(e00). Consider a complete event sequence
f = hf1; : : : ; e0; : : : ; e; : : :i such that there are only events fi between e0 and
e that have to occur between them. Because p 62 Result(I; f=e0) and there
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are no events after e0 that have p in the add list, using induction on the
length of fne, we can infer p 62 Result(I; fne) � Nec�(e;�), which is again a
contradiction.

\�": Assume p 2 Maybe�(e;�). We will show that also p 2 Nec�(e;�).
Consider any complete event sequence g 2 CS (�). We want to show that
p 2 Result(I;gne). By condition (1) of the de�nition of Maybe� and the fact
that all complete event sequences are admissible, we know that there exists
gi 2 A such that jgngij � jgnej and p 2 Result(I;gngi). Consider the latest
such event, i.e., gi with a maximal i. Since all event sequences are �nite,
such an event must exist. If gi = e, we are ready. Otherwise, we will show
that i cannot be maximal.

Since gi is the latest event in g such that p 2 Result(I; (gne)ngi), it must
be the case that p 2 �(gi). By condition (2) in the de�nition of Maybe�, we
know that gi cannot be unordered with respect to e. By condition (3), we
know that there exists an event gj such that gi � gj � e and p 2 �(gj). Since
g is admissible by assumption, it must be the case that p 2 Result(I;g=gj)
and jgngij < jg=gjj � jgnej. Hence, gi cannot be the latest event before e
and di�erent from e such that p holds before the occurrence of gi. Hence,
p 2 Result(I;gne).

Since g was an arbitrary element of CS (�), this holds for all complete
event sequences. Hence, p 2 Nec�(e;�).

Theorem 10 A consistent unconditional event system � is coherent i�

8e 2 A: '(e) � Maybe�(e;�):

Proof. \)": Since � is coherent, we know that 8e 2 A: '(e) � Nec�(e;�).
Further, by Lemma 9, Maybe�(e;�) = Nec�(e;�), for all e 2 A. Hence,
8e 2 A: '(e) � Maybe�(e;�).

\(": For the converse direction, we use induction on the number of
conditions appearing in the preconditions of events over the entire event
system:

P
e2A j'(e)j. As the base step, we assume, that for all events e 2 A,

'(e) = ;. Clearly, '(e) � Maybe�(e;�) and '(e) � Nec�(e;�), for all
e 2 A. Hence, the hypothesis holds for k = 0.

Now assume that our claim holds for all event systems with k or less
preconditions. We will show that it also holds for event systems with k + 1
preconditions.

Consider an event system � with k + 1 preconditions such that '(e) �
Maybe�(e;�) for all e 2 A. Choose one event f that has a nonempty set
of preconditions and replace the associated causal rule htype(f); '; �; �i by
the rule htype(f); ;; �; �i. This new event system is called �0. We will
write '0(e), �0(e), and �0(e) in order to refer to the preconditions, add
lists, and delete lists in �0, respectively. Note that for all e 2 A it holds
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that Maybe�(e;�0) = Maybe�(e;�) because the Maybe� conditions do not
refer to the preconditions. Since the only change from � to �0 was the
removal of the preconditions of f , we clearly have '0(e) � Maybe�(e;�0)
for all e 2 A. Because k �

P
e2A0 j'0(e)j, we can apply our induction hy-

pothesis and know that �0 is coherent. Finally note that by Lemma 9,
we have Maybe�(f;�0) = Nec�(f;�0) for our special event f . Hence, any
sequence g 2 CS (�0) that contains f would be an admissible sequence
even if we assume that the causal rule associated with f has the original
precondition '(f) because we assumed that '(f) � Maybe�(f;�), where
Maybe�(f;�) = Maybe�(f;�0). Since we have CS (�) = CS (�0), it follows
that all sequences h 2 CS (�) are admissible. Hence, � is coherent, whence,
the induction hypothesis holds for k + 1 preconditions.

Theorem 12 Deciding whether a plan �� is a solution for a planning task
� with an unconditional causal structure is a polynomial-time problem.

Proof. Follows immediately from Corollary 11 and the fact that plan vali-
dation can be reduced to coherence in linear time as follows: Add an extra
event e� s.t. '(e�) is the intended e�ects of the plan and e� is constrained to
occur after all other events.

Lemma 13 Let � be an unconditional event system and let e� 2 A be an
event such that e� 6� e for all e 2 A and '(e�) = �(e�) = �(e�) = ;. Then

p 2 Nec�A(e�;�) i� p 2 Maybe�(e�;�) and CS (�) = ACS (�):

Proof. \(": Suppose p 2 Maybe�(e�;�) and CS (�) = ACS (�). By
Lemma 9 it follows that p 2 Nec�(e�;�), hence, for all complete event se-
quences f over �, we have p 2 Result(I; fne�). Further, since all sequences
f 2 CS (�) are admissible, all sequences fne� must be admissible. Hence,
p 2 Nec�A(e�;�).

\)": Suppose p 2 Nec�A(e�;�), i.e., for all complete sequences f 2
CS (�), the event sequences fne� are admissible. Now suppose that � is not
coherent, i.e., there exists a sequence g = hg1; : : : ; gi; e�; gi+2; : : : ; gmi such
that g is not admissible, but gne� is. Hence, he�; gi+2; : : : gmi is not admissi-
ble in Result(I;gne�). Since by assumption e� is always admissible and does
not add or delete anything, and since he�; gi+2; : : : gmi is not admissible in
Result(I; hg1; : : : gii), hg1; : : : gi; gi+2; : : : gmi cannot be admissible in I. Fur-
ther, since e� is a maximal element with respect to �, gi+2; : : : ; gm must be
unordered with respect to e�. For this reason h = hg1; : : : ; gi; gi+2; : : : ; gm; e�i
must also be an element of CS (�). However, that hg1; : : : ; gi; gi+2; : : : ; gmi =
gne� is not admissible in I contradicts the assumption that all complete se-
quences up to e� are admissible. Hence, � must be coherent, and for this
reason we have Nec�A(e�;�) = Nec�(e�;�). Because of Lemma 9, it follows
then that we must have p 2 Maybe�(e�;�).
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Theorem 14 Deciding p 2 Nec�A(e;�) and p 2 Nec+A(e;�) are polynomial-
time problems.

Proof. In the following we consider only Nec�A. The proof for Nec
+
A is similar.

Consider the event system �0 that is identical to � except that the set of
actual event A0 is a subset of the original set A de�ned in the following way:
A0 = ff 2 Aj e 6� fg. Now we claim that

p 2 Nec�A(e;�) i� p 2 Nec�A(e;�
0):

\)": Suppose p 62 Nec�A(e;�
0), i.e., there exists a sequence g 2 CS (�0)

such that gne is not admissible or p 62 Result(I;gne). Since it is possible to
extend g to a complete event sequence f over � by adding the events from
A�A0 to the end of g without violating temporal constraints, it must be the
case that fne is not admissible or p 62 Result(I; fne), hence p 62 Nec�A(e;�).

\(": Suppose p 62 Nec�A(e;�), i.e., there is a sequence f 2 CS (�) such
that fne is not admissible or p 62 Result(I; fne). Consider the sequence g
that is identical to f except that all events from A�A0 have been removed.
This sequence is obviously a member of CS (�0). Now it is easy to see that
fne = gne because all events of A�A0 have to appear after e. Hence, gne is
either unadmissible or does not lead to p, i.e., p 62 Nec�A(e;�

0).
Hence, we can apply Lemma 13 to solve the problem stated in the The-

orem, and as an immediate consequence of Proposition 8 and Corollary 11,
we get that p 2 Nec�A(e;�) can be decided in polynomial time.

Theorem 15 The problem of deciding ACS (�) 6= ; is NP-complete, even if
� is an unconditional event system.

Proof. Membership in NP is obvious. For the hardness part we use a
straightforward reduction from SAT [21, p. 259]. Let X = fx1; : : : ; xng be a
set of boolean variables and let C = fc1; : : : ; cmg be a set of clauses over X.
De�ne an event system � as follows:

P = X [ C

E = f��n; : : : ; �ng

R = fh�0; C;X; ;ig [

fh�i; fxig; fcj 2 Cjxi 2 cjg; fxigij xi 2 Xg [

fh��i; fxig; fcj 2 Cj:xi 2 cjg; fxigij xi 2 Xg

A = fe�n; : : : ; eng

type(ek) = �k for all ek 2 A; �k 2 E

I = X

It is obvious that the set of clauses C is satis�able i� there exists a complete
event sequence over � that is admissible.
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