
Towards E�cient Universal Planning|A

Randomized Approach

Peter Jonsson, Patrik Haslum and Christer B�ackstr�om

Department of Computer and Information Science

Link�oping University, S-581 83 Link�oping, Sweden

fpetej,pahas,cbag@ida.liu.se

31st August 2000

Abstract

One of the most widespread approaches to reactive planning is
Schoppers' universal plans. We propose a stricter de�nition of univer-
sal plans which guarantees a weak notion of soundness, not present in
the original de�nition, and isolate three di�erent types of complete-
ness that capture di�erent behaviors exhibited by universal plans. We
show that universal plans which run in polynomial time and are of
polynomial size cannot satisfy even the weakest type of completeness
unless the polynomial hierarchy collapses. By relaxing either the poly-
nomial time or the polynomial space requirement, the construction of
universal plans satisfying the strongest type of completeness becomes
trivial. As an alternative approach, we study randomized universal
planning. By considering a randomized version of completeness and
a restricted (but nontrivial) class of problems, we show that there ex-
ists randomized universal plans running in polynomial time and using
polynomial space which are sound and complete for the restricted class
of problems. We also report experimental results on this approach to
planning, showing that the performance of a randomized planner is
not easily compared to that of a deterministic planner.

1

1 Introduction

In recent years reactive planning has been proposed as an alternative to clas-
sical planning, especially in rapidly changing, dynamic domains. Although
this term has been used for a number of more or less related approaches,
these have one thing in common: There is usually very little or no planning
ahead. Rather the idea is centered around the stimulus-response principle
| prompt reaction to the input. One of the most well-known methods for
reactive planning is the universal plans by Schoppers [1987]. A universal
plan is a function from the set of states into the set of operators. Hence,
a universal plan does not generate a sequence of operators leading from the
current state to the goal state as a classical planner; it decides after each
step what to do next based on the current state.

Universal plans have been much discussed in the literature. In a fa-
mous debate [Ginsberg, 1989b, Schoppers, 1989, Ginsberg, 1989a, Schoppers,
1994], Ginsberg criticized the approach while Schoppers defended it1. Based
on a counting argument, Ginsberg claims that almost all (interesting) uni-
versal plans takes an infeasibly large amount of space. Schopper's defense
has, to a large extent, built on the observation that planning problems are
structured. According to Schoppers, this structure can be exploited in or-
der to create small, e�ective universal plans. We refrain from going into
the details of this debate and merely note that both authors have shown
great ingenuity in their argumentation. However, from the standpoint of for-
mal rigour, these papers do not settle the question. One of the few authors
that has treated universal plans from a formal, complexity-theoretic point of
view is Selman [1994]. He shows that the existence of small (polynomially-
sized) universal plans with the ability to generate minimal plans implies a
collapse of the polynomial hierarchy. Since a collapse of the polynomial hi-
erarchy is widely conjectured to be false in the literature [Johnson, 1990,
Papadimitriou, 1994], the existence of such universal plans seems highly un-
likely.

In our opinion, one of the problems with universal plans is the general-
ity of the de�nition, which makes formal analysis hard or even impossible.
Therefore, we begin this article by giving a stricter de�nition of universal
plans, a de�nition that embodies the notion of soundness. In addition, we

1This list is not exhaustive. Other authors, such as Chapman [1989], have joined
the discussion. However, it seems that the main combatants have been Schoppers and
Ginsberg.

2

supply three di�erent criteria of completeness. These notions of complete-
ness capture di�erent desirable properties of universal plans. For example,
A-completeness states that if the problem has a solution, then the universal
plan will �nd a solution in a �nite number of steps. Our �rst result says
that universal plans which run in polynomial time and are of polynomial size
cannot satisfy even this weakest type of completeness2. However, by relaxing
either the polynomial time requirement or the polynomial space requirement,
it becomes trivial to construct universal plans that satisfy the strongest type
of completeness. Also in this case, the result holds for severely restricted
problems.

As an alternative, we propose to give the universal plans access to a
random source, making universal planning probabilistic. This forces us to
rede�ne completeness in a way that takes the randomization into account.
Even after these changes to the universal planning paradigm, it is impossible
to provide e�cient universal plans for the general planning problem, but for
a certain subclass of problems we show that there exists sound and complete
randomized universal plans running in polynomial time and using polynomial
space. It should be noted that this class is not trivial; the planning problem
is Pspace-complete, i.e., as hard as the unrestricted problem.

We have implemented such a randomized planner (which we call Stoc-
plan) and compared it to a deterministic planner (Graphplan) on a num-
ber of domains. The experimental results are inconclusive; no planner is
consistently faster than the other, and no single domain characteristic can
reliably predict Stocplan's performance. However, we present a plausible
hypothesis.

The article is organized as follows: We begin by de�ning the basic Strips
formalism in Section 2. We investigate deterministic universal planning in
Section 3 and randomized universal planning in Sections 4 and 5, theoretically
and empirically. The article is concluded with a brief discussion of the results.
Section 3 is a revised version of the conference paper [Jonsson and B�ackstr�om,
1996].

2 Basic Formalism

We base our work in this article on the propositional Strips formalism with
negative goals (PSN, for short [Bylander, 1994]), which is equivalent to most

2Under the assumption that the polynomial hierarchy does not collapse.

3

other variants of propositional Strips [B�ackstr�om, 1995].

De�nition 1 An instance of the PSN planning problem is a quadruple � =
hP;O;I;Gi where

� P is a �nite set of atoms;

� O is a �nite set of operators where o 2 O has the form Pre) Post
where

{ Pre is a satis�able conjunction of positive and negative atoms in
P, respectively called the positive preconditions (pre+(o)) and the
negative preconditions (pre�(o));

{ Post is a satis�able conjunction of positive and negative atoms in
P, respectively called the positive postconditions (add(o)) and the
negative postconditions (del (o));

� I � P denotes the initial state;

� and G = hG+;G�i denote the positive and negative goal , respectively,
satisfying G+;G� � P and G+ \ G� = ?.

A PSN structure is a tuple � = hP;Oi where P is a set of atoms and O is
a set of operators over P. We denote the negation of an atom by overlining
it. As an example, the operator o de�ned as p) q; r satis�es pre+(o) = ?,
pre�(o) = fpg, add(o) = fqg and del (o) = frg.

De�nition 2 For a given PSN structure � = hP;Oi, let the set of states
S = 2P and the extended set of states S? = 2P [f?g; ? is used to represent
unde�nedness. The update operator � : S? �O ! S? is de�ned as

?� o = ?

S � o =

�
(S � del (o)) [add(o) if pre+(o) � S ^ pre�(o) \ S = ?
? otherwise

for each operator o 2 O and state S 2 S?. We say that an operator o is
admissible in a state S 2 S? i� S � o 6= ?.

Given a set of operators O, let Seqs(O) denote the set of all operator
sequences over O. A sequence ho1; : : : ; oni 2 Seqs(O) of operators is called
a PSN plan (or simply plan) over �. A sequence is admissible in a state S i�

((: : : (S � o1) : : :)� on) 6= ?

4

and we say that a plan solves the problem instance � i� it is admissible in
the initial state, I, and

G+ � ((: : : (I � o1) : : :)� on)

((: : : (I � o1) : : :)� on) \ G
� = ?

both hold.

Finally, we de�ne the computational problems under consideration.

De�nition 3 Let � = hP;O;I; hG+;G�ii be a given PSN instance. The
plan generation problem (PG) is to �nd some ! 2 Seqs(O) s.t. ! is a solution
to � or answer that no such ! exists. The bounded plan generation problem
(BPG) takes an integer K � 0 as additional parameter and the object is to
�nd some ! 2 Seqs(O) s.t. ! is a solution to � of length � K or answer
that no such ! exists.

3 Universal Plans

The material on deterministic universal plans is collected in this section.
Subsection 3.1 contains the basics of universal planning and Subsection 3.2
identi�es di�erent types completeness for universal plans. The existence of
universal plans being complete in a very strong sense is discussed in Subsec-
tion 3.3 and such universal plans are shown to be infeasible in Subsection 3.4.

3.1 Preliminaries

Universal plans are de�ned as follows by Ginsberg [1989b].

A universal plan is an arbitrary function from the set of possible
situations S into the set of primitive actions A.

Using the terminology we have adopted in this article results in the following
equivalent de�nition.

De�nition 4 Given a PSN structure � = hP;Oi, a universal plan is a
function from the set of states 2P into the set of operators O.

5

This very general notion of universal plans is di�cult to use as a basis for
formal analysis. We would like, for example, to discuss the issues of correct-
ness and resource consumption. The next de�nition captures the notion of
soundness for a universal plan.

For a given PSN structure � = hP;Oi, let O+ = O[fo?; o>g and extend
the update operator so that

S � o? = ?
S � o> = S

for every state S 2 S?. The \special" operators o? and o> should not
be considered as operators in the sense of De�nition 1 but rather as two
completely new symbols without internal structure. They will be used by
the universal plans for \communication with the environment".

De�nition 5 Let � = hP;Oi be a PSN structure and let G be a goal over
P. A sound universal plan UG for the goal G is a function mapping S? to
O+ such that

1. for every S 2 S?, if UG(S) = o 2 O then o is admissible in S;

2. for every S 2 S?, UG(S) = o> i� S satis�es G;

The �rst point of the de�nition says that if the universal plan generates
an operator, then this operator is executable in the current state. This
restriction seems to have been tacitly assumed in the literature. The second
point tells us that the special operator o> is generated if and only if the
universal plan is applied to a state satisfying the goal state. Thus, o> is used
by UG to report success. The reason for introducing the operator o> is to
avoid the generation of new operators when the current state satis�es the
goal state. The special operator o?, on the other hand, indicates that the
universal plan cannot handle the current state. This can, for instance, be due
to the fact that the goal state is not reachable from the current state. Note
that no operator is admissible in ? so UG must generate o? whenever applied
to ?. Henceforth, we will use the term universal plan as an abbreviation for
sound universal plan.

3.2 Properties of Universal Plans

We continue by de�ning some properties of universal plans. For a universal
plan UG we use the notation UK

G (S) to denote UG(SK) where SK is inductively

6

de�ned:

SK =

�
S if K = 0
SK�1 � UG(SK�1) otherwise.

De�nition 6 Let X be a set of PSN structures. We say that X admits

� acceptance-complete universal plans (A) i� for every � 2 X and goal
G over �, there exists a universal plan UG such that for every S 2 S,
if hP;O; S;Gi is solvable, then there exists an integer K such that
UK
G (S) = o>;

� rejection-complete universal plans (R) i� for every � 2 X and goal G
over �, there exists a universal plan UG such that for every S 2 S, if
hP;O; S;Gi is not solvable, then there exists an integer K such that
UK
G (S) = o?;

� poly-time universal plans (PT) i� there exists a polynomial p such that
for every � 2 X and every goal G over �, there exists a universal plan
UG with running time bounded by p(j�j).

� poly-space universal plans (PS) i� there exists a polynomial q such that
for every � 2 X and every goal G over �, there exists a universal plan
UG such that the size of UG and the size of the auxiliary memory used
by UG is bounded by q(j�j).

For the sake of brevity, we will use the terms A- and R-completeness for
acceptance- and rejection-completeness, respectively. By saying that X ad-
mits, for example, A-complete and poly-time universal plans, we mean that
there exists a polynomial p such that for each � 2 X and goal state G over �,
there exists a acceptance-complete universal plan running in time bounded
by p(j�j).

It makes sense to say that a single universal plan UG is A-complete or
R-complete with respect to a PSN structure �. However, it does not make
sense to say that it is poly-time or poly-space for obvious reasons; the input
to UG is of �xed size so it is trivially poly-time and poly-space.

A minimal requirement on universal plans is that they are A-complete so
we are guaranteed to �nd a solution within a �nite number of steps if there is
one. Note that if an A-complete universal plan is not R-complete then UK

G (S)
can di�er from o? for all K if G is not reachable from S. R-completeness is,

7

thus, desirable but not always necessary. In domains such as blocksworld,
where we know that a solution exists in advance, R-completeness is of minor
interest. To have R-completeness without A-completeness is useless since we
can trivially construct universal plans that are R-complete for all problems;
simply let UG(S) = o? for all S 2 S?.

The de�nition of poly-time universal plans should be quite clear while the
de�nition of the poly-space restriction may need further explanation. The
�rst part of the de�nition ensures that UG can be stored in a polynomially-
bounded memory. The second part guarantees that any computation will
use only a polynomially-bounded amount of auxiliary memory. Hence, we
can both store and run the algorithm in a memory whose size is bounded
by a polynomial in the size of �. This restriction excludes algorithms using
extremely large �xed data structures as well as algorithms building such
structures during run-time.

In certain cases, a stronger form of R-completeness may be needed.

De�nition 7 Let X be a set of PSN structures. We say that X admits
strongly rejection-complete universal plans (R+) i� for every � 2 X and goal
G over �, there exists a universal plan UG such that for every S 2 S such
that hP;O; S;Gi is not solvable, UG(S) = o?;

The motivation for introducing strong R-completeness is simple. If the uni-
versal plan outputs operators, we cannot know whether they will lead to a
solution or not. Executing such operators is not advisable, since we may
wish to try planning for some alternative goal if there is no solution for the
�rst one. However, executing the \invalid" operators may prevent us from
reaching the alternative goal.

3.3 Existence of PTAR
+ and PSAR

+ universal plans

The next theorem shows that the class of all PSN structures admits AR+-
complete universal plans which are either poly-time or poly-space. In the
next section, we will show that this class does not admit even A-complete
universal plans which are simultaneously poly-time and poly-space.

Theorem 8 The class of all PSN structures admits PTAR+-universal plans
and PSAR+-universal plans.
Proof: Arbitrarily choose a PSN structure � = hP;Oi and goal state G
over P. First, we show that there exists an AR+-universal plan UG whose

8

running time is bounded by some �xed polynomial in jPj. Then, we show
that there exists a poly-space AR+-universal plan U 0

G which is of constant
size and uses O(p(jhP;Oij)2) auxiliary space for some �xed polynomial p.

Construction of UG: We de�ne a function f : S? ! O+ as follows. For
each K � 1 and S 2 S such that hP;O; S;Gi has a shortest solution of
length K, choose an o 2 O such that hP;O; S � o;Gi has a shortest solution
of length K � 1. Denote this operator oS and let

f(S) =

8<
:

o? if hP;O; S;Gi is not solvable
o> S satis�es G
oS otherwise

Clearly, for every S 2 S there exists an integer K such that if hP;O; S;Gi
is solvable then UK

G (S) = o>. Otherwise, UG(S) = o?. Consequently, f is
both A-complete and strongly R-complete. The proposed construction of the
function f is obviously of exponential size. However, it can be arranged as
a balanced decision tree of depth jPj and be accessed in polynomial time.
Consequently, we have constructed UG.

Construction of U 0
G : Consider a forward-chaining PSN planning algo-

rithm P that is sound, complete and generates shortest plans. We modify
the algorithm to output only the �rst operator of the plan that leads from
S to G. Since a plan might be of exponential size this cannot necessarily be
implemented in polynomial space. However, we can guess the plan one oper-
ator at a time and compute the resulting state after each action, using only
polynomial space. Hence, this modi�ed planner can be represented by a non-
deterministic algorithm using O(p(jhP;Oj)) space for some �xed polynomial
p. Thus, by Savitch's [1970] theorem, it can also be represented by a deter-
ministic algorithm that uses O(p(jhP;Oj)2) space. This modi�ed planner can
be the same for all problems simply by giving the PSN structure � and the
goal state G as additional inputs. Hence, it is of constant size, i.e., its size
does not depend on the size of the given PSN structure. Consequently, we
can disregard the size of the planner and we have constructed a poly-space
universal plan. (Observe that the soundness of P implies soundness of U 0

G

if we modify U 0
G to generate o> whenever the current state satis�es the goal

state.)
The planner P is complete and generates minimal plans. Hence, if the

shortest plan from the current state S to the goal state G is of length L, the
length of the shortest plan from S�U 0

G(S) to G is L�1. By this observation
and the fact that P is complete, A-completeness of U 0

G follows.

9

Finally, if there is no plan from the current state to the goal state, the
planner will fail to generate even the �rst operator. In this case we simply
output o? and strong R-completeness follows. 2

Constructions similar to those used in the previous proof have been presented
by Baral and Tran [1998]; our research were done independently around the
same time.

It is crucial that the planner used in the previous theorem generates
shortest plans, otherwise, we cannot guarantee A-completeness. We illustrate
this with a small, contrived example.

Example 9 Consider the PSN structure � = hP;Oi = hfp; qg; fp+; q+; q�gi
where the operators are de�ned as p+ = (p) p), q� = (q) q) and q+ =
(q) q).

Let I1 = fqg, I2 = ?, G = hfpg;?i, �1 = hP;O;I1;Gi and �2 =
hP;O;I2;Gi. The shortest plan for both �1 and �2 is hp+i. Assume a
planning algorithm A that generates the plan !1 = hq�; p+i for �1 and
!2 = hq+; p+i for �2. A universal plan UG based on A would then satisfy
UG(I1) = q+ and UG(I2) = q�. Consequently, UK

G (I1) = q+ for odd K and
UG(I1) = q� for even K. In other words, the universal plan will toggle q
forever. Hence, UG is not A-complete.

If S is a set of planning problems such that BPG3 can be solved in polynomial-
time, S admits PT;SAR+ universal plans, by Theorem 8. For planning prob-
lems such that PG is polynomial but BPG is not, the theorem does not apply.
This method for constructing universal plans is pointed out by Selman [1994]

but he does not explicitly state that generating the shortest plan is necessary.
The question whether classes of planning problems where PG is polynomial
but BPG is not admits PT;SAR+ universal plans remains open.

3.4 Non-existence of PT;SA universal plans

To show that the class of all PSN structures does not admit A-complete
universal plans that are both poly-time and poly-space, we will use advice-
taking Turing machines [Johnson, 1990].

3Recall that BPG and PG denote the bounded and unbounded plan generation problem
respectively.

10

De�nition 10 An advice-taking Turing machine is a TM T that has asso-
ciated with it a special \advice oracle" A, which is a (not necessarily com-
putable) function. Let x be an arbitrary input string and let jxj denote the
size of x. When T is applied to x, a special \advice tape" is automatically
loaded with A(jxj) and from then on the computation proceeds as normal,
based on the two inputs, x and A(jxj). An advice-taking Turing machine
uses polynomial advice i� its advice oracle satis�es jA(n)j � p(n) for some
�xed polynomial p and all nonnegative integers n. The class P/poly is the set
of languages de�ned by polynomial-time advice-taking TMs with polynomial
advice.

Advice-taking TMs are very powerful. They can, for instance, compute cer-
tain undecidable functions. Despite their apparent power, it is highly un-
likely that all problems in NP can be solved by polynomial-time TMs using
polynomial advice.

Theorem 11 If NP � P/poly, then the polynomial hierarchy collapses into
�p
2
[Karp and Lipton, 1982]. Furthermore, the polynomial hierarchy collapses

into the complexity class ZPPNP [K�obler and Watanabe, 1999].

�p
2 = NPNP is a complexity class in the second level of the polynomial hierar-

chy [Johnson, 1990], ZPPNP � �p
2 and this inclusion is believed to be strict.

A collapse of the polynomial hierarchy is widely conjectured to be false in
the literature [Johnson, 1990, Papadimitriou, 1994]. Our proofs rely on the
following construction.

Lemma 12 Let Fn be the set of all 3SAT [Garey and Johnson, 1979] in-
stances with n variables. For every n, there is a PSN structure �n = hP;Oi
and a goal state Gn such that for every F 2 Fn, there exists an IF with
the following property: �F = hP;O;IF ;Gni is a planning instance which is
solvable i� F is satis�able. Furthermore, any solution to �F must have a
length less than or equal to 8n3 + 2n.
Proof: Let U = fu1; : : : ; ung be the set of variables used by the formulae
in Fn. Observe that there can only be (2n)3 di�erent clauses in any formula
in Fn. Let C = fC1; : : : ; C8n3g be an enumeration of the possible clauses
over the variable set U . Let P = fT (i); F (i); C(j)j1 � i � n; 1 � j � 8n3g.
The atoms will have the following meanings: T (i) is true i� the variable ui
is true, F (i) is true i� the variable ui is false and C(j) is true i� the clause
Cj is satis�ed. For each variable ui, two operators are needed:

11

� T (i); F (i)) T (i),

� T (i); F (i)) F (i).

That is, T (i) can be made true i� F (i) is false and vice versa. In this fashion,
only one of T (i) and F (i) can be true. For each case where a clause C(j) 2 C
contains a variable ui, the �rst operator below is needed: for a negated
variable :ui, the second operator is needed:

� T (i); C(j)) C(j),

� F (i); C(j)) C(j).

We specify the goal such that Gn = hG+n ;G
�
n i = hfC1; : : : ; C8n3g;?i. Let

F 2 F . We want to construct an initial state IF such that � = hP;O;IF ;Gni
is solvable i� F is satis�able. Let IF = fC(j)jC(j) 62 Fg. Clearly, everyC(j)
can be made true i� a satisfying assignment for F can be found. Finally, it
is easy to see that any solution to �F must be of length � 8n3+2n since we
have exactly 8n3+ 2n atoms and each atom can be made true at most once.

2

Lemma 13 If, for every integer n � 1, there exists a polynomial advice
function that allows us to solve �F for all F 2 Fn in polynomial time, then
the polynomial hierarchy collapses.
Proof: By Lemma 12, �F is solvable i� F has a satisfying truth assignment.
If there exists a polynomial advice function that allows us to solve �F for
all F 2 Fn in polynomial time, then NP � P/poly so, by Theorem 11, the
polynomial hierarchy collapses into �p

2 and ZPPNP. 2

We can now prove our non-existence theorem.

Theorem 14 The class of all PSN structures does not admit universal plans
which are A-complete, poly-time and poly-space at the same time.
Proof: We show that if there exists a poly-time and poly-space A-universal
plan UGn for �n, n � 1, then the polynomial hierarchy collapses.

Assume UGn to be such a universal plan for �n, and consider the algorithm
A in Figure 1. UGn is sound so it must generate an operator that is admissible
in the given state or generate one of the special operators o?; o>. Hence, by
Lemma 12, the repeat loop can iterate at most 8n3 + 2n times before o
equals either o? or o>. We have assumed that UGn is a polynomial-time

12

1 Algorithm A.
2 Input: A 3SAT formula F with n variables.
3 S IF
4 repeat

5 o UGn(S)
6 S S � o

7 until o 2 fo?; o>g

8 if o = o> then accept

9 else reject

Figure 1: The algorithm used in the proof of Theorem 14.

algorithm so algorithm A runs in polynomial time. We show that algorithm
A accepts i� F has a satisfying truth assignment. The if-part is trivial by
noting that if F has a satisfying truth assignment, then the algorithm accepts
by A-completeness. For the only-if part, assume that the algorithm accepts.
Then UGn has returned the operator o> when applied to some state S. By
De�nition 5, UGn(S) = o> i� S satis�es Gn, and consequently, F is satis�able
by Lemma 12. Hence, the algorithm accepts i� F is satis�able and rejects i�
F is not satis�able. Furthermore, UGn is a polynomial advice function since
we have restricted UGn to be of polynomial size and the theorem follows by
Lemma 13. 2

The generality of this theorem has to be emphasized. Recall that an advice
is an arbitrary function from the size of the input; it does not even have to
be computable. Hence, there does not exist any mechanism whatsoever that
is of polynomial size and uses only polynomial time which has the ability to
solve problems like those exhibited in the previous theorem. Methods that
have been proposed to reduce the size of universal plans, such as the variables
introduced by Schoppers [1994], cannot change this fact.

Moreover, observe that Theorem 14 applies even to a class of severely
restricted PSN structures. The restrictions are, among others, that there are
no negative postconditions and each operator has at most two preconditions.
Since there are no negative postconditions, this restricted class is in NP
[Bylander, 1994]. Consequently, it is a class with considerably less expressive
power than the general PSN planning problem which is Pspace-complete
(under the plausible assumption that NP 6= Pspace). Yet, poly-time and
poly-space A-universal plans do not exist for this class of planning problems.
Note that this is not caused by the existence of exponential-size minimal

13

plans since all minimal plans in this class are polynomially bounded.
Finally, we would like to compare Theorem 14 with Selman's [1994] neg-

ative result. He shows that the class of all PSN structures does not admits
PT;SA universal plans which generate the shortest possible solution where
our results shows that this class does not even admit PT;SA universal plans
generating any solution.

4 Randomized Universal Planning: Theory

To overcome the negative results in the previous section, one can basically
do three things:

1. Give the universal plan access to more or other computational re-
sources,

2. use some other notion of completeness, or

3. only consider a restricted class of problems.

We will combine all these ideas in this section. By giving the universal plans
access to a random source (which forces us to modify our notion of com-
pleteness) and concentrating on PSN structures having a certain symmetry
property, we show that there exists a large, non-trivial class of planning
problems which admits e�cient randomized universal plans.

This section is organized as follows: Subsection 4.1 introduces the con-
cepts of randomized completeness and symmetric PSN structures while Sub-
section 4.2 settles the existence of of randomized universal plans under cer-
tain restrictions. Complexity aspects of the problem of deciding symmetry
are discussed in Subsection 4.3, and of the planning problem in the symmetric
case in Subsection 4.4.

4.1 Randomized completeness and symmetric PSN

structures

We assume that the random source is being accessed by coin tosses, that is,
the universal plan can at any time during its execution toss an unbiased coin
and receive a random bit. To take full advantage of the introduction of a
random source, a new concept of completeness is needed. Thus, we make the
following de�nition.

14

De�nition 15 A universal plan UG for a PSN structure � = hP;Oi is com-
plete in the randomized sense with parameter p (Cp), 0 � p � 1, i� for every
S 2 S there exists an integer K such that UK

G (S) = o> or UK
G (S) = o?, and

the following holds:

� if UK
G (S) = o> then hP;O; S;Gi has a solution;

� if UK
G (S) = o?, then hP;O; S;Gi has no solution with probability � p.

The probability is taken over all possible coin tosses made by UG. Let X be
a set of PSN structures and assume that there exists a Cp-complete universal
plan for each member of X . In this case, we say that X admits Cp-universal
plans.

Comparing the notion of Cp-completeness with A- and R-completeness, we
see that if UK

G (S) = o>, then we know for sure that there exists a plan.
This is of course inevitable since we insist that UG has to be sound. If
UK
G (S) = o?, then there is no plan with probability � p. However, there is a

positive probability that there is a plan, albeit a small one, � 1 � p. Thus,
the answer o? does not completely rule out the existence of a plan, it merely
tells us that the existence of a plan is highly unlikely.

We continue by de�ning the class of symmetric PSN structures.

De�nition 16 A PSN structure � = hP;Oi is symmetric i� there for every
S 2 S and every operator o which is admissible in S exists an operator o0

such that ((S � o) � o0) = S. Let SYM denote the set of symmetric PSN
structures.

Symmetric planning problems have previously been considered by several
authors, e.g. Williams and Nayak [1997] and Jonsson and B�ackstr�om [1998].
Several standard examples such as blocksworld [Sacerdoti, 1975] and Towers-
of-Hanoi [Green, 1969] are also symmetric under suitable encodings.

The complexity of deciding whether a given PSN structure is symmetric
or not is investigated in Subsection 4.3. The main result is the following:

Theorem 17 The problem of deciding whether a PSN structure is symmet-
ric or not is coNP-complete.

Even though the class of symmetric PSN structures may seem severely re-
stricted, it is by no means trivial. In fact, deciding the plan existence problem

15

in symmetric PSN structures is as hard as for arbitrary PSN instances, as
shown in Subsection 4.4:

Theorem 18 The plan existence problem is Pspace-complete for symmet-
ric PSN instances.

4.2 Existence of PT;SCp universal plans

We are now ready to show that the set of symmetric PSN instances admits
PT;SCp universal plans for any choice of 0 � p < 1. These universal plans are
of an extremely simple type; they perform a random walk in the state space.

De�nition 19 Let G = hV;Ei be an arbitrary undirected graph. A random
walk on G is a sequence v1; v2; : : : of nodes in V such that vi+1 is chosen
randomly from the neighbours of vi, i.e. the set fw j fvi; wg 2 E; vi 6= wg,
and each node in this set is an equally likely choice.

Given an undirected graph G = hV;Ei, we represent the edges as unordered
pairs of nodes. This implies that jEj � jV j2=2.

Lemma 20 Let G = hV;Ei be an arbitrary undirected graph, v a node in
V and d(v) the degree of v, i.e. the number of nodes adjacent to v. The
expected number of steps a random walk starting in v needs to take before
returning to v is 2jEj=d(v).
Proof: See for instance Papadimitriou [1994] or Motwani and Raghavan
[1995]. 2

Theorem 21 Let G = hV;Ei be an arbitrary undirected graph and v;w 2 V
two nodes in G. If there exists a path from v to w in G, then the expected
number of steps a random walk starting in v needs to take before reaching
w is no more than jV j � jEj.
Proof: Whenever the walk is in a node v0 of degree d(v0) which lies on this
path, the next step in the walk will with probability 1=d(v0) be a step \in the
right direction", i.e. to the next node in the path. If any other neighbour of
v0 is chosen, the walk will after on average 2jEj=d(v0) steps return once more
to v0 and try again, and after on average 1

2
d(v0) tries it will chose the \right"

neighbouring node. Thus, the expected number of steps needed to take one
step along the path is 2jEj=d(v0)�1

2
d(v0) = jEj. Since the shortest path from

v to w can be at most jV j steps long, the expected total number of steps to
complete the path and reach w is no more than jV j � jEj. 2

16

Theorem 22 (Markov's inequality) If X is a stochastic variable taking non-
negative values and E(X) is the expected value of X, then for any k > 0,
Prob[X � k � E(X)] � 1=k.

Combining the two theorems, we get the following corollary.

Corollary 23 Let G = hV;Ei be an arbitrary undirected graph, choose two
nodes v;w 2 V and a number 0 � p < 1, and make a random walk of length
(1=(1 � p)) � jV jjEj on G starting in node v. Then,

1. if the random walk reaches w, then there exists a path from v to w;

2. if the random walk does not reach w, then there is no path from v to
w with probability � p.

Proof: If the random walk reaches w, then trivially there exists a path
from v to w.

Assume that the random walk does not reach w but there exists a path
from v to w. Let X denote the stochastic variable telling us how long the
random walk must be to reach w. Obviously, X is a random variable taking
only non-negative values. By Theorem 22, we have that

Prob

�
X �

1

1� p
� E(X)

�
� 1� p

and by Theorem 21,

Prob

�
X �

1

1� p
� jV jjEj

�
� 1� p:

That is, the probability that the randomwalk must take more than 1

1�p
�jV jjEj

steps to reach w is less than 1� p. Thus, if the random walk does not reach
w, there is no path from v to w with probability � p. 2

The randomized universal plan that we propose is shown in Figure 2. The
next theorem shows that this algorithm is sound and Cp-complete for sym-
metric PSN structures.

Theorem 24 For any 0 � p < 1, the class of symmetric PSN instances
admits universal plans satisfying PT;SCp.
Proof: Let � = hP;Oi be an arbitrary symmetric PSN structure, and G
a goal state over P. Consider the algorithm in Figure 2. Assume that the

17

memory of the algorithms is initially loaded such that z = 0. Given a state
I over P, the sequence I; UG(I); U2

G(I); : : : is a random walk on the graph

G = h2P ; ffv;wg j 9o 2 O such that o(v) = w and v 6= wgi:

(We refer to as G as the state-transition graph.) Since � is symmetric, G is
an undirected graph. Furthermore, jV j = 2jPj and jEj � jV j2=2 = 22jPj�1.
Since the algorithm keeps track of how many times it has been invoked, it
will return either o? or o> after at most 1

1�p
� 2jPj+2jPj�1 � 1

1�p
� jV jjEj steps.

By Corollary 23,

1. if a state S satisfying G is visited, then there is a path from the initial
state I to a state S which satis�es the goal G;

2. if no state satisfying G is visited, then there is no path from I to such
a state with probability at least p.

Consequently, UG is complete in the randomized sense with parameter p. To
see that UG is PT and PS, one merely has to note that

1. it is possible to uniformly choose a member of a set S by tossing
O(log(jSj)) coins, and that

2. the value of p is not part of the input so the memory needed by count
is �xed.

2

It may seem like a major problem that the universal plan must be invoked
as many as 1=(1 � p) � 23jPj�1 times before o? is outputted. We can improve
this bound somewhat, as discussed below, but not drastically so in the gen-
eral case since there are symmetric PSN instances having exponentially long
shortest solutions, as the next theorem shows.

Theorem 25 For all n > 1, there is some PSN instance �n = hP;O;I;Gi
with jPj = n such that hP;Oi is symmetric and such that all plans solving
� are of length
(2n).
Proof: De�ne the PSN instance �n = hP;O;I;Gi as

� P = fp1; : : : ; png;

� O = fo+1 ; o
�
1 ; : : : ; o

+
n ; o

�
n g where for 1 � i � n:

18

1 Universal plan UG .
2 Input: A state S � P
3 if z = 0 then z 1 and count 0
4 else count count + 1
5 if G is satis�ed by S then output o>
6 elsif count > 23jPj�1

1�p then output o?
7 else

8 begin

9 R fS0 j 9o 2 O s:t: S0 = S � o and S0 6= Sg

10 uniformly choose S 0 2 R

11 output an operator o such that S 0 = S � o

12 end

Figure 2: The randomized universal plan algorithm.

{ o+i = (p1; : : : ; pi�2; pi�1; pi) pi);

{ o�i = (p1; : : : ; pi�2; pi�1; pi) pi).

� I = ?;

� G = hfpng; fp1; : : : ; pn�1gi:

B�ackstrom and Nebel [1995] have shown that the shortest solution for �n has
length
(2n). To show that hP;Oi is symmetric, we reason along the same
lines as in the proof of Theorem 18: Let S be an arbitrary state such that an
operator o+i is admissible in S. Then, it is easy to see that o� is admissible
in S � o+, and that if o� is admissible in S, then o+ is admissible in S � o�.

2

In our formulation of UG above, we have used the most pessimistic bound on
jEj, namely jEj = jV j2=2. One way to reduce the number of times that UG
has to be invoked is to give a better estimate of jEj. For instance, note that
jEj � jV j�jOj, since there can not be more ways to leave a state than there are
operators. Since in general, jOj � jV j, the bound jV j � jV j � jOj � 22P � jOj is
often much better than the estimate used above. We can reduce our estimate
of jEj even further by considering that not all operators are applicable in
all states. An operator o with jpre+(o)j + jpre�(o)j = n preconditions is
applicable in only 2P�n of the 2P possible states.

19

4.3 Complexity of Deciding Symmetry

This section contains the proof of Theorem 17.

Lemma 26 Deciding the validity of DNF formulae is a coNP-complete prob-
lem.
Proof: Deciding the satis�ability of CNF formulae is an NP-complete
problem [Garey and Johnson, 1979] which implies that the complement of
this problem is coNP-complete (since the complement of any NP-complete
problem is coNP-complete, cf. [Papadimitriou, 1994]).

Now, the complementary problem is to decide whether a CNF formula
F is false for every assignment to its variables. This is equivalent to the
problem of deciding whether the formula :F is true for every assignment,
i.e., whether :F is valid or not. By distributing : over F (a task which
obviously can be accomplished in polynomial time), we end up with a DNF
formula F 0 which is valid i� :F is valid i� F is not satis�able. Thus, deciding
the validity of DNF formulae is a coNP-complete problem. 2

We can now prove Theorem 17, i.e., show that it is a coNP-complete problem
to decide whether a PSN structure is symmetric or not.

Proof (of Theorem 17): Let � = hP;Oi be an arbitrary PSN structure.
Membership in coNP follows from the observation that if � is not symmetric,
then there exists a state S over P and an o 2 O (which is admissible in S)
such that no operator in O can transform the state S � o back to S. Given
such a state and an operator, this property can be checked in polynomial
time which implies that testing if � is not symmetric is in NP. Hence, testing
if � is symmetric is in coNP.

To show hardness for coNP, we exhibit a polynomial time reduction from
the problem of deciding validity of DNF formulae. Let F = C1_: : :_Ck be an
arbitrarily chosen DNF formula over the propositions p1; : : : ; pn. Construct
a PSN structure hP;Oi as follows:

� P = fX; p1; : : : ; png;

� O = foX ; o1; : : : ; okg, where

{ oX = (X) X),

{ oi = (X;Ci) X), for each clause Ci. Note that Ci is a conjunc-
tion of literals.

20

Clearly, this transformation can be carried out in polynomial time. We claim
that hP;Oi is symmetric i� F is valid.

First, assume that F is not valid. Then there exists an assignment M
from fp1; : : : ; png to fT;Fg such that F evaluates to false underM . Consider
the state S = fpi jM(pi) = Tg, the operator oX and the state S0 = S � oX .
SinceM does not satisfy F , none of the operators in o1; : : : ; on is applicable
in S0 which implies that hP;Oi is not symmetric.

Assume instead that F is valid and arbitrarily choose a state S over P
and an operator o which is applicable in S. IfX 2 S, then in o 2 fo1; : : : ; ong
so S � o = S � fXg and (S � fXg) � oX = S. If X 62 S, then o = oX and
S � oX = fXg [S. Since F is valid, at least one operator oi, 1 � i � k is
applicable in fXg [S so (S � oX)� oi = S and hP;Oi is symmetric. 2

Despite the hardness of testing symmetry, the structure inherent in many
problems gives us a method for determining symmetry e�ciently. Recall,
for instance, the proofs of Theorems 18 and 25. The instances studied there
have the property that for any operator X; p) p (where X denotes a set of
preconditions not including p or p), there exists an \undo" operator X; p) p
and vice versa4. Clearly, this property implies symmetry and it can easily be
checked in polynomial time. Also note that this property can be generalized
(in the obvious way) to operators having arbitrarily many postconditions.

4.4 Complexity of Symmetric Planning

In this Subsection, we prove Theorem 18. First, we introduce the concept of
symmetric Turing machines (as de�ned by Lewis and Papadimitriou [1982]),
with the aid of peeking Turing machines. Then, the acceptance problem for
polynomially space-bounded symmetric TMs is shown to be Pspace-hard
and reduced to the plan existence problem for symmetric PSN instance. The
reduction is similar to (but considerably more complex than) the reduction
used by Bylander [1994] to show Pspace-hardness of unrestricted PSN plan-
ning.

A peeking TM (PTM) is a 7-tuple hK;�;�0; k;�; s; F i, where

� K is a �nite set of states;

4Pairs of operators having this property are said to be symmetrically reversible in
[Jonsson and B�ackstr�om, 1998].

21

� � is a �nite alphabet (the tape alphabet);

� �0 � � is the input alphabet;

� k > 0 is the number of tapes;

� s 2 K is the initial state;

� qF � K is the set of �nal states; and

� � is a �nite set of transitions (which are to be de�ned below).

What is unusual about PTMs is the nature of the transitions; they enable
the machine to \peek" one square to the right or left while moving to the
right or left, respectively. Formally speaking, a transition is of the form
(p; t1; : : : ; tk; q), where p and q are states, k is the number of tapes, and
t1; : : : ; tk are tape triples. A tape triple is either of the form (ab;D; cd) where
a; b; c; d 2 � and D is +1 or �1, or of the form (a; 0; b), where a; b 2 �.

We begin by an informal description of the one-tape case. A transition
of the form (p; (a; 0; b); q) means that when M is in state p and scanning
a symbol a, it may rewrite a as b and move into state q, without moving
the tape head. A transition of the form (p; (ab;+1; cd); q) means that when
M is in state p, scanning symbol a, and the square just to the right of
the scanned square contains symbol b, M may rewrite these two squares to
contain symbols c and d, respectively, and move the tape head one step to
the right. Similarly, a transition (p; (ab;+1; cd); q) signi�es a potential left
movement of the tape head, except that now the scanned symbol must be b
and the one to its left a; these are rewritten as d and c, respectively.

For multitape PTMs, the speci�ed preconditions of each tape triple must
be met on each corresponding tape in order for the transition to be applicable
and the corresponding actions to be taken.

We set aside a blank symbol #, assumed to belong to the tape alphabet
of every PTM and to the input alphabet of none. A con�guration of M =
hK;�;�0; k;�; s; F i is then a 2k + 1-tuple (q; w1; h1; : : : ; wk; hk), where q 2
K, hj 2 N and wi is a function from N to � such that wj(i) = # for all but
�nitely many i 2 N. The function wj speci�es the contents of tape j, while
hj speci�es the position of the head on that tape.

Let C(M) denote the set of all con�gurations of M . It is straightforward
to de�ne formally what it means for a con�guration to yield another, based

22

on the informal description of transitions above. We write C `M C 0 to denote
that C;C 0 2 C(M) and C yields C 0.

For each string w over �0, we de�ne the initial con�guration with input
w as IM(w) = (s; ŵ; 0; ê; 0; : : : ; ê; 0); by ŵ we mean the function from N to
� such that ŵ(i) is the i:th symbol of w for 1 � i � jwj, and ŵ(i) = # for
i = 0 and i > jwj. The function is de�ned such that ê(i) = # for all i 2 N.
A �nal con�guration is one whose state component is in F . We say that M
accepts w if IM(w) `M C1 `M : : : `M C for some �nal con�guration C.

To de�ne symmetric PTMs, we �rst de�ne the inverse ��1 of a transition
�: If � = (p; t1; : : : ; tk; q), then ��1 = (q; t�11 ; : : : ; t�1k ; p), where for 1 � i � k.
If ti = (�i;Di; �i), then t�1i = (�i;�Di; �i). The PTM M is symmetric i�
��1 2 � whenever � 2 �. This implies that if C `M C 0, then C 0 `M C for
all C 2 C(M).

Theorem 27 [Lewis and Papadimitriou, 1982] Let S be any function from
N to N. If a language L is accepted in space S by a k-tape symmetric PTM,
k > 2, then L is accepted in space S by a 2-tape symmetric PTM.

Lemma 28 The class of languages accepted by symmetric PTMs operating
in polynomial space is Pspace-hard to recognize.
Proof: Given an arbitrary function S : N! N, we de�ne

1. Dspace(S) as the languages accepted by deterministic TMs operating
in space S;

2. DspaceP (S) as the languages accepted by deterministic PTMs oper-
ating in space S;

3. SspaceP (S) as the languages accepted by symmetric PTMs operating
in space S.

Lewis and Papadimitriou [1982] have shown that

DspaceP (S) � SspaceP (S):

Furthermore, it is easy to see that Dspace(S) � DspaceP (S) (by simply

23

not taking advantage of the possibility to \peek"). We therefore have

Pspace =

1[
k=1

Dspace(nk)

�
1[
k=1

DspaceP (n
k)

�
1[
k=1

SspaceP (n
k)

which concludes the lemma. 2

Proof (of Theorem 18): With the aid of the previous lemma and theorem,
we can show that the plan existence problem is Pspace-complete for sym-
metric PSN instances. Membership in Pspace follows from the fact that
the plan existence problem for (unrestricted) PSN instances is in Pspace.
We show hardness for Pspace by a reduction from the language recognition
problem for symmetric PTMs operating in polynomial space.

Let M be an arbitrary polynomial-space bounded symmetric TM and let
x = x1x2 : : : xn be an input string of length jxj = n. Assume that the total
number of tape cells used byM is bounded by some polynomial p in jxj. We
introduce propositional atoms as follows:

in1(i; x): symbol x is in tape 1's cell i, 1 � i � p(jxj);

in2(i; x): symbol x is in tape 2's cell i, 1 � i � p(jxj);

pos(i): M is reading tape cell i;

state(q): M is in state q;

accept: M accepts the input.

By Lemma 27, it is su�cient to consider two tapes. To simplify the presen-
tation, we only demonstrate the encoding for the case when M is a 1-tape
TM; thus we replace in1(i; x) and in2(i; x) with in(i; x).

If q0 is the initial state of M , we de�ne the initial and goal state as

I = fstate(q0); pos(1); in(1; x1); : : : ; in(n; xn); in(n+ 1;#);

: : : ; in(p(jxj);#)g

G = facceptg:

24

We continue by showing how the transitions of M can be encoded by oper-
ators. Consider a transition of the type (p; (ab;+1; cd); q), and assume that
a 6= c, b 6= d and that the tape head is in position i. Such a transition is
represented by the operator

t+ : pos(i); state(p); in(i; a); in(i+ 1; b); pos(i+ 1); state(q);

in(i; c); in(i+ 1; d))

pos(i); state(p); in(i; a); in(i+ 1; b); pos(i+ 1); state(q);

in(i; c); in(i+ 1; d):

The preconditions may seem puzzling; why introduce the negative precondi-
tions pos(i + 1), state(q), in(i; c) and in(i+ 1; d), since we can, for instance,
never reach a state such that in(i; a) and in(i; c) holds simultaneously. How-
ever, this is only correct under the assumption that we start in the initial
state as de�ned above, which is something that we cannot guarantee. As will
become apparent later on, these extra preconditions are needed to make the
resulting planning problem symmetric.

By the symmetry of M there also exists a transition (q; (cd;�1; ab); p).
Assuming the tape head is in position i+ 1, we represent this transition by
the operator

t� : pos(i+ 1); state(q); in(i; c); in(i+ 1; d); pos(i); state(p);

in(i; a); in(i+ 1; b))

pos(i+ 1); state(q); in(i; c); in(i+ 1; d); pos(i); state(p);

in(i; a); in(i+ 1; b):

It should be obvious that if t+ is applicable in S, then t� is applicable in
S � t+ and S = (S � t+)� t�. In other words, the resulting set of operators
is symmetric.

To exemplify why the negative preconditions are needed, de�ne n+ and
n� as t+ and t� but without these preconditions. Assume we are in the
\strange" state

I = fpos(i); state(p); in(i; a); in(i+ 1; b); pos(i + 1); state(q);

in(i; c); in(i+ 1; d)g:

We then have

I � n+ = fpos(i + 1); state(q); in(i; c); in(i+ 1; d)g

25

and

(I � n+)� n� = fpos(i); state(p); in(i; a); in(i+ 1; b)g

which does not equal I. This situation is prevented by the negative precon-
ditions since t+ is not applicable in the state I.

The negative preconditions must be introduced with a certain amount of
care. Consider the transition (p; (ab;+1; ad); q). The straightforward de�ni-
tion of the corresponding operator is

t+ : pos(i); state(p); in(i; a); in(i+ 1; b); pos(i+ 1); state(q);

in(i; a); in(i+ 1; d))

pos(i); state(q); in(i; a); in(i+ 1; b); pos(i + 1); state(q);

in(i; a); in(i+ 1; d)

This operator is not applicable in any state since we have the contradictory
preconditions in(i; a) and in(i; a). The correct encoding is

t+ : pos(i); state(p); in(i; a); in(i+ 1; b); pos(i+ 1); state(q);

in(i+ 1; d))

pos(i); state(p); in(i+ 1; b); pos(i+ 1); state(q); in(i+ 1; d)

Having seen these examples, it is easy to de�ne operators for the other types
of transitions and to extend the construction to the multi-tape case. By
Theorem 27, we only have to consider two tapes which simpli�es the de�nition
of operators considerably.

M accepts its input i� it reaches a state qF 2 F . Introduce the following
operators for each qF 2 F :

a+ : state(qF); accept) state(qF); accept

a� : state(qF); accept) state(qF); accept

By adding both these operators we preserve the symmetry condition and
enable the goal state to be reached i� M accepts its inputs. Since the previ-
ously introduced operators precisely encode the transitions of M , M accepts
input w i� the corresponding PSN instance has a solution.

Finally, we have to show that this is a polynomial-time transformation.
This is, however, easy, by noting that the number of propositions is at most

k�j�j�p(jxj) + p(jxj) + jKj+ 1

where k is the number of tapes, and the number of operators is at most
j�j�p(jxj) + jF j. 2

26

5 Randomized Universal Planning: Experi-

ments

We have implemented a planner, which we call Stocplan, based on the
randomized universal planning algorithm presented in Figure 2. To turn the
universal plan algorithm into a traditional planner, we invoke the algorithm
repeatedly until it returns either o>, indicating a plan exists, or o?, indicating
a plan is not likely to exist.

To experimentally evaluate Stocplan, we tested it and compared it to
a deterministic planner on a number of domains. The experiments were not
designed to test a particular hypothesis, but are rather exploratory in nature.
The questions we primarily had in mind were:

1. How does Stocplan compare to a traditional, deterministic planner?

2. What characteristics of the problem domain are crucial for Stocplan's
performance?

For comparison, we chose the planner Graphplan [Blum and Furst, 1997],
since it is widely acknowledged as one of the fastest propositional planners
available. However, a number of circumstances make the comparison some-
what unfair:

1. Graphplan always �nds a shortest plan if the given planning instance
has a solution while Stocplan �nds a (not necessarily optimal) plan
with a certain probability; the former task may very well be harder.

2. Stocplan can only solve symmetric planning instances.

3. Graphplan can only deal with conjunctions of positive literals in op-
erator preconditions; this limitation can be circumvented using a stan-
dard transformation, but doing so enlarges the domain (i.e. the number
of propositions).

It is our hope that the results are illustrative despite these imperfections.

5.1 Experiment design

We measured the runtime of the two planners on a number of instances of
di�erent planning problems. All problem instances were solvable. All trials

27

were performed on a SUN Sparcstation 105 and with a time limit of 300
seconds (= 5 minutes).

The runtime for Graphplan is the mean of two trials. Since this plan-
ner is deterministic, the only di�erences between trials are those caused by
\noise" in the environment, which we have minimized as far as possible; the
di�erence was in all cases small compared to the average (at most 8%).

Because Stocplan is randomized, to present the \runtime" as a single
value would be misleading, no matter how many trials it is the average of.
Instead, we take the runtime to be a stochastic variable, X, and hypothesize
that it is exponentially distributed. In support of this hypothesis, we can
only submit the fact that exponential distribution is natural for stochastic
variables representing the time until a certain event occurs, given that the
event has a certain probability of occurring at each point in time; this de-
scription certainly applies to the runtime of Stocplan. The exponential
distribution function is

F (xj�) = 1� e�
x

�

F (xj�) is the probability that an observation of the stochastic variableX will
be in the interval [0; x], so observations less than zero have zero probability.
The single parameter � is positive and is also the expected value for a variable
of the distribution. A cumulative histogram (from a sample of runs on one
of the blocksworld instances) overlayed with the corresponding curve of the
distribution function (�gure 3) also indicates a likely correspondence.

>From the experimental data, we calculate (using the MATLAB statistics
toolbox6) an estimate of � in the form of a 90% con�dence interval, i.e. a
range of possible values such that the probability of � being among them is
0:9, given the observed data set. Based on this, we calculate an estimate of
the 90th percentile, i.e. a value such that the probability of the runtime being
less than this value is at least 0:9, given that the runtime is exponentially
distributed with a parameter somewhere in the interval. The estimated 90th
percentile is the closest we have to \running time", since it is the time we
expect we would have to wait in order to be 90% certain that we have not
missed a solution. We also compare the estimated value to the measured
90th percentile of the experimental data.

For instances where the percentage of trials solved by Stocplan within
the limit of 300 seconds is less than 90%, we have not calculated estimates

5SUN and Sparcstation 10 are trademarks of SUN Microsystems.
6MATLAB is a trademark of MathWorks Inc.

28

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Figure 3: Correspondence between the exponential distribution function
(line) and the distribution of the measured runtimes (bars).

of � or the 90th percentile since those calculations would be biased by the
lack of exact data on runtimes exceeding 300 seconds.

5.2 Two Toy Problems

We begin our investigation by considering two toy problems; the tradi-
tional blocksworld domain and a puzzle domain involving movable tiles. The
blocksworld model uses the single-step operator;

move(x; y; z) : on(x; y); clear(x); clear(z))

on(x; y); on(x; z); clear(z); clear(y)

Special operators are used for the cases when either source or destination is
the table.

The tile puzzle consists of an n � n array of squares with n2 � 1 labeled
square tiles laid out on it, as shown in �gure 4. When n = 3 there are eight
tiles, wherefore this problem is also known as the Eight puzzle [Korf, 1987].
Tiles can be moved, vertically or horizontally, into an adjacent square if it is
the single empty square. The problem consists in changing the tiles from one

29

A B C

D E F

G H

Figure 4: The tile puzzle.

con�guration to another. Modeling the problem is straightforward; a propo-
sition at(l; x; y) represents the fact that the tile labeled l is in square (x; y).
To avoid negative preconditions the single empty square is also represented
as a tile, labeled \Blank". For example, with n = 3, the operator for moving
a tile labeled x, where x 6= \Blank", downwards from the center position
would be

down(x) : at(x; 2; 2); at(Blank; 2; 3))

at(x; 2; 2); at(Blank; 2; 3); at(x; 2; 3); at(Blank; 2; 2)

We triedGraphplan and Stocplan on six instances of the blocksworld
problem with n = 8; 9 and goal con�gurations chosen to vary properties of
the solution, in particular the solution length. For the tile puzzle, we used �ve
instances with n = 3 and random goal con�gurations. Results are presented
in tables 1 and 2. Plan length is the shortest plan, found by Graphplan.
Table 1 shows both the number of operators and the number of time steps in
the shortest plan; since Graphplan places operators in parallel whenever
possible, the number of time steps may be smaller. In the tile puzzle domain,
however, only one operator can be placed in each time step, so the two
measures coincide.

In the blocksworld domain,Graphplan clearly outperforms Stocplan.
It may appear to do so also on the tile puzzle, but the di�erence is less
and grows lesser as plans grow longer; on the longest example, even the
(pessimistic) estimate of the 90th percentile limit is less than the actual
running time of Graphplan.

>From the results of the blocksworld example with n = 8 it appears that
Stocplan's expected runtime depends both on plan length, i.e. the number

30

Plan Graph- Stocplan

n length� plan � 90% c.i. 90th percentile % solved
Estimated Measured

8/2 1:2 1:9 � 2:6 6:0 5:0 100:0
8 8/8 6:2 6:1 � 8:5 19:6 14:0 100:0

12/6 4:1 78:8 � 109:6 252:3 229:5 93:0
12/12 9:6 74:0

9 12/10 6:6 58:0
14/13 30:4 15:0
� First number is the number of actions, second the number of time steps.

Table 1: Experimental results for the blocksworld domain.

Plan Graph- Stocplan

length plan � 90% c.i. 90th percentile
Estimated Measured

16 6:1 15:3 � 21:3 49:0 39
22 13:0 20:1 � 28:0 64:3 57:5
22 12:0 25:0 � 34:8 80:2 64
24 20:2 22:0 � 30:6 70:5 61
28 99:7 23:4 � 32:5 74:8 63

Table 2: Experimental results for the tile puzzle domain.

31

Graph- Stocplan

n plan � 90% c.i. 90th percentile % solved
Estimated Measured

8 10:5 3:5 � 4:0 9:25 7:5 100:0
9 55:5 4:4 � 5:5 12:6 10 100:0
10 � 18:4 � 22:6 52:1 46 100:0
11 � 61:2 � 71:4 173:6 144 99:2
12 � 59:6
13 � 8:0
14 � 0:0

Table 3: Experimental results for the exponential plan domain.

of operators in the shortest plan, and on plan \seriality", i.e. the number of
sequential time steps needed. This is somewhat surprising, since Stocplan
examines only totally ordered sequences of operators.

5.3 Exponential Length Plans

To explore the hypothesis that plan length has an inuence on the relative
performance of the two planners, we go to an extreme; the construction in
Theorem 25, which yields planning instances with minimal length
(2n).

Both planners were tested on instances of this problem ranging in size
from 8 up to 14 (on smaller instances, both planners are indistinguishably
fast and on larger instances, both fail to yield a solution within the time limit
of 300 seconds). The results are presented in table 3. Trials exceeding 300
seconds were aborted, and are marked with an asterisk in the table.

The performance of both planners degrades in a similar way as n grows,
but Stocplan is clearly able to handle larger instances than Graphplan.

5.4 The Tunnel Domain

The tunnel domain is an example that has been used in control theory. It
consists of a tunnel (see Figure 5) divided into n sections such that the light
can be switched on and o� independently in each section. The light switches
are located at each end of a section. It is also assumed that one can walk
through a section only if the light is on in that section. As a typical instance

32

Sec 2Sec 1 Sec 3 Sec n

Figure 5: Illustration of the tunnel domain.

Graph- Stocplan

n plan � 90% c.i. 90th percentile % solved
Estimated Measured

12 0:8 1:2 � 1:7 4:0 3 100:0
14 1:4 7:7 � 10:7 24:6 19:5 100:0
16 11:7 40:2 � 56:0 128:8 100:5 100:0
18 65:2 73:0
20 � 13:0

Table 4: Experimental results for the tunnel domain.

of this problem assume that all lights are o� and the goal is to turn the light
in the innermost section on while, in the end, leaving all other lights o�.
This can be achieved by walking into the tunnel, repeatedly switching on the
light in each section until the innermost section is reached, then leaving the
tunnel again, repeatedly switching o� the light in each section, but leaving
the innermost light on.

Modeling this problem is once again straightforward; a proposition light(i)
represents the fact that the light is on in section i. The operators

oni : light(1); : : : ; light(i� 1)) light(i)

o�i : light(1); : : : ; light(i� 1)) light(i)

turn the light in section i on and o�, respectively, provided that the light
in all sections leading up to section i is on (so one can walk to the switch).
The initial state in the problem described above is I = ? and the goal is
G = hflight(n)g; flight(1); : : : ; light(n�1)i. Note that a plan for this problem
is not particularly long, containing no more than 2n operators.

The planners were compared on instances of this problem ranging in size
from 12 up to 20; results are presented in table 4. Since Graphplan can
not deal with negative literals in preconditions or goal, we use the standard

33

Problem Reachable Plan Worst case
states length

Blocksworld, with n = 8 � 218 12 > 300
Tile puzzle � 217 28 80:2
Exp. length domain, with n = 10 210 1024 52:1
Tunnel domain, with n = 16 216 31 128:8

Table 5: Comparison of some domain characteristics and the estimated run-
ning time of Stocplan.

transformation of replacing each propositional atom p with two atoms pT and
pF , with the intended interpretation that p is true when pT is true and pF
false (and analogously when p is false), on instances for Graphplan. Note
that this does not a�ect the length of the shortest plan.

Apart from plan length, the tunnel and exponential length plan domains
share a great deal of structural similarity. Also, the performance of the two
planners degrades in the same way, though in this case Stocplan does so
more quickly.

5.5 Discussion of the Results

Though example domains have not been chosen in any very principled man-
ner, the presented collection clearly illustrates that neither planner is con-
sistently faster than the other. Plan length appears to be the crucial factor
for the relative performance, as can be seen from the results on the exponen-
tial length and tile puzzle domains. However, Graphplan is known to be
sensitive to plan length.

Nor to the second question does the results give any conclusive answer.
Table 5 shows a comparison between some domain characteristics and the
worst estimated running time of Stocplan, for some of the examples.

Plan length is obviously not a very important factor; estimated running
time in the exponential length domain with n = 10, requiring a 1024-step
plan, is much less than in the blocksworld domain with n = 8, requiring only
at most a 12-step plan. Neither is the size of the state space; all instances
of the tile puzzle, which have 92 propositions and more than 217 reachable
states are solved faster than the tunnel instance with n = 16, which has only
216 reachable states.

34

As a tentative explanation, we hypothesize that an important factor is the
average ratio of \good" choices of operator to the total number of applicable
operators, over the reachable set of states. A choice of operator may be
considered \good" in state s if it is possible to reach a goal satisfying state
without returning to s; in essence, without backtracking. This can also be
characterized as a ratio of the number of paths that reach the goal to the
total number of paths to take. In the exponential length domain, for an
example of one extreme, there is in each state only two applicable operators,
one of which is in the right direction and therefore \good". This can explain
why Stocplan reaches the goal relatively fast, even though the plan is very
long. Blocksworld o�ers an example of the other extreme; in the worst case
there are n blocks to move, n� 1 places to move each block, and exactly one
of them has to be taken for the goal to be reachable without undoing this
step. This would also explain why Stocplan is faster on problems requiring
fewer time steps for the same number of operations. Operations that can be
executed in parallel can also be executed serially in any order, increasing the
number of choices that lead to the goal.

6 Future Work

As the reader may already have noted, a large number of question are left
open by this paper. The following are two of the questions that the authors
�nd interesting.

1. As was pointed out in Section 4, bound on the number of steps needed
by the random walk can be substantially reduced by providing sharper
estimates of jV j and jEj, the number of nodes and edges in the state-
transition graph. Some ways of estimating jEj more accurately were
discussed, but jV j was estimated only with the worst case bound of 2P .
Note also that it is su�cient to consider the number of states that are
reachable from the initial state in the state-transition graph, so closer
estimates of this quantity would also result in improved performance.

Even more interesting would be methods of estimation that can be run
\in parallel" with the randomized planner, improving the two bounds
incrementally during the random walk.

Another way of decreasing the running time is to improve the basic
random walk technique. Even though this seems very hard in the gen-

35

eral case, there may be domain-dependent heuristics that can speed up
the planning process under favourable circumstances.

2. What domain characteristics are crucial to the performance of Stoc-
plan, or randomized planning algorithms in general? To test the hy-
pothesis presented in Section 5.5 empirically, a suitable domain must
be found. Since there is a similarity between the idea of \ratio of suc-
cessful paths" and the concept of trivial and laborious serializability
de�ned by Barret and Weld [1994], symmetric versions of their DmSn

domains are promising candidates.

The concept of serializability as originally de�ned by Korf [1987] is
not directly applicable however, since Stocplan does not consider
subgoals. As, for example, the results from the tile puzzle domain
show, nonserializable problems are not necessarily hard for a random-
ized planner like Stocplan.

7 Conclusions

We have proposed a stricter de�nition of universal plans which guarantees
a weak notion of soundness not present in the original de�nition. In addi-
tion, we have identi�ed three di�erent types of completeness which capture
di�erent behaviors exhibited by universal plans. A-completeness guarantees
that if there exists a plan from the current state to the goal state, then the
universal plan will �nd a solution in a �nite number of steps. R-completeness
is the converse of A-completeness, i.e., if there does not exist a plan from
the current state to the goal state, then the universal plan will report this
after a �nite number of applications. R+-completeness is a stronger version
of R-completeness, stating that if there does not exist a plan from the cur-
rent state to the goal state, then the universal plan will report this after one
application. We have shown that universal plans which run in polynomial
time and are of polynomial size cannot be A-complete unless the polynomial
hierarchy collapses. However, by dropping either the polynomial time or
the polynomial space requirement, the construction of A- and R+-complete
universal plans becomes trivial.

As a complement to the classical universal planning which concentrate on
deterministic algorithms, we consider universal plans which have access to a
random source. For a randomized version of completeness and a restricted

36

class of problems, we showed that there exists randomized universal plans
running in polynomial time and using polynomial space which are sound and
complete. We also showed that this class of problems is nontrivial since the
planning problem is Pspace-hard. Experiments with an implementation of
the randomized planning algorithm yielded inconclusive results; compared to
a deterministic planner we found neither planner to be consistently faster,
and we could not conclusively identify any domain characteristics crucial to
the performance of the randomized planner.

Acknowledgments

This research has been sponsored by the Swedish Research Council for the
Engineering Sciences (TFR) under grants Dnr. 93-291, 95-731, 96-737 and
97-301, the Wallenberg Foundation and the ECSEL/ENSYM graduate stud-
ies program.

References

[Allen et al., 1990] J. Allen, J. Hendler, A. Tate, editors, Readings in Plan-
ning, San Mateo, CA, 1990.

[B�ackstr�om and Nebel, 1995] C. B�ackstr�om, B. Nebel, Complexity results
for SAS+ planning, Comput. Intell. 11(4) (1995) 625{655.

[B�ackstr�om, 1995] C. B�ackstr�om, Expressive equivalence of planning for-
malisms, Artif. Intell. 76(1{2) (1995) 17{34.

[Baral and Tran, 1998] C. Baral, S. C. Tran, Relating theories of actions and
reactive control, Link�oping Electronic Articles in Computer and Informa-
tion Science 3(9) (1998).

[Barret and Weld, 1994] A. Barret, D. S. Weld, Partial-order planning:
Evaluating possible e�ciency gains, Artif. Intell. 67 (1994) 71{112.

[Blum and Furst, 1997] A. L. Blum, M. L. Furst, Fast planning through
planning graph analysis. Artif. Intell. 90(1{2) (1997) 281{300.

[Bylander, 1994] T. Bylander, The computational complexity of proposi-
tional STRIPS planning. Artif. Intell. 69 (1994) 165{204.

37

[Chapman, 1989] D. Chapman, Penguins can make cake, AI Mag. 10(4)
(1989) 45{50.

[Garey and Johnson, 1979] M. Garey and D. Johnson, Computers and In-
tractability: A Guide to the Theory of NP-Completeness, Freeman, New
York, 1979.

[Ginsberg, 1989a] M. L. Ginsberg, Ginsberg replies to Chapman and Schop-
pers, AI Mag. 10(4) (1989) 61{62.

[Ginsberg, 1989b] M. L. Ginsberg, Universal planning: An (almost) univer-
sally bad idea, AI Mag. 10(4) (1989) 40{44.

[Green, 1969] C. Green, Application of theorem proving to planning, in:
Proc. 1st Int'l Joint Conf. on Artif. Intell. (IJCAI-69), 1969 pp. 219{239.
Reprinted in Allen et al [1990], pp. 67{87.

[Johnson, 1990] D. S. Johnson, A catalog of complexity classes, in: Jan van
Leeuwen (Ed.), Handbook of Theoretical Computer Science: Algorithms
and Complexity, volume A, chapter 2, Elsevier, Amsterdam, 1990, pp.
67{161.

[Jonsson and B�ackstr�om, 1996] P. Jonsson, C. B�ackstr�om, On the size of
reactive plans, in: Proc. 13th (US) Nat'l Conf. on Artif. Intell. (AAAI-
96), 1996, pp. 1182{1187.

[Jonsson and B�ackstr�om, 1998] P. Jonsson, C. B�ackstr�om, Tractable plan
existence does not imply tractable plan generation, Ann. Math. Artif.
Intell., 22(3-4) (1998) 281{296.

[Karp and Lipton, 1982] R. M. Karp, R. Lipton, Turing machines that take
advice, Enseign. Math. 28 (1982) 191{209.

[K�obler and Watanabe, 1999] J. K�obler, O. Watanabe, New collapse con-
sequences of NP having small circuits, SIAM J. Comput. 28(1) (1999)
311{324.

[Korf, 1987] R. E. Korf, Planning as search: A quantitative approach, Artif.
Intell. 33 (1987) 65{88.

38

[Lewis and Papadimitriou, 1982] H. R. Lewis, C. H. Papadimitriou, Sym-
metric space-bounded computation, Theoret. Comput. Sci. 19 (1982) 161{
187.

[Motwani and Raghavan, 1995] R. Motwani, P. Raghavan, Randomized Al-
gorithms, Cambridge University Press, 1995.

[Papadimitriou, 1994] C. H. Papadimitriou. Computational Complexity, Ad-
dison Wesley, Reading, MA, 1994.

[Sacerdoti, 1975] E. D. Sacerdoti, The non-linear nature of plans, in: Proc.
4th Int'l Joint Conf. on Artif. Intell. (IJCAI-75), 1975, pp. 206{214.

[Savitch, 1970] W. J. Savitch, Relationships between nondeterministic and
deterministic tape complexities, J. Comp. System Sci. 4(2) (1970) 177{192.

[Schoppers, 1987] M. J. Schoppers, Universal plans for reactive robots in
unpredictable environments, in: Proc. 10th Int'l Joint Conf. on Artif.
Intell. (IJCAI-87), 1987, pp. 1039{1046.

[Schoppers, 1989] M. J. Schoppers, In defense of reaction plans as caches.
AI Mag. 10(4) (1989) 51{62.

[Schoppers, 1994] M. J. Schoppers, Estimating reaction plan size, in: Proc.
12th (US) Nat'l Conf. on Artif. Intell. (AAAI-94), 1994, pp. 1238{1244.

[Selman, 1994] B. Selman, Near-optimal plans, tractability, and reactivity,
in: Proc. 4th Int'l Conf. on Principles of Knowledge Repr. and Reasoning
(KR-94), 1994, pp. 521{529.

[Williams and Nayak, 1997] B. C. Williams, P. Pandurang Nayak, A reactive
planner for a model-based executive, in: Proc. 15th Int'l Joint Conf. on
Artif. Intell. (IJCAI-97), 1997, pp. 1178{1185.

39

