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Abstract

We present a new formalism, Horn Disjunctive Lin-
ear Relations (Horn DLRs), for reasoning about tem-
poral constraints. We prove that deciding satisfiabil-
ity of sets of Horn DLRs is polynomial by exhibiting
an algorithm based upon linear programming. Fur-
thermore, we prove that most other approaches to
tractable temporal constraint reasoning can be en-

coded as Horn DLRs, including the ORD-Horn algebra

and most methods for purely quantitative reasoning.

Introduction

Reasoning about temporal constraints is an impor-
tant task in many areas of Al and elsewehere, such
as planning, natural language processing, diagnosis,
time serialization in archeology efc. In most ap-
plications, knowledge of temporal constraints is ex-
pressed in terms of collections of relations between
time intervals or time points. Typical reasoning tasks
include determining the satisfiability of such collec-
tions and deducing new relations from those that are
known. The research has largely concentrated on
two kinds of formalisms; systems of inequalities on
time points (Dechter, Meiri, & Pearl 1991; Meiri 1991;
Koubarakis 1992) to encode quantitative information,
and systems of constraints in Allen’s algebra (Allen
1983) to encode qualitative relations between time
intervals. Some attempts have been made to inte-
grate quantitative and qualitative reasoning into uni-
fied frameworks (Kautz & Ladkin 1991; Meiri 1991).
Since the satisfiability problem is NP-complete for
Allen’s algebra the qualitative and unified approaches
have suffered from computational difficulties.

In response to the computational hardness of the
full Allen algebra, several polynomial subalgebras have
been proposed in the literature (van Beek & Cohen
1990; Golumbic & Shamir 1993; Nebel & Biurckert
1995). Some of these algebras have later been ex-
tended with mechanisms for handling quantitative in-
formation. For example the TIMEGRAPH II system
(Gerevini, Schubert, & Schaeffer 1993) extends the
pointisable algebra (van Beek & Cohen 1990) with a
limited type of quantitative information. Of special

interest is the ORD-Horn algebra (Nebel & Biirckert
1995) which, under certain conditions, is the wunique
maximal tractable subclass of Allen’s algebra. Hence,
it would be especially interesting to extend this algebra
with quantitative information since the maximality re-
sult would carry over to the new algebra, at least with
respect to its qualitative expressiveness. To our knowl-
edge, no such attempt have been made.

Now, to make the topic of reasoning about temporal
constraint more concrete, consider the following fic-
tious crime scenario. Professor Jones has been found
shot on the beach near her house. Rumours tell that
she was almost sure of having a proof that P£NP, but
had not yet shown it to any of her colleagues. The
graduate student Hill is soon to defend his thesis on his

newly invented complexity class, NRQPE(TS)’P, which
would unfortunately be of no value were it to be known
for certain that P£NP. Needless to say, Hill is thus one
of the prime suspects and inspector Smith is faced with
the following facts and observations:

e Professor Jones died between 6 pm and 11 pm, ac-
cording to the post-mortem.

e Mr Green, who lives close to the beach, is certain
that he heard a gunshot sometime in the evening,
but certainly after the TV news.

e The TV news is from 7.30 pm to 8.00 pm.

e A reliable neighbour of Hill claims Hill arrived at
home sometime between 9.15 pm and 9.30 pm.

e It takes between 10 and 20 mins. to walk or run
from the place of the crime to the closest parking
lot.

o [t takes between 45 and 60 mins. to drive from this
parking lot to Hill’s home.

The first thing to do 1s verifying that these facts and
observations are consistent, which is obviously the case
here. We can also draw some further conclusions, like
narrowing the time of death to the interval between
8.00 pm and 11 pm, assuming the gunshot heard by
mr Green actually was the killing shot.

Now, suppose inspector Smith adds the hypothesis
that Hill was at the place of the murder at the time of



the gunshot, which is only known to occur somewhere
in the interval from 8.00 pm to 11.00 pm. If the set
of facts and observations together with this hypothesis
becomes inconsistent, then inspector Smith can rule
out Hill as the murderer’.

This problem can easily be cast in terms of a
temporal-constraint-reasoning problem, involving both
quantitative and qualitative relations over time points,
intervals and durations. Unfortunately, it seems like
this simple example cannot be solved by any of the
computationally tractable methods reported in the lit-
erature. It can, however, be solved in polynomial time
by the method proposed in this paper.

We introduce Horn Disjunctive Linear Relations
(Horn DLRs for short) which is a temporal constraint
formalism that allows for polynomial-time satisfiabil-
ity checking. Horn DLRs subsumes the ORD-Horn
algebra and most of the formalisms for encoding quan-
titative information proposed in the literature. The
approach is rather different from the commonly used
constraint network or graph-theoretic approaches. We
base our method upon linear programming which
proves to be a convenient tool for managing tempo-
ral information. Since most of the low-level handling
of time points is thus abstracted away, the resulting
algorithm is surprisingly simple. We strongly believe
that Horn DLRs are useful in other areas of computer
science than temporal reasoning. For instance, the
proposal for constraint query languages in deductive
databases by Kanellakis et al. (1995) has some resem-
blance with Horn DLRs.

The paper is structured as follows. We begin by giv-
ing basic terminology and definitions used in the rest
of the paper together with a brief introduction to com-
plexity issues in linear programming. We continue by
presenting the polynomial-time algorithm for deciding
satisfiability of Horn DLRs. The paper concludes with
a short discussion of the results.

Disjunctive Linear Relations
We begin by defining different types of linear relations.

Definition 1 Let X = {zy,...,2,} be a set of real-
valued variables. Let «, 8 be linear polynomials (i.e.
polynomials of degree one) over X. A linear disequa-
tion over X is an expression of the form o # 3. A lin-
ear equality over X 1s an expression of the form o = 3.
A linear relation over X is an expression of the form
arf where r € {<, <, =,#,>,>}. A convez linear re-
lation over X is an expression of the form ar.5 where
r. € {<, <, =,>,>}. A disequational linear relation
over X is an expression of the form o # 3. A dis-
Junctive linear relation (DLR) is a disjunction of one
or more linear relations.

Example 2 A typical DLR over {zi,zs, 23} is

Unfortunately, it seems like Hill will be in need of ju-
ridicial assistance.

Throughout this paper, we assume all sets of DLRs to
be finite. The definition of satisfiability for DLRs is
straightforward.

Definition 3 Let X = {z1,...,2,} be a set of real-
valued variables and let R = {R;,..., R;} be a set
of DLRs over X. We say that R is satisfiable iff there
exists an assignment of real values to the variablesin X
that makes at least one member of each R;, 1 <1 <k,
true.

It is important to note that we only consider assign-
ments of real values, thus assuming that time is linear,
dense and unbounded. (We will see that it is sufficient
to consider assignments of rational values further on.)
We continue by classifying different types of DLRs.

Definition 4 Let v be a DLR. C(7) denotes the con-
vex relations in v and N'C(y) the disequational rela-
tions in y. We say that v is convez iff |N'C(y)| = 0 and
that v is disequational iff |C(y)| = 0. If v is convex or
disequational we say that v is homogenous and other-
wise heterogenous. Furthermore, if |C(7)| < 1 then v is
Horn. We extend these definitions to sets of relations
in the obvious way. For example, if I is a set of DLRs
and all ¥ € I' are Horn, then I' is Horn.

This classification provides the basis for the forthcom-
ing proofs. One detail to note is that if a Horn DLR is
convex then 1t is a unit clause, ¢.e. a disjunction with
only one member.

For Horn DLRs, we restrict ourselves only to use
< and # in the relations. This is no loss of gen-
erality since we can express all the other relations
in terms of these two. For example, a DLR of the
form # < yV D can be replaced by the disjunctions
{e <yV Dz # yV D}. Observe that the resulting
set of digjunctions can contain at most twice as many
disjunctions as the original one. Hence, this is a poly-
nomial time transformation. (Note, however, that this
does not hold for general DLRs.)

Definition 5 Let A be a satisfiable set of DLRs and
let v be a DLR. We say that v blocks A iff for every
d € NC(v), AU{d} is not satisfiable.

Observe that if AU {y} is satisfiable and v blocks A
then there must exist a relation & € C(y) such that
AU{é} is satisfiable. This observation will be of great
importance in forthcoming sections.

Linear Programming

Our method for deciding satisfiability of Horn DLRs
will be based on linear programming techniques and
we will provide the basic facts needed in this section.
The linear programming problem is defined as follows.

Definition 6 Let A be an arbitrary m x n matrix of
rationals in finite precision and let # = (#1,...,2,) be
an n-vector of variables over the real numbers. Then
an instance of the linear programming (LP) problem is
defined by: {min ¢z subject to Az < b} where b is



an m-vector of rationals and ¢ an n-vector of rationals.
The computational problem is as follows:

1. Find an assignment to the variables 1, ..., &, such
that the condition Az < b holds and ¢T« is minimial
subject to these conditions, or

2. Report that there is no such assignment, or

3. Report that there is no lower bound for ¢Ta under
the conditions.

Analogously, we can define an LP problem where the
objective is to maximize ¢z under the condition Az <
b. We have the following important theorem.

Theorem 7 The linear programming problem is solv-
able in polynomial time.

Observe that the restriction to finite precision is not
a restriction in practice since computers are (almost
without exception) using finite precision arithmetics.
Several polynomial algorithms have been developed for
solving LPs. Well-known examples are the algorithms
by Khachiyan (1979) and Karmarkar (1984). Despite
their theoretical value, it is not at all clear that they
out-perform the simplex algorithm which 1s exponen-
tial in the worst case (Klee & Minty 1972). In fact, re-
cent theoretical analyses lend support to 1ts favourable
average-case performance. (See for example (Smale
1983).) In the following, we assume all coeffecients
to be rationals represented in finite precision.

Satisfiability of Horn DLRs

In this section we present a polynomial algorithm for
deciding satisfiability of Horn DLRs. The algorithm
can be found in Figure 1. The problem of decid-
ing satisfiability for a set of Horn DLRs is denoted
HorRNDLRSAT. We begin by exhibiting a simple
method for deciding whether a set of convex linear re-
lations augmented with one disequation is satisfiable or
not. There may be more efficient methods for checking
this than the one we propose. However, throughout
this paper we will stress simplicity instead of tuning
efficiency.

Lemma 8 Let A be an arbitrary m xn matrix, b be an
m-vector and # = (z1,...,2,) be an n-vector of vari-
ables over the real numbers. Let «, 3 be linear poly-
nomial over z1,...,z,. Deciding whether the system
S = {Az < b,a # [} is satisfiable or not is polynomial.

Proof: Let o/ = a —c and 3 = B — d where ¢
and d are the constant terms in « and [, respectively.
Consider the following instances of LP:

LP1= {min o' — 3 subject to Az < b}

LP2= {max o' — 3 subject to Az < b}
If LP1 and LP2 have no solutions then S is not sat-
isfiable. If both LP1 and LP2 yield the same optimal
value d — ¢ then S is not satisfiable since every solu-

tion to LP1 and LP2 forces « to equal 3. Otherwise
S is obviously satisfiable. Since we can solve the LP

problem in polynomial time by Theorem 7, the lemma
follows. ad

Before proceeding, we recapitulate some standard
mathematical concepts.

Definition 9 Given two points z,y € R", a convex
combination of them is any point of the form z = Az +
(1 =Xy where 0 < XA < 1. Aset S C R"is conver iff it
contains all convex combinations of all pairs of points
r,y€S.

Definition 10 A hyperplane H in R"™ is a non-empty
set defined as {o € R"|a1z1+...+ a2, = b} for some
ay,...,a,,0 € R.

Definition 11 Let A be an arbitrary m x n matrix
and b be an m-vector. The polyhedron defined by A
and b is the set {# € R"|Az < b}.

The connection between polyhedrons and convex sets
is expressed in the following well-known fact.

Fact 12 Every non-empty polyhedron is convex.

Consequently, the convex relations in a set of Horn
DLRs defines a convex set in R". Furthermore, we
can identify the disequations with hyperplanes in R”.
These observations motivate the next lemma.

Lemma 13 Let S C R" be a convex set and let
Hy,...,Hy C R» be distinct hyperplanes. If § C
Ule H; then there exists a j, 1 < 5 < k such that
S CH;j.

Proof: If it is possible to drop one or more hyper-
planes from H and still have a union containing S then
doso. Let H' = {H},..., H,}, m <k, be the resulting
minimal set of hyperplanes. Every H! € H' contains
some point x; of S not in any other /] € H'. We want
to prove that there is only one hyperplane in H’.

If this is not the case, consider the line segment L
adjoining #, and 5. (The choice of #; and x5 is not
important. Every choice of z; and z;,1 <+¢,j5 < m and
i # j, would do equally well.) By convexity, L C S.
Fach H! € H' either contains L or meets it in at most
one point. But no H! € H' can contain L, since then
it would contain both #; and zs. Thus each H/ has
at most one point in common with L, and the rest of
L would not be a subset of | Ji~, H/ which contradicts
that L C S C U2, H!. O

We can now tie together the results and end up with
a sufficient condition for satisfiability of Horn DLRs.

Lemma 14 Let T’ be a set of arbitrary Horn DLRs.
Let ¢' C T be the set of convex DLRs in ' and let
D = {Di,...,Dr} C T be the set of DLRs that are
not convex. Under the condition that C' is satisfiable,
I is satisfiable if D; does not block C' for any 1 < < k.

Proof: Pick one disequation d; out of every D; such
that {C,d;} is satisfiable. This is possible since no
D; blocks €. We show that TV = {C,dy,...,dg} is



algorithm SAT(T)

A —HC(y)|y €T is convex}

if A not satisfiable then reject

if 3y € I that blocks A and is disequational then
reject

5 if 3y € I' that blocks A and is heterogenous then

SAT((I' = {v}) UC(7))
6 accept

s Qb —

Figure 1: Algorithm for deciding satisfiability of Horn
DLRs.

satisfiable and, hence, I' is satisfiable. Assume that
di = (a; # ;). Define the hyperplanes Hy, ..., Hy
such that H; = {& € R" | a;(x) = F;(x)}. Since ev-
ery {C,d;} is satisfiable; the polyhedron P defined by
C' (which is non-empty and hence convex by Fact 12)
is not a subset of any H;. Suppose I' is not satis-

fiable. Then P — Ule H; = & which is equivalent

with P C Ule H;. By Lemma 13, there exists a H;,
1 < j <k such that S C H;. Clearly, this contradicts
our initial assumptions. a

It 1s important to note that the previous lemma does
not give a necessary condition for satisfiability of Horn
DLRs. We claim that the algorithm in Figure 1 cor-
rectly solves HORNDLRSAT in polynomial time. To
show this, we need an auxiliary lemma which is a for-
mal version of an observation made in the second sec-
tion of this paper.

Lemma 15 Let I' be a set of Horn DLRs and let C' C
I’ be the set of convex DLRs in I'. If there exists a
heterogenous DLR v € T" such that v blocks C'| then T’
is satisfiable iff (T' — {v}) U C(7) is satisfiable.

Proof: if: Trivial.

only-if: If T is satisfiable, then v has to be satisfiable.
Since ¥ blocks C', C(y) must be satisfied in any solution
of I'. ad

We can now prove the soundness and completeness of

SAT.

Lemma 16 Let T' be a set of Horn DLRs. If SAT(T)
accepts then I' is satisfiable.

Proof: Induction over n, the number of heterogenous
DLRsin T.

Basis step: If n = 0 and SAT(T') accepts then the
formulae in A are satisfiable and there does not exist
any v € I' that blocks A. Consequently, I is satisfiable
by Lemma 14.

Induction hypothesis: Assume the claim holds for n =
k, k>0.

Induction step: T contains k + 1 heterogenous DLRs.
If SAT accepts in line 5 then (I' = {7}) U C(y), which
contains k heterogenous DLRs, is satisfiable by the in-
duction hypothesis. By Lemma 15, this is equivalent
with ' being satisfiable. If SAT accepts in line 6 then

there does not exist any disequational or heterogenous
v € I which blocks A. By Lemma 14, this means that
I is satisfiable. ad

Before proving the completeness of SAT we need the
following lemma.

Lemma 17 Let T’ be a set of Horn DLRs. Let ' C
I’ be the set of convex DLRs in I'. If there exists a
disequational DLR v € T' that blocks C' then T' is not
satisfiable.

Proof: In any solution to I', the relations in C'U{v}
must be satisfied. Since v is disequational and blocks
C this is not possible and the lemma follows. a

Lemma 18 Let T be a set of Horn DLRs. If SAT(T)
rejects then I' 1s not satisfiable.

Proof: Induction over n, the number of heterogenous
DLRsin T.

Basis step: If n = 0 then SAT can reject in lines 3
and 4. If SAT rejects in line 3 then, trivially, I' is not
satisfiable. If SAT rejects in line 4 then there exists
a disequational ¥ € ' that blocks A. Hence, T is not
satisfiable by Lemma 17.

Induction hypothesis: Assume the claim holds for n =
k, k>0.

Induction step: T contains k + 1 heterogenous DLRs.
If SAT rejects in line 3 then I is not satisfiable. If SAT
rejects in line 4 then T is not satisfiable by Lemma 17.
If SAT rejects in line 5 then (I' — {7}) U C(7), which
contains k heterogenous DLRs, is not satisfiable by the
induction hypothesis. By Lemma 15, this is equivalent
with I' not being satisfiable. ad

Finally, we can show that SAT is a polynomial-time al-
gorithm and, thus; show that HORNDLRSAT is poly-
nomial.

Theorem 19 HORNDLRSAT is polynomial.

Proof: By Lemmata 16 and 18, it is sufficient to
show that SAT is polynomial. The number of recur-
sive calls is bounded by the number of heterogenous
DLRs in the given input. By Lemma 8, we can in poly-
nomial time decide whether a linear inequality system
with one disequation is satisfiable. Since we need only
check a polynomial number of such systems in each re-
cursion, the theorem follows. a

We conclude this section with a discussion about
whether HORNDLRSAT can be effeciently solved on
parallel computers. The complexity class NC consists
of the problems that can be solved with a polynomial
number of processors in polylogarithmic time and it
is often argued that NC captures our intuitive notion
of problems satisfactorily solved by parallel computers.
Recall that the satisfiability problem for propositional
Horn clauses (HORNSAT) is P-complete under log-
space reductions (Greenlaw, Hoover, & Russo 1993).



Clearly, it 1s trivial to reduce HORNSAT to HORNDLR-
SAT in log-space. Since HORNDLRSAT is polynomial,
it follows that it is P-complete as well. This implies
that HORNDLRSAT is not in NC and, hence, there
does not exist parallel algorithms for HORNDLRSAT
that is substantially faster than ordinary sequential al-
gorithms. (Unless NC=P which is considered very un-

likely.)

Comparison

In this section, we show that Horn DLRs subsumes sev-
eral other methods for temporal constraint reasoning.
Let x,y be real-valued variables, ¢, d constants and .4

Allen’s algebra (Allen 1983) in the definitions below.
Definition 20 (Nebel & Biirckert 1995) An ORD

clause 1s a digjunction of relations of the form zry
where r € {<,=,#}. The ORD-Horn subclass H is
the relations in 4 that can be written as ORD clauses
containing only disjunctions with at most one relation
of the form # = y or # < y and an arbitrary number
of relations of the form = # y.

Note that the ORD-Horn class subsumes both the con-
tinuous endpoint algebra (Vilain, Kautz, & van Beek
1989) and the pointisable endpoint algebra (van Beek
& Cohen 1990).

Definition 21 (Koubarakis 1992) Let r € {<, >, #}.
A Koubarakis formula is a formula on one of the fol-
lowing forms (1) (z — y)re, (2) xre or (3) a disjunction
of formulae of the form (¢ —y) # c or « # c.

Definition 22 (Dechter, Meiri, & Pearl 1991) A sim-
ple temporal constraint is a formula on the form ¢ <
(x —y) <d.

Simple temporal constraints are equivalent with the
simple metric constraints (Kautz & Ladkin 1991).

Definition 23 (Meiri 1991) A CPA/single interval
formula is a formula on one of the following forms:
() eri(x—y)rad; or (2) xry where r € {<, <, =,#
,>,>}and r,m € {<, <}

Definition 24 (Gerevini, Schubert, & Schaeffer 1993)
A TG-IT formula is a formula on one of the following
forms: () e<ae<d, (2)e<z—y<dor(3)zry
where r € {<, <, =,#,>,>}.

We can now state the main theorem of this section.

Theorem 25 The formalisms defined in Definitions
20 to 24 can trivially be expressed as Horn DLRs.

Note that Meiri (1991) considers two further tractable
classes that cannot (in any obvious way) be trans-
formed into Horn DLRs. The finding that the ORD-
Horn algebra can be expressed as Horn DLRs is espe-
cially important in the light of the following theorem.

Theorem 26 (Nebel & Biirckert 1995) Let S be any
subclass of A that contains all basic relations. Then
either

1. § C 'H and the satisfiability problem for § is poly-
nomial, or

2. Satisfiability for & is NP-complete.

By the previous theorem, we cannot expect to find
tractable classes that are able to handle all basic re-
lations in 4 and, at the same time, are able to han-
dle any single relation that cannot be expressed as a
Horn DLR. In other words, the qualitative fragment of
HoRNDLRSAT inherits the maximality of the ORD-
Horn algebra.

Discussion

Several researchers in the field of temporal constraint
reasoning have expressed a feeling that their proposed
methods should be extended so they can express rela-
tions between more than two time points. As a first
example, in (Dechter, Meiri, & Pearl 1991) one can
read “The natural extension of this work is to ex-
plore TCSPs with higher-order expressions (e.g. “John
drives to work at least 30 minutes more than Fred
does”; X3 — X7 +30 < X4 — X3)..” Even though
they do not define the exact meaning of “higher-order
expressions” we can notice that their example is a sim-
ple Horn DLR. Something similar can be found in
(Koubarakis 1992) who wants to express “the dura-
tion of interval I exceeds the duration of interval J”.
Once again, this can easily be expressed as a Horn
DLR. These claims seem to indicate that the use of
Horn DLRs is a significant contribution to temporal
reasoning.

We have shown that the satisfiability problem for
Horn DLRs can be carried out in polynomial time.
However, the method builds on solving linear programs
and it is well-known that such calculations can be com-
putationally heavy. It is important to remember the
reasons for introducing Horn DLRs. The main reason
was not to provide an extremely efficient method, but
to find a method unifying most of the other tractable
classes reported. It is fairly obvious that the pro-
posed method cannot outperform highly specialized al-
gorithms for severely restricted classes. It should be
likewise obvious that the specialized methods cannot
compete with Horn DLRs in terms of expressivity. We
are, as always in tractable reasoning, facing the trade-
off between expressivity and computational complex-
ity. We believe, though, that the complexity of decid-
ing satisfiability can be drastically improved by devis-
ing better algorithms than SAT. The algorithm SAT
1s constructed in a way that facilitates its correctness
proofs and it is not optimized with respect to execu-
tion time in any way. The question whether improved
versions can compete with algorithms such as TIME-
GRAPH II or not remains open.

Throughout this paper we have assumed that time
is linear, dense and unbounded but this may not be
the case in real applications. For example, in a sam-
pled system we cannot assume time to be dense. One



question to answer in the future is what the effects of
changing the assumptions of time are. Switching to
discrete time will probably make reasoning computa-
tionally harder. There are some positive results con-
cerning discrete time, however. Meiri (1991) presents a
class of temporal constraint reasoning problems where
integer time satisfiability is polynomial.

Conclusion

We have introduced the Horn DLR as a means for tem-
poral constraint reasoning. We have proven that de-
ciding satisfiability of sets of Horn DLRs is polynomial
by exhibiting an algorithm based upon linear program-
ming. Furthermore, we have shown that several other
approaches to tractable temporal constraint reasoning
can be encoded as Horn DLRs, including the ORD-
Horn algebra and most methods for purely quantita-
tive reasoning.

Acknowledgements

We would like to thank Marcus Bjareland and Thomas
Drakengren for discussions and comments. We are also
indebted to William C. Waterhouse who improved our
original proof of Lemma 13.

References

American Association for Artificial Intelligence. 1991.
Proceedings of the 9th (US) National Conference
on Artificial Intelligence (AAAI-91), Anaheim, CA,
USA: AAAT Press/MIT Press.

Allen, J. F. 1983. Maintaining knowledge about
temporal intervals. Communications of the ACM
26(11):832-843.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal
constraint networks. Artificial Intelligence 49:61-95.

Gerevini, A.; Schubert, L.; and Schaeffer, S. 1993.
Temporal reasoning in Timegraph I-11. SIGART Bul-
letin 4(3):21-25.

Golumbic, M. C., and Shamir, R. 1993. Complexity
and algorithms for reasoning about time: A graph-
theoretic approach. Journal of the ACM 40(5):1108-
1133.

Greenlaw, R.; Hoover, H. J.; and Russo, W. L. 1993.
A Compendium of Problems Complete for P. Oxford:
Oxford University Press.

Kanellakis, P. C.; Kuper, G. M.; and Revesz, P. Z.
1995. Constraint query languages. Journal of Com-
puter and System Sciences 51(1):26-52.

Karmarkar, N. 1984. A new polynomial time algo-
rithm for linear programming. Combinatorica 4:373—
395.

Kautz, H., and Ladkin, P. 1991. Integrating met-
ric and temporal qualitatvie temporal reasoning. In

AAAT-91 (1991), 241-246.

Khachiyan, L. G. 1979. A polynomial algorithm
in linear programming. Soviel Mathematics Doklady

20:191-194.

Klee, V., and Minty, G. J. 1972. How good is the
simplex algorithm? In Shisha, O.; ed., Inequalities
I, 159-175.

Koubarakis, M. 1992. Dense time and temporal con-
straints with #. In Swartout, B., and Nebel, B., eds.,
Proceedings of the 3rd International Conference on
Principles on Knowledge Representation and Reason-
ing (KR-92), 24-35. Cambridge, MA, USA: Morgan
Kaufmann.

Meiri, I. 1991. Combining qualitative and quantita-
tive constraints in temporal reasoning. In AAAI-91

(1991), 260-267.

Nebel, B., and Biurckert, H.-J. 1995. Reasoning
about temporal relations: A maximal tractable sub-
class of Allen’s interval algebra. Journal of the ACM
42(1):43-66.

Smale, S. 1983. On the average speed of the sim-

plex method of linear programming. Mathematical
Programming 27:241-262.

van Beek, P., and Cohen, R. 1990. Exact and ap-
proximate reasoning about temporal relations. Com-
putational Intelligence 6(3):132-144.

Vilain, M. B.; Kautz, H. A.; and van Beek, P. G.
1989. Constraint propagation algorithms for tempo-
ral reasoning: A revised report. In Weld, D. S., and
de Kleer, J., eds., Readings in Qualitative Reason-
wng about Physical Systems. San Mateo, Ca: Morgan
Kaufmann. 373-381.



