
A Linear-Programming Approach to Temporal ReasoningPeter Jonsson and Christer B�ackstr�omDepartment of Computer and Information ScienceLink�oping University, S-581 83 Link�oping, Swedenfpetej,cbag@ida.liu.seAbstractWe present a new formalism, Horn Disjunctive Lin-ear Relations (Horn DLRs), for reasoning about tem-poral constraints. We prove that deciding satis�abil-ity of sets of Horn DLRs is polynomial by exhibitingan algorithm based upon linear programming. Fur-thermore, we prove that most other approaches totractable temporal constraint reasoning can be en-coded as Horn DLRs, including the ORD-Horn algebraand most methods for purely quantitative reasoning.IntroductionReasoning about temporal constraints is an impor-tant task in many areas of AI and elsewehere, suchas planning, natural language processing, diagnosis,time serialization in archeology etc. In most ap-plications, knowledge of temporal constraints is ex-pressed in terms of collections of relations betweentime intervals or time points. Typical reasoning tasksinclude determining the satis�ability of such collec-tions and deducing new relations from those that areknown. The research has largely concentrated ontwo kinds of formalisms; systems of inequalities ontime points (Dechter, Meiri, & Pearl 1991; Meiri 1991;Koubarakis 1992) to encode quantitative information,and systems of constraints in Allen's algebra (Allen1983) to encode qualitative relations between timeintervals. Some attempts have been made to inte-grate quantitative and qualitative reasoning into uni-�ed frameworks (Kautz & Ladkin 1991; Meiri 1991).Since the satis�ability problem is NP-complete forAllen's algebra the qualitative and uni�ed approacheshave su�ered from computational di�culties.In response to the computational hardness of thefull Allen algebra, several polynomial subalgebras havebeen proposed in the literature (van Beek & Cohen1990; Golumbic & Shamir 1993; Nebel & B�urckert1995). Some of these algebras have later been ex-tended with mechanisms for handling quantitative in-formation. For example the TimeGraph II system(Gerevini, Schubert, & Schae�er 1993) extends thepointisable algebra (van Beek & Cohen 1990) with alimited type of quantitative information. Of special

interest is the ORD-Horn algebra (Nebel & B�urckert1995) which, under certain conditions, is the uniquemaximal tractable subclass of Allen's algebra. Hence,it would be especially interesting to extend this algebrawith quantitative information since the maximality re-sult would carry over to the new algebra, at least withrespect to its qualitative expressiveness. To our knowl-edge, no such attempt have been made.Now, to make the topic of reasoning about temporalconstraint more concrete, consider the following �c-tious crime scenario. Professor Jones has been foundshot on the beach near her house. Rumours tell thatshe was almost sure of having a proof that P 6=NP, buthad not yet shown it to any of her colleagues. Thegraduate student Hill is soon to defend his thesis on hisnewly invented complexity class, NRQP�(g)z, whichwould unfortunately be of no value were it to be knownfor certain that P6=NP. Needless to say, Hill is thus oneof the prime suspects and inspector Smith is faced withthe following facts and observations:� Professor Jones died between 6 pm and 11 pm, ac-cording to the post-mortem.� Mr Green, who lives close to the beach, is certainthat he heard a gunshot sometime in the evening,but certainly after the TV news.� The TV news is from 7.30 pm to 8.00 pm.� A reliable neighbour of Hill claims Hill arrived athome sometime between 9.15 pm and 9.30 pm.� It takes between 10 and 20 mins. to walk or runfrom the place of the crime to the closest parkinglot.� It takes between 45 and 60 mins. to drive from thisparking lot to Hill's home.The �rst thing to do is verifying that these facts andobservations are consistent, which is obviously the casehere. We can also draw some further conclusions, likenarrowing the time of death to the interval between8.00 pm and 11 pm, assuming the gunshot heard bymr Green actually was the killing shot.Now, suppose inspector Smith adds the hypothesisthat Hill was at the place of the murder at the time of



the gunshot, which is only known to occur somewherein the interval from 8.00 pm to 11.00 pm. If the setof facts and observations together with this hypothesisbecomes inconsistent, then inspector Smith can ruleout Hill as the murderer1.This problem can easily be cast in terms of atemporal-constraint-reasoning problem, involving bothquantitative and qualitative relations over time points,intervals and durations. Unfortunately, it seems likethis simple example cannot be solved by any of thecomputationally tractable methods reported in the lit-erature. It can, however, be solved in polynomial timeby the method proposed in this paper.We introduce Horn Disjunctive Linear Relations(Horn DLRs for short) which is a temporal constraintformalism that allows for polynomial-time satis�abil-ity checking. Horn DLRs subsumes the ORD-Hornalgebra and most of the formalisms for encoding quan-titative information proposed in the literature. Theapproach is rather di�erent from the commonly usedconstraint network or graph-theoretic approaches. Webase our method upon linear programming whichproves to be a convenient tool for managing tempo-ral information. Since most of the low-level handlingof time points is thus abstracted away, the resultingalgorithm is surprisingly simple. We strongly believethat Horn DLRs are useful in other areas of computerscience than temporal reasoning. For instance, theproposal for constraint query languages in deductivedatabases by Kanellakis et al. (1995) has some resem-blance with Horn DLRs.The paper is structured as follows. We begin by giv-ing basic terminology and de�nitions used in the restof the paper together with a brief introduction to com-plexity issues in linear programming. We continue bypresenting the polynomial-time algorithm for decidingsatis�ability of Horn DLRs. The paper concludes witha short discussion of the results.Disjunctive Linear RelationsWe begin by de�ning di�erent types of linear relations.De�nition 1 Let X = fx1; : : : ; xng be a set of real-valued variables. Let �; � be linear polynomials (i.e.polynomials of degree one) over X. A linear disequa-tion over X is an expression of the form � 6= �. A lin-ear equality over X is an expression of the form � = �.A linear relation over X is an expression of the form�r� where r 2 f<;�;=; 6=;�; >g. A convex linear re-lation over X is an expression of the form �rc� whererc 2 f<;�;=;�; >g. A disequational linear relationover X is an expression of the form � 6= �. A dis-junctive linear relation (DLR) is a disjunction of oneor more linear relations.Example 2 A typical DLR over fx1; x2; x3g is(1:2x1 + x2 � x3 + 5) _ (12x3 6= 7:5x2) _ (x2 = 5).1Unfortunately, it seems like Hill will be in need of ju-ridicial assistance.

Throughout this paper, we assume all sets of DLRs tobe �nite. The de�nition of satis�ability for DLRs isstraightforward.De�nition 3 Let X = fx1; : : : ; xng be a set of real-valued variables and let R = fR1; : : : ; Rkg be a setof DLRs over X. We say that R is satis�able i� thereexists an assignment of real values to the variables inXthat makes at least one member of each Ri, 1 � i � k,true.It is important to note that we only consider assign-ments of real values, thus assuming that time is linear,dense and unbounded. (We will see that it is su�cientto consider assignments of rational values further on.)We continue by classifying di�erent types of DLRs.De�nition 4 Let  be a DLR. C() denotes the con-vex relations in  and NC() the disequational rela-tions in . We say that  is convex i� jNC()j = 0 andthat  is disequational i� jC()j = 0. If  is convex ordisequational we say that  is homogenous and other-wise heterogenous. Furthermore, if jC()j � 1 then  isHorn. We extend these de�nitions to sets of relationsin the obvious way. For example, if � is a set of DLRsand all  2 � are Horn, then � is Horn.This classi�cation provides the basis for the forthcom-ing proofs. One detail to note is that if a Horn DLR isconvex then it is a unit clause, i.e. a disjunction withonly one member.For Horn DLRs, we restrict ourselves only to use� and 6= in the relations. This is no loss of gen-erality since we can express all the other relationsin terms of these two. For example, a DLR of theform x < y _ D can be replaced by the disjunctionsfx � y _ D;x 6= y _ Dg. Observe that the resultingset of disjunctions can contain at most twice as manydisjunctions as the original one. Hence, this is a poly-nomial time transformation. (Note, however, that thisdoes not hold for general DLRs.)De�nition 5 Let A be a satis�able set of DLRs andlet  be a DLR. We say that  blocks A i� for everyd 2 NC(), A [ fdg is not satis�able.Observe that if A [ fg is satis�able and  blocks Athen there must exist a relation � 2 C() such thatA[f�g is satis�able. This observation will be of greatimportance in forthcoming sections.Linear ProgrammingOur method for deciding satis�ability of Horn DLRswill be based on linear programming techniques andwe will provide the basic facts needed in this section.The linear programming problem is de�ned as follows.De�nition 6 Let A be an arbitrary m � n matrix ofrationals in �nite precision and let x = (x1; : : : ; xn) bean n-vector of variables over the real numbers. Thenan instance of the linear programming (LP) problem isde�ned by: fmin cTx subject to Ax � bg where b is



an m-vector of rationals and c an n-vector of rationals.The computational problem is as follows:1. Find an assignment to the variables x1; : : : ; xn suchthat the condition Ax � b holds and cTx is minimialsubject to these conditions, or2. Report that there is no such assignment, or3. Report that there is no lower bound for cTx underthe conditions.Analogously, we can de�ne an LP problem where theobjective is to maximize cTx under the condition Ax �b. We have the following important theorem.Theorem 7 The linear programming problem is solv-able in polynomial time.Observe that the restriction to �nite precision is nota restriction in practice since computers are (almostwithout exception) using �nite precision arithmetics.Several polynomial algorithms have been developed forsolving LPs. Well-known examples are the algorithmsby Khachiyan (1979) and Karmarkar (1984). Despitetheir theoretical value, it is not at all clear that theyout-perform the simplex algorithm which is exponen-tial in the worst case (Klee & Minty 1972). In fact, re-cent theoretical analyses lend support to its favourableaverage-case performance. (See for example (Smale1983).) In the following, we assume all coe�ecientsto be rationals represented in �nite precision.Satis�ability of Horn DLRsIn this section we present a polynomial algorithm fordeciding satis�ability of Horn DLRs. The algorithmcan be found in Figure 1. The problem of decid-ing satis�ability for a set of Horn DLRs is denotedHornDLRSat. We begin by exhibiting a simplemethod for deciding whether a set of convex linear re-lations augmented with one disequation is satis�able ornot. There may be more e�cient methods for checkingthis than the one we propose. However, throughoutthis paper we will stress simplicity instead of tuninge�ciency.Lemma 8 Let A be an arbitrarym�nmatrix, b be anm-vector and x = (x1; : : : ; xn) be an n-vector of vari-ables over the real numbers. Let �; � be linear poly-nomial over x1; : : : ; xn. Deciding whether the systemS = fAx � b; � 6= �g is satis�able or not is polynomial.Proof: Let �0 = � � c and �0 = � � d where cand d are the constant terms in � and �, respectively.Consider the following instances of LP:LP1= fmin �0 � �0 subject to Ax � bgLP2= fmax �0 � �0 subject to Ax � bgIf LP1 and LP2 have no solutions then S is not sat-is�able. If both LP1 and LP2 yield the same optimalvalue d � c then S is not satis�able since every solu-tion to LP1 and LP2 forces � to equal �. OtherwiseS is obviously satis�able. Since we can solve the LP

problem in polynomial time by Theorem 7, the lemmafollows. 2Before proceeding, we recapitulate some standardmathematical concepts.De�nition 9 Given two points x; y 2 Rn, a convexcombination of them is any point of the form z = �x+(1��)y where 0 � � � 1. A set S � Rn is convex i� itcontains all convex combinations of all pairs of pointsx; y 2 S.De�nition 10 A hyperplane H in Rn is a non-emptyset de�ned as fx 2 Rn ja1x1+ : : :+anxn = bg for somea1; : : : ; an; b 2 R.De�nition 11 Let A be an arbitrary m � n matrixand b be an m-vector. The polyhedron de�ned by Aand b is the set fx 2 RnjAx � bg.The connection between polyhedrons and convex setsis expressed in the following well-known fact.Fact 12 Every non-empty polyhedron is convex.Consequently, the convex relations in a set of HornDLRs de�nes a convex set in Rn. Furthermore, wecan identify the disequations with hyperplanes in Rn.These observations motivate the next lemma.Lemma 13 Let S � Rn be a convex set and letH1; : : : ;Hk � Rn be distinct hyperplanes. If S �Ski=1Hi then there exists a j, 1 � j � k such thatS � Hj.Proof: If it is possible to drop one or more hyper-planes fromH and still have a union containing S thendo so. LetH 0 = fH 01; : : : ;H0mg,m � k, be the resultingminimal set of hyperplanes. Every H0i 2 H0 containssome point xi of S not in any other H 0j 2 H0. We wantto prove that there is only one hyperplane in H 0.If this is not the case, consider the line segment Ladjoining x1 and x2. (The choice of x1 and x2 is notimportant. Every choice of xi and xj, 1 � i; j � m andi 6= j, would do equally well.) By convexity, L � S.Each H 0i 2 H0 either contains L or meets it in at mostone point. But no H0i 2 H0 can contain L, since thenit would contain both x1 and x2. Thus each H 0i hasat most one point in common with L, and the rest ofL would not be a subset of Smi=1H0i which contradictsthat L � S � Smi=1H0i. 2We can now tie together the results and end up witha su�cient condition for satis�ability of Horn DLRs.Lemma 14 Let � be a set of arbitrary Horn DLRs.Let C � � be the set of convex DLRs in � and letD = fD1; : : : ; Dkg � � be the set of DLRs that arenot convex. Under the condition that C is satis�able,� is satis�able ifDi does not block C for any 1 � i � k.Proof: Pick one disequation di out of every Di suchthat fC; dig is satis�able. This is possible since noDi blocks C. We show that �0 = fC; d1; : : : ; dkg is



1 algorithm SAT(�)2 A SfC()j 2 � is convexg3 if A not satis�able then reject4 if 9 2 � that blocks A and is disequational thenreject5 if 9 2 � that blocks A and is heterogenous thenSAT((�� fg) [ C())6 acceptFigure 1: Algorithm for deciding satis�ability of HornDLRs.satis�able and, hence, � is satis�able. Assume thatdi = (�i 6= �i). De�ne the hyperplanes H1; : : : ;Hksuch that Hi = fx 2 Rn j �i(x) = �i(x)g. Since ev-ery fC; dig is satis�able, the polyhedron P de�ned byC (which is non-empty and hence convex by Fact 12)is not a subset of any Hi. Suppose �0 is not satis-�able. Then P � Ski=1Hi = ? which is equivalentwith P � Ski=1Hi. By Lemma 13, there exists a Hj,1 � j � k such that S � Hj. Clearly, this contradictsour initial assumptions. 2It is important to note that the previous lemma doesnot give a necessary condition for satis�ability of HornDLRs. We claim that the algorithm in Figure 1 cor-rectly solves HornDLRSat in polynomial time. Toshow this, we need an auxiliary lemma which is a for-mal version of an observation made in the second sec-tion of this paper.Lemma 15 Let � be a set of Horn DLRs and let C �� be the set of convex DLRs in �. If there exists aheterogenous DLR  2 � such that  blocks C, then �is satis�able i� (�� fg) [ C() is satis�able.Proof: if: Trivial.only-if: If � is satis�able, then  has to be satis�able.Since  blocks C, C() must be satis�ed in any solutionof �. 2We can now prove the soundness and completeness ofSAT.Lemma 16 Let � be a set of Horn DLRs. If SAT(�)accepts then � is satis�able.Proof: Induction over n, the number of heterogenousDLRs in �.Basis step: If n = 0 and SAT(�) accepts then theformulae in A are satis�able and there does not existany  2 � that blocks A. Consequently, � is satis�ableby Lemma 14.Induction hypothesis: Assume the claim holds for n =k, k � 0.Induction step: � contains k + 1 heterogenous DLRs.If SAT accepts in line 5 then (� � fg) [ C(), whichcontains k heterogenous DLRs, is satis�able by the in-duction hypothesis. By Lemma 15, this is equivalentwith � being satis�able. If SAT accepts in line 6 then

there does not exist any disequational or heterogenous 2 � which blocks A. By Lemma 14, this means that� is satis�able. 2Before proving the completeness of SAT we need thefollowing lemma.Lemma 17 Let � be a set of Horn DLRs. Let C �� be the set of convex DLRs in �. If there exists adisequational DLR  2 � that blocks C then � is notsatis�able.Proof: In any solution to �, the relations in C [fgmust be satis�ed. Since  is disequational and blocksC this is not possible and the lemma follows. 2Lemma 18 Let � be a set of Horn DLRs. If SAT(�)rejects then � is not satis�able.Proof: Induction over n, the number of heterogenousDLRs in �.Basis step: If n = 0 then SAT can reject in lines 3and 4. If SAT rejects in line 3 then, trivially, � is notsatis�able. If SAT rejects in line 4 then there existsa disequational  2 � that blocks A. Hence, � is notsatis�able by Lemma 17.Induction hypothesis: Assume the claim holds for n =k, k � 0.Induction step: � contains k + 1 heterogenous DLRs.If SAT rejects in line 3 then � is not satis�able. If SATrejects in line 4 then � is not satis�able by Lemma 17.If SAT rejects in line 5 then (� � fg) [ C(), whichcontains k heterogenous DLRs, is not satis�able by theinduction hypothesis. By Lemma 15, this is equivalentwith � not being satis�able. 2Finally, we can show that SAT is a polynomial-time al-gorithm and, thus, show that HornDLRSat is poly-nomial.Theorem 19 HornDLRSat is polynomial.Proof: By Lemmata 16 and 18, it is su�cient toshow that SAT is polynomial. The number of recur-sive calls is bounded by the number of heterogenousDLRs in the given input. By Lemma 8, we can in poly-nomial time decide whether a linear inequality systemwith one disequation is satis�able. Since we need onlycheck a polynomial number of such systems in each re-cursion, the theorem follows. 2We conclude this section with a discussion aboutwhether HornDLRSat can be e�eciently solved onparallel computers. The complexity class NC consistsof the problems that can be solved with a polynomialnumber of processors in polylogarithmic time and itis often argued that NC captures our intuitive notionof problems satisfactorily solved by parallel computers.Recall that the satis�ability problem for propositionalHorn clauses (HornSat) is P-complete under log-space reductions (Greenlaw, Hoover, & Russo 1993).



Clearly, it is trivial to reduce HornSat toHornDLR-Sat in log-space. Since HornDLRSat is polynomial,it follows that it is P-complete as well. This impliesthat HornDLRSat is not in NC and, hence, theredoes not exist parallel algorithms for HornDLRSatthat is substantially faster than ordinary sequential al-gorithms. (Unless NC=P which is considered very un-likely.) ComparisonIn this section, we show that Horn DLRs subsumes sev-eral other methods for temporal constraint reasoning.Let x; y be real-valued variables, c; d constants and AAllen's algebra (Allen 1983) in the de�nitions below.De�nition 20 (Nebel & B�urckert 1995) An ORDclause is a disjunction of relations of the form xrywhere r 2 f�;=; 6=g. The ORD-Horn subclass H isthe relations in A that can be written as ORD clausescontaining only disjunctions with at most one relationof the form x = y or x � y and an arbitrary numberof relations of the form x 6= y.Note that the ORD-Horn class subsumes both the con-tinuous endpoint algebra (Vilain, Kautz, & van Beek1989) and the pointisable endpoint algebra (van Beek& Cohen 1990).De�nition 21 (Koubarakis 1992) Let r 2 f�;�; 6=g.A Koubarakis formula is a formula on one of the fol-lowing forms (1) (x�y)rc, (2) xrc or (3) a disjunctionof formulae of the form (x � y) 6= c or x 6= c.De�nition 22 (Dechter, Meiri, & Pearl 1991) A sim-ple temporal constraint is a formula on the form c �(x � y) � d.Simple temporal constraints are equivalent with thesimple metric constraints (Kautz & Ladkin 1991).De�nition 23 (Meiri 1991) A CPA/single intervalformula is a formula on one of the following forms:(1) c r1 (x � y) r2 d; or (2) x r y where r 2 f<;�;=; 6=;�; >g and r1; r2 2 f<;�g.De�nition 24 (Gerevini, Schubert, & Schae�er 1993)A TG-II formula is a formula on one of the followingforms: (1) c � x � d, (2) c � x � y � d or (3) x r ywhere r 2 f<;�;=; 6=;�; >g.We can now state the main theorem of this section.Theorem 25 The formalisms de�ned in De�nitions20 to 24 can trivially be expressed as Horn DLRs.Note that Meiri (1991) considers two further tractableclasses that cannot (in any obvious way) be trans-formed into Horn DLRs. The �nding that the ORD-Horn algebra can be expressed as Horn DLRs is espe-cially important in the light of the following theorem.Theorem 26 (Nebel & B�urckert 1995) Let S be anysubclass of A that contains all basic relations. Theneither

1. S � H and the satis�ability problem for S is poly-nomial, or2. Satis�ability for S is NP-complete.By the previous theorem, we cannot expect to �ndtractable classes that are able to handle all basic re-lations in A and, at the same time, are able to han-dle any single relation that cannot be expressed as aHorn DLR. In other words, the qualitative fragment ofHornDLRSat inherits the maximality of the ORD-Horn algebra. DiscussionSeveral researchers in the �eld of temporal constraintreasoning have expressed a feeling that their proposedmethods should be extended so they can express rela-tions between more than two time points. As a �rstexample, in (Dechter, Meiri, & Pearl 1991) one canread \The natural extension of this work is to ex-plore TCSPs with higher-order expressions (e.g. \Johndrives to work at least 30 minutes more than Freddoes"; X2 � X1 + 30 � X4 � X3)..." Even thoughthey do not de�ne the exact meaning of \higher-orderexpressions" we can notice that their example is a sim-ple Horn DLR. Something similar can be found in(Koubarakis 1992) who wants to express \the dura-tion of interval I exceeds the duration of interval J".Once again, this can easily be expressed as a HornDLR. These claims seem to indicate that the use ofHorn DLRs is a signi�cant contribution to temporalreasoning.We have shown that the satis�ability problem forHorn DLRs can be carried out in polynomial time.However, the method builds on solving linear programsand it is well-known that such calculations can be com-putationally heavy. It is important to remember thereasons for introducing Horn DLRs. The main reasonwas not to provide an extremely e�cient method, butto �nd a method unifying most of the other tractableclasses reported. It is fairly obvious that the pro-posed method cannot outperform highly specialized al-gorithms for severely restricted classes. It should belikewise obvious that the specialized methods cannotcompete with Horn DLRs in terms of expressivity. Weare, as always in tractable reasoning, facing the trade-o� between expressivity and computational complex-ity. We believe, though, that the complexity of decid-ing satis�ability can be drastically improved by devis-ing better algorithms than SAT. The algorithm SATis constructed in a way that facilitates its correctnessproofs and it is not optimized with respect to execu-tion time in any way. The question whether improvedversions can compete with algorithms such as Time-Graph II or not remains open.Throughout this paper we have assumed that timeis linear, dense and unbounded but this may not bethe case in real applications. For example, in a sam-pled system we cannot assume time to be dense. One
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