To be presented at the workshop on Comparative Analysis of AI Planning Systems
at the 12th (US) National Conference on Artificial Intelligence (AAAI'94), Seattle,
WA, USA, Jul.—Aug., 1994.

Planning using Transformation between Equivalent
Formalisms: A Case Study of Efficiency

Christer Backstrom
Department of Computer and Information Science
Linkoping University, S-581 83 Linkoping, Sweden
email: cha@ida.liu.se

Abstract

We have considered two planning formalisms which are known to
be expressively equivalent—the CPS formalism, using propositional
atoms, and the SAST formalism, using multi-valued state variables.
As a case study, we have modified a well-known partial-order planner
for CPS into an ‘identical’ planner for SASTand we have considered
two encodings of SAST into CPS. It turns out that it is more efficient
to solve SAST instances by using the SAST planner directly than to
first encode them as CPS instances and use the CPS planner. For
one encoding of SAST into CPS, which is a polynomial reduction, the
CPS planner has a polynomially or exponentially larger search space,
depending on goal selection strategy. For the other encoding, which is
not a polynomial reduction, the CPS search is of the same size as the
SAST search space, but the cost per node can be exponentially higher
in this case. On the other hand, solving CPS instances by encoding
them as SAST instances and using the SAST version of the planners
does not suffer from such problems.

1 Introduction

We have previously [1, 2, 3] analyzed four formalisms for propositional
planning: two variants of propositional STRIPS (CPS and PSN), ground
TWEAK and the SAST formalism—the three latter formalisms adding neg-
ative goals, uncertain initial states and multi-valued state variables respec-
tively to CPS. All these features are summarized in Table 1.

These four formalisms seem to form a sequence of successively increasing
expressive power, in the order presented. However, we have shown [1, 2, 3]
that in fact, all four formalisms are equally expressive under polynomial
reduction’ which is theoretically appealing since this makes a number of
theoretical results, especially complexity results, carry over between the for-
malisms. For instance,most standard complexity classes are closed under
polynomial reduction.

The result also tells us that we can model an application as a planning
instance in one of the formalisms and solve this by using the polynomial

!See [6] or [8] for details on polynomial reductions.

CPS | PSN | GT | SAS*

Partial goals . . o o
Negative pre-conditions . . .
Negative goals . . o
Partial initial states . o

L]

Multi-valued state variables

Table 1: A comparison of the CPS, PSN, GT and SAST formalisms.

reduction to find an equivalent instance in another formalism and then use
a planner for this formalism. Unfortunately, this does not guarantee that we
do not face a harder problem than if solving the instance directly in the first
formalism—polynomial reducibility is too coarse for for such guarantees. In
theory, it may be exponentially harder to solve an equivalent instance in
another formalism. However, whether this exponential blow-up arises in
practice is not obvious—it depends on which planners are used etc.

This paper presents a case study, using reduction from SAS™ to CPS and
two essentially identical planners for the two formalisms. We show that for
these planners it may, in fact, be exponentially harder to solve an equivalent
CPS instance than to solve the original SAST instance, depending on certain
parameters and which reduction is used.

We know of no similar analysis comparing different formalisms, but some
comparisons of various planners and search techniques for one fixed formal-
ism can be found in the literature [9, 11].

The remainder of this paper is organized as follows. Section 2 recapit-
ulates the CPS and SAST formalisms. Section 3 recapitulates McAllester
and Rosenblitt’s [10] planner for CPS and shows how this can be modified
to plan for SAST. Section 4 defines two reductions from SAST to CPS, one
polynomial and one exponential and in Section 5 the complexity of planning
in the SAST formalism directly is compared with planning for equivalent
CPS instances under both reductions.

2 Two Planning Formalisms

The two formalism considered in this paper are Classical Propositional
STRIPS (CPS) and SAS*. The CPS formalism should be well known to
most readers and for further detail on the SAST formalism, the reader is
referred to previous publications [2, 4].

Definition 2.1 An instance of the CPS planning problem s given by a
tuple Il = (P,0,Z,G), where

e P is a finite set of atoms;

e O is a finite set of operators of the form (¢, a,d), subject to the
restriction that anNé = (), where ¢, a,d C P denote the precondition,

addlist and deletelist respectively;
o 7 CPandG C P denote the initial state and goal state respectively.

If o = (p,0,8) C O, we write ¢(0), a(o) and 6(0) to denote ¢, o and
0 respectively. Let O denote the set of all sequences of operators from
Q. The members of OF are called plans over 1l. The ternary relation
valid C O* X T X G is defined recursively s.t. for arbitrary operator sequence
(01,...,0,) € OF and arbitrary states S,T C P, valid({o1,...,0,),5,T) iff
either

1.n=0andT C S5 or
2. n>0, (o) C S and valid({oz,...,0,),(SUa(or)—6(01)),T).
A plan (o1, ...,0,) € O solves Il iff valid({o1,...,0,),Z,G).

Instead of propositional atoms, the SAST formalism uses multi-valued
state variables, which may additionally have the value undefined. A value
assignment to the state variables is a (partial) state. Further, an operator is
modelled using a pre-, a post- and a prevail-condition. Any variable being
defined in the postcondition will get this defined value after executing the
operator and the others will remain unchanged. A variable which is required
to have some specific value before executing the operator should be specified
to have this value either in the precondition, if the variable is changed by the
operator, or in the prevailcondition, if it is not changed. That is, the pre-
and prevailconditions together correspond to the precondition of an CPS
operator..?

Definition 2.2 An instance of the SAST planning problem is given by a
tuple 11 = (V, O, s1, sg) with components defined as follows:

oV = {vy,...,v,} is a set of state variables. Fach variable v € V
has an associated domain D,,, which implicitly defines an extended
domain D} = D, U {u}, where u denotes the undefined value.
Further, the total state space S =D, x...x D, and the partial
state space St = D} x ...x Df are implicitly defined. We write
s[v] to denote the value of the variable v in a state s.

e O is a set of operators of the form (b,e,f), where b,e,f € ST denote
the pre-, post- and prevail-condition respectively. O is subject to
the following two restrictions: For every operator (b,e,f) € O,

(R1) for all v € V if blv] # u, then blv] # e[v] # u,
(R2) for allv eV, elv] =u orflv] =u.

2Although, not technically necessary, this distinction between the pre-condition and
the prevail-condition has shown to have conceptual advantages in some cases. For in-
stance, it has been possible to identify certain restrictions that result in computationally
tractable subcases of the SAST planning problem (see Biickstrém and Nebel [4] for a recent
summary).

e s7 €8T and sg € ST denote the initial state and goal state respec-
tively.

Restriction R1 essentially says that a state variable can never be made
undefined, once made defined by some operator. Restriction R2 says that
the pre- and prevail-conditions of an operator must never define the same
variable.

We write s[v] to denote the value of the variable v in a state s. We also
write s C t if the state s is subsumed (or satisfied) by state t, i.e. if sfv] = u
or s[v] = t[v]. We extend this notion to whole states, defining

sCtiff forall v eV, s[v]=u or s[v]=t[v].

If o = (b,e,f) is a SAST operator, we write b(0), e(0) and f(0) to denote b, e
and f respectively. As previously, O* denotes the set of operators sequences
and the members of O* are called plans. Given two states s,t € ST, we

define for all v € V,

(e o] = { o] i oo # v,

s[v] otherwise.

The ternary relation valid C OF X st X sg is defined recursively s.t. for
arbitrary operator sequence (o1, ...,0,) € O and arbitrary states s,t € ST,

valid({o1,...,0,),s,t) iff either
1.n=0andtC s or
2. n>0,b(o1)C s, f(o1) C s and valid({og,...,0,),(s @ e(01)),1).

A plan (o1, ...,0,) € O solves Il iff valid({o01,...,04.),57,5g).

3 The MAR Algorithm

McAllester and Rosenblitt [10] have presented a systematic partial-order
planner for the CPS formalism. We will refer to this algorithm as the CPS-
MAR, or simply MAR, algorithm?® This section will briefly recapitulate the
MAR algorithm and the definitions needed for it; the reader is referred to
the original paper [10] for further intuition and explanation.

MAR is a refinement planner, simulating the initial and goal states by
two operators, so we need the following definition.

Definition 3.1 Given an CPS problem instance Il = (P, 0,Z,G), there are
two implicitly defined, special operators or = (0,Z,0) and og = (G,0,0),
which need not be members of O.

A self-contained plan over I is an operator sequence (o01,...,0,) s.t.
01 = o1, 0, = og and (03,...,0,_1) C O*. A self-contained plan w is valid

iff valid(w,0,0).

*The lifted version of the algorithm is usually referred to as SNLP after a popular

implementation of it.

Theorem 3.2 Given an CPS problem instance 11 = (P,0,7,G), a self-
contained plan (o1, ..., 0,) over 1l is valid iff valid({o3,...,0,-1),Z,G).

The following definitions are further needed.

Definition 3.3 Anaction (or plan step) is an instantiation of an operator.
A condition 7 is a propositional atom. A causal link is a triple (a,7,b),
usually written a = b, where a and b are actions and 7 is a condition s.t.
T € ala) and © € @(b).

A plan structure for an CPS instance 1l = (P,0,Z1,G) is a triple
0 = (A,QA) s.t. A is a set of actions, is a binary relation on A,
the action order, and A is a set of causal links over the action in A. The
members of Q are usually written as a < b. Furthermore, A must contain
two designated actions @, and ., being instantiations of oz and og
respectively, and Q must contain Gmip < Gmas. 1he minimal plan structure
{tmin, @maz }s {min < Qmaz}, D) is referred to as the empty plan struc-
ture for Il A plan structure (A,Q, A) is order consistent iff the transitive
closure, QT , of Q is irreflexive and a5, and a,,q, are the unique minimal
and mazximal elements respectively.

An open goal in a plan (A, Q,A) is a tuple (a,7) s.t. a« € A, m € ¢(a)
and there is no action b s.t. b = a € A. An action a € A is a threat to a
causal linkb = ¢ € N iffa # b, 7 € a(a) or 7 € 8(a) and neither a < b € QF
norc<acQv.

A plan structure © = (A, Q, A) is complete iff it is order consistent
and it contains no open goals and no threats.

The MAR planner is shown in Figure 1. It is used by passing it the
empty plan structure for an CPS instance as argument and it then calls
itself recursively, extending this plan structure. The algorithm is presented
as a non-deterministic algorithm, that is it only defines its search space—a
search strategy has to be added to the algorithm according to taste.

The following two theorems (due to McAllester and Rosenblitt [10]) to-
gether say that MAR is a sound and complete algorithm for CPS planning.

Theorem 3.4 For every complete plan structure (A,Q,A) for some CPS
instance 11 = (P,0,7,G) and for every topological sorting {a1,...,a,) of
(A, Q7F), the sequence of operators (oy,...,0,_1) corresponding to the ac-
tions (az,...,a,—1) solves II.

Theorem 3.5 If MAR is called with the empty plan for some CPS instance
II = (P,0,7,G), then it returns a complete plan structure for 11 if there
exists some plan over 11 solving Il and otherwise it fails.

*There are some minor differences compared to the original MAR [10]: the cost cut-off
limit is here not included in the algorithm per se, but considered to be part of the search
strategy, and all action orderings implicit in the causal links are also duplicated in the
order 2. Further, we use a different notation.

1 procedure MAR(O); where © = (A, Q,A)
2 begin
3 if w is not order consistent then fail
4 elsif w is complete then return w
5 elsif there exists some ¢ € A which is a threat to some a = b € A
6 then
7 nondeterministically do either of the following
8 1. return Plan((A, QU {c < a}, A))
9 2. return Plan({A, QU {b < ¢}, A))
10 else there must exist some open goal {a,7) in w
11 Arbitrarily choose such an open goal (a,7) and
nondeterministically do either of the following
12 1. Nondeterministically choose some action b € A that
13 contributes 7;
14 return Plan((A, QU {b < a},AU{b = a}));
15 2. Nondeterministically choose some operator o € O that
contributes 7
16 Let b be a new instantiation of o;
17 return Plan({AU {b},QU {b < a},AU{b " a}))
18 end if
19 end

Figure 1: The MAR Algorithm

Everything in the MAR algorithm that is specific to the CPS formalism
is abstracted away from the actual algorithm and hidden in the underlying
definitions. Hence, we can get a planning algorithm for SAST by making
some changes to these underlying definitions only. No changes are required
in the actual algorithm—the different definitions would result in different
implementations of the algorithm, though. The SAS™ version of the algo-
rithm, referred to as SAST-MAR, results if we substitute SAST instances
for CPS instances in the definitions in the previous section and make the
following redefinitions.

Definition 3.6 Given an SAST problem instance Il = (V, 0, s7,5¢), there
are two implicitly defined, special operators or = (u, sz,u) and og = (u,u, sg),
which need not be members of O.

A self-contained plan over I is an operator sequence (o01,...,0,) s.t.
01 = 04, 0p = 05, and (03,...,0,_1) C O*. A self-contained plan w is

valid iff valid(w, (u,...,u),(u,...,u)).

Theorem 3.7 Given an SAST problem instance Il = (V, 0, s1,5¢), a self-
contained plan (o1, ...,0,) over 1l is valid iff valid({o3,...,04-1),57,5g)-

Definition 3.8 A condition 7 is a tuple (v,z) s.t. v €V and x € D,,.
A causal link is a triple {a,7,b), usually written a = b, where a and b
are actions and © = (v,z) is a condition s.t. e(a)[v] =z and b(b) = z.

An open goal in a plan (A, Q, A) is a tuple (a,7) s.t. a € A, 7 = (v, 2),
either b(a)[v] = x or f(a)[v] = & and there is no action b s.t. (b,w,a) € A.

An action a € A is a threat to a causal link (b, (v,2),¢) € A iff a # b,
e(a) = y for some y € D, and neither a < b € QT norc <a € Q7.

A plan w = (A, Q, A) is complete iff w is order consistent, w contains
no open goals and for each causal link (b,m,c) € A which is threatened by
some action a € A, either a <be Q orc<a €.

Also SAST-MAR is a sound and complete planning algorithm.

Theorem 3.9 For every complete plan structure (A, Q, A) for some SAST

instance 1l = (V,0,sz,s¢) and for every topological sorting (a,...,a,)
of (A, QF), the sequence of operators (o,...,0,_1) corresponding to the
actions (az, ..., a,—1) solves II.

Theorem 3.10 If MAR is called with the empty plan for some SAST in-
stance 1l = (V, O, sz, sg), then it returns a complete plan structure for 11 if
there exists some plan over 1l solving I and otherwise it fails.

4 Lin- and Log-encodings

We know from the formalism equivalence proofs [1, 2] that a SAST problem
instance can be solved by re-encoding it as an equivalent CPS problem
instance in the following way, which we call a log-encoding.

Definition 4.1 A log-encoding of a SAST problem instance 11 =
{v1, ..y vm}, O, s7,5¢) is an equivalent CPS instance 1l defined as follows.
For each v € V define a set of atoms P, as follows. Assume wlg. that
D, =A0,...,n, — 1} for some n, > 0. Let k, = [logn,]|. Further, let the
function bit, : D, x {1,....k,} — {0,1}* be defined s.t. for x € D, and
1 <4 < ky, bit(z,1) is the ith bit in the binary encoding of x. Now define
Py = {p1,Pi>---> DL, P, } where all members are distinct atoms. The state
variable v can be encoded by the atoms of P, in the following way. Define
the function w, : DF — 2P0 st forx € Dy and 1 < i< ky,

pi € () iff @ #u and bit(z,i)=1

Pl € () iff @ #u and bit(z,i) = 0.

Since all P, are disjoint we can define P = Uyey P, and merge all p, into
one function u : ST — 27 defined as s.t. for s € ST, u(s) = Uyey iy (s[v]).
Also define the function T : ST — 27 defined s.t. for s € St, fi(s) =
Upey!(Py — to(s[v])), where V' = {v € V | s[v] # u}. Further, define a set
O of CPS operators s.t. for each operator (b,e,f) € O, O contains the
operator (u(b) U (f), u(e),m(e)). Finally, let T = (P, O, u(s1), u(sg)) be
the corresponding CPS instance.

Similarly, we define a lin-encoding.

Definition 4.2 A lin-encoding of a SAST instance is an equivalent CPS
instance defined in the same way as a log-encoding, but with the following
two differences. For each v € V, the set P, and the function p are defined
st Py =ApY,....pp, } and p} € p,(2) iff © =1i.

In a log-encoding, a state variable » with a domain of size n is simulated
by the domain P,, containing 2 [logn| distinct atoms. If the variable is
undefined, then it is encoded as the empty set and otherwise it is encoded by
a subset 5 of P, s.t. for each pair of atoms p}, p; exactly one of these atoms
is in 5. A lin-encoding is similar, but each possible value x of the variable
v is simulated by its own, distinct atom pY. The log-encoding constitutes
a polynomial reduction of SAST into CPS while the lin-encoding is not a
polynomial reduction in the general case [1].

To get som intuition for these encodings, consider the following example.
Let T = (V,0,s71,s6) be a SAST instance where V = {vy,v3,v3} with
domains D,, = D,, = D,, = {0,...,3}. The values of p, for each value of
a variable v € V are shown in Table 2. Table 3 shows how a sample SAST
operator in O is lin- and log-encoded.

x |u 0 1 2 3

log-reduction p,(2) | 0 {p{,p3} {PV.p3} {pi.P3} {pi.p3}
lin-reduction p(2) |0 {ps} {ri} {ps} {r3}

Table 2: Log- and lin-encodings of a state variable with domain {0,...,3}

SAST operatoro ‘ b= (u,u,1) e=(u,1,2) f=(3,u,u
log-reduction ofo | ¢ = {p},p3, By, p3} o ={Bi,p3,p1. P2} ¢ = {p1. D3, 51,3}
lin-reduction ofo | ¢ = {p{,p3} a={pl,p3} &=1{p3,p3.p3 ps,pi,p3}

Table 3: Log- and lin-encodings of a SAS™T operator.

5 Comparison

In this section we will compare solving SAST instances directly using the
SAST-MAR algorithm with solving them indirectly by applying the CPS-
MAR algorithm to the corresponding lin- or log-encoded instances. CPS-
MAR and SAST-MAR are, in principle, the same algorithm, differing at
most polynomially in the cost per search node. That is, the time CPS-MAR
takes to solve the hardest CPS instance differs at most polynomially from the
time SAST-MAR takes to solve the hardest SAS™T instance. This, however,
does not tell us anything about the time required to solve an arbitrary SAS
instance and solving its log-encoding respectively. We will, thus, analyse the

relative complexity of solving an an arbitrary SAS instance and solving its
log- and lin-encodings respectively.

We do not commit ourselves to any particular search technique. Rather,
we will compare the size of the search spaces. Since the MAR algorithm
searches the plan space, which is infinite, we must restrict the analysis to
search trees that are cut at a certain depth. That is, we cut the search tree
at every node containing a plan structure with more than k£ actions for some
k., which can be captured formally as follows.

Definition 5.1 A depth n search tree for MAR, is a MAR search tree
where every node containing more than n + 2 actions is a leaf.

As long as we are not considering any domain-specific heuristics, this should
give a fair estimate of the time complexity for any search technique using
such a limit for cutting branches. This can be formally captured as follows,
where the additive constant 2 compensates for the actions a,,;, and @4z

It turns out that if open goals are chosen according to a FIFO strategy,
then it may be exponentially more efficient to use SAST-MAR than to solve
a log-encoding using CPS-MAR. If a LIFO strategy is used, then it is at
least polynomially more efficient to use SAST-MAR.5

Theorem 5.2 If a FIFO strategy is used for selecting open goals in line 10
of MAR, then for each n > 0, there exists a SAST instance 1l s.t. SAST-
MAR has a depth n search space of size O(n) for 1l and CPS-MAR has a
depth n search space of size Q(2") for the corresponding log-encoded CPS
instance.

Proof sketch: For arbitrary n > 0, let V = {v} and D, = {0,...,n — 1}.
Wlg. assume n = 2% for some k& > 0. Let O = {oy,...,0,} where for each
1 <i<mn,blo)[v] =i—1, e(o;)[v] = imod n and f(o;)[v] = u. Define the
SAST instance IT = (V, 0,(0), (n— 1)) and let II' be the corresponding log-
encoded CPS instance. It is obvious that SAST-MAR has a non-branching
search tree of depth O(n) which is of size O(n), since it is non-branching.
Now consider the CPS-MAR search space for II'. Call a node in the search
tree live if (1) it is either a leaf containing a plan with > n+ 2 actions or (2)
it has at least two children which are live. Every threat-free live non-leaf has
some open goal and there are at least two different operators that can be
instantiated to close this goal. It follows by induction over n that the root
of the search tree is live, which immediately implies that the search tree is
of size (2").]

Theorem 5.3 If a LIFO strategy is used for selecting open goals in line 10
of MAR, then for each n > 0, there exists a SAST instance 11 s.t. SAS*-
MAR has a search space of size O(n) for 1l and CPS-MAR has a search
space of size Q(n*logn) for the corresponding log-encoded CPS instance.

®Analysing only these two strategies does not allow us to conclude that there can be a
state-space blow-up for all goal selection strategies, but FIFO and LIFO are at least the
extreme cases for such strategies.

Proof sketch: Consider the same SAST instance II as in the proof of
Theorem 5.2 and the, same, log-encoding IT'. Consider the CPS-MAR search
space for II’. We introduce the following terminology. Any consistent node
without threats is live if it is either a solution node or some of its children
is live; full-open if the next open goal to select belongs to an action, the
selected action, having all its preconditions open and semi-open if the next
open goal to select belongs to an action, the selected action, having at least
some preconditions closed by a causal link. We also note that there exists
only one solution leaf in the search tree, containing a plan of length n 4 2
(including the initial and goal actions). Hence, all live nodes are on the path
to this, unique solution leaf. Each operator has [logn] /2 preconditions,
so there must be O(nlogn) live nodes, of which ©(n) are full-open and
O(nlogn) are semi-open.

Each full-open, live non-leaf has at least n/2 semi-open children, corre-
sponding to the n/2 different operators that can be instantiated to produce
the next open goal. Only one of these nodes instantiates an operator that
can produce all the preconditions of the selected action, however, so there
is exactly one live child among these n/2 nodes. Hence, each live, full-open
node has at ©(n) children, containing some live semi-open node. A similar
argument shows that every live, semi-open node has ©(n) children, contain-
ing some node which is live. Since there are ©(nlogn) live nodes, it follows
that the search space is of size Q(n?logn). a

This latter theorem provides only a lower bound, so we cannot rule
out the possibility that there is an exponential difference also for the LIFO
strategy. It seems unlikely that there should exist a strategy allowing us to
to solve a log-encoding of a SAS™ instance using CPS-MAR as efficiently
as if using SAST-MAR directly. solving However, we could introduce an
operator-selection filter in line 14 of the MAR algorithm in the following
way. Whenever there is some action of type o having an open goal p € P,,
for some variable v, then only operators o' s.t. a(o') NP, = ¢(o') NP, are
considered for instantiation. Such a filter would make the algorithm avoid
branching by selecting the wrong operator to instantiate, so the exponential
search-space blow-up disappears. The CPS-MAR search space will still be
slightly larger, though, but only within some constant. The reason for this
is as follows. Suppose there is some action of type o having an open goal
p € P,, for some variable v, and that some other precondition ¢ € P,
is produced by some action a of type o' in the plan structure. The right
choice for producing p is to re-use the action a, but the algorithm would
also consider instantiating a new action of type o/, leading to a double-cross
conflict (three actions constituting two symmetric right-forks [7]), which
cannot lead to a solution. However, also this problem could be filtered away.
It should be noted, however, that when using such filters, we are allowing the
algorithm to use information which is not available in the CPS instance II,
so we are, strictly speaking, no longer doing domain-independent planning.

If using lin-encodings, on the other hand, there is no search-space blow-
up at all.

10

Definition 5.4 Let I be a SAST instance and I its corresponding lin-
encoded CPS instance. Let T be the search tree of SAST-MAR for 11 and
T’ the search tree of CPS-MAR for IU'. T and T" are isomorphic if they are
isomorphic trees s.t. for every N in T and its corresponding node N' in T',
the plan structures of N and N’ are isomorphic and for each action a in N
and its corresponding action b in N', b instantiates the lin-encoding of the
operator a instantiates.

Theorem 5.5 Given A SAST instance Il and its lin-encoded equivalent 11,
the CPS-MAR search tree for 1’ is isomorphic to the SAST-MAR search
tree for 1l s.t. the plan structures in corresponding nodes in the two search
trees are isomorphic..

It is immediate that two search spaces are of the same size since they are
isomorphic. Unfortunately, this does not imply that the cost of solving a
lin-encoded instance is comparable to the cost of solving the original SAS*
instance. The reason is that, as mentioned in the previous section, lin-
encodings are not polynomial reductions. More precisely, the number of
propositions encoding a state variable may be exponential in the size of the
original representation of the state variable. Hence, the cost per node in the
search tree for the lin-encoding may be exponentially larger than the cost
per node in the search tree for the original SAS™T instance, at least if the size
of the state variable domains dominate over the number of state variables
and the number of actions in the node.

Often, domains modelled by state variables are solved using a first-order
formalism,eg. STRIPS or TWEAK, encoding the state variables as unary
predicates. However, encoding each state variable as a unary relation and
using the lifted version of MAR [10] would be equivalent to using a lin-
encoding, so also in this case do we risk an exponentially higher cost per
node.

It is further easy to see from the definitions and proofs, that even if
allowing negative preconditions, negative goals and partial initial states, ie.
using either the PSN or GT formalims, the theorems in this section would
still hold. The CPS formalism was used only because that is the formalism
MAR was designed and defined for originally.

Finally, it is immediate from the formalism equivalence proofs [1, 3] that
CPS, PSN and GT instances can be reencoded as SAS™ instances and be
solved as efficiently using SAST-MAR as if using the original CPS/PSN/GT-
MAR.

6 Conclusions

We have considered two planning formalisms which are known to be expres-
sively equivalent—the CPS formalism, using propositional atoms, and the
SAST formalism, using multi-valued state variables. As a case study, we
have modified a well-known partial-order planner for CPS into an ‘identical’
planner for SASTand we have considered two encodings of SAST into CPS.

11

It turns out that it is more efficient to solve SAS™ instances by using the
SAST planner directly than to first encode them as CPS instances and use
the CPS planner. For one encoding of SAST into CPS, which is a polyno-
mial reduction, the CPS planner has a polynomially or exponentially larger
search space, depending on goal selection strategy. For the other encoding,
which is not a polynomial reduction, the CPS search is of the same size as
the SAS™ search space, but the cost per node can be exponentially higher
in this case. To the contrary, however, no similar problems arise when re-
encoding CPS instances as SAS™ instances. Some of the problems can be
avoided if we make the comparison unfair, allowing the CPS version of the
planner to use domain-specific heuristics or knowledge about the variable
encodings. However, in the first case the comparison is then between a
domain-independent planner and a domain-dependent one and in the other
case, we are no longer using the pure CPS formalism.

Furhter note that encoding each state variable as a unary relation and
using the lifted version of MAR [10] would be equivalent to using a lin-
encoding, so there may be an exponentially higher node cost also in this
case.

The main conclusion is that even if state variables can be easily re-
encoded as sets of atoms or as predicates, we may risk losing efficiency
if solving such a re-encoded instance rather than the original one. Re-
encodings may work well in many practical cases, but must then be used
with care.

Acknowledgements

This research was sponsored by the Swedish Research Council for the Engi-
neering Sciences (TFR) under grant Dnr. 92-143.

References

[1] Christer Backstrom. Computational Complexity of Reasoning about
Plans. Doctoral dissertation, Linképing University, Linképing, Sweden,
June 1992.

[2] Christer Backstrom. Equivalence and tractability results for SAST plan-
ning. In Swartout and Nebel [12], pages 126-137.

[3] Christer Backstrom. Expressive equivalence of planning formalisms.
Submitted manuscript.

[4] Christer Backstrom and Bernhard Nebel. Complexity results for SAS™
planning. In Bajecsy [5].

[6] Ruzena Bajcsy, editor. Proceedings of the 13th International Joint
Conference on Artificial Intelligence (IJCAI-93), Chambéry, France,
August—September 1993. Morgan Kaufmann.

12

[6]

[7]

[10]

Michael Garey and David Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, New York, 1979.

Joachim Hertzberg and Alexander Horz. Towards a theory of conflict
detection and resolution in nonlinear plans. In N. S. Sridharan, editor,
Proceedings of the 11th International Joint Conference on Artificial In-
telligence (IJCAI-89), pages 937-942, Detroit, MI, USA, August 1989.
Morgan Kaufmann.

David S Johnson. A catalog of complexity classes. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science: Algorithms and
Complexity, volume A, chapter 2, pages 67-161. Elsevier, Amsterdam,
1990.

Subbarao Kambhampati. On the utility of systematicity: Understand-
ing tradeoffs between redundancy and commitment in partial-order
planning. In Bajecsy [5].

David McAllester and David Rosenblitt. Systematic nonlinear plan-
ning. In Proceedings of the 9th (US) National Conference on Artifi-
cial Intelligence (AAAI-91), pages 634-639, Anaheim, CA, USA, July
1991. American Association for Artificial Intelligence, AAAI Press/MIT
Press.

Steven Minton, Mark Drummond, John L. Bresina, and Andrew B.
Philips. Total order ws. partial order planning: Factors influencing
performance. In Swartout and Nebel [12], pages 83-92.

Bill Swartout and Bernhard Nebel, editors. Proceedings of the 3rd
International Conference on Principles on Knowledge Representation
and Reasoning (KR-92), Cambridge, MA, USA, October 1992. Morgan
Kaufmann.

13

