
To be presented at the workshop on Comparative Analysis of AI Planning Systemsat the 12th (US) National Conference on Arti�cial Intelligence (AAAI'94), Seattle,WA, USA, Jul.{Aug., 1994.Planning using Transformation between EquivalentFormalisms: A Case Study of E�ciencyChrister B�ackstr�omDepartment of Computer and Information ScienceLink�oping University, S-581 83 Link�oping, Swedenemail: cba@ida.liu.seAbstractWe have considered two planning formalisms which are known tobe expressively equivalent|the CPS formalism, using propositionalatoms, and the SAS+ formalism, using multi-valued state variables.As a case study, we have modi�ed a well-known partial-order plannerfor CPS into an `identical' planner for SAS+and we have consideredtwo encodings of SAS+ into CPS. It turns out that it is more e�cientto solve SAS+ instances by using the SAS+ planner directly than to�rst encode them as CPS instances and use the CPS planner. Forone encoding of SAS+ into CPS, which is a polynomial reduction, theCPS planner has a polynomially or exponentially larger search space,depending on goal selection strategy. For the other encoding, which isnot a polynomial reduction, the CPS search is of the same size as theSAS+ search space, but the cost per node can be exponentially higherin this case. On the other hand, solving CPS instances by encodingthem as SAS+ instances and using the SAS+ version of the plannersdoes not su�er from such problems.1 IntroductionWe have previously [1, 2, 3] analyzed four formalisms for propositionalplanning: two variants of propositional STRIPS (CPS and PSN), groundTWEAK and the SAS+ formalism|the three latter formalisms adding neg-ative goals, uncertain initial states and multi-valued state variables respec-tively to CPS. All these features are summarized in Table 1.These four formalisms seem to form a sequence of successively increasingexpressive power, in the order presented. However, we have shown [1, 2, 3]that in fact, all four formalisms are equally expressive under polynomialreduction1 which is theoretically appealing since this makes a number oftheoretical results, especially complexity results, carry over between the for-malisms. For instance,most standard complexity classes are closed underpolynomial reduction.The result also tells us that we can model an application as a planninginstance in one of the formalisms and solve this by using the polynomial1See [6] or [8] for details on polynomial reductions.1

CPS PSN GT SAS+Partial goals � � � �Negative pre-conditions � � �Negative goals � � �Partial initial states � �Multi-valued state variables �Table 1: A comparison of the CPS, PSN, GT and SAS+ formalisms.reduction to �nd an equivalent instance in another formalism and then usea planner for this formalism. Unfortunately, this does not guarantee that wedo not face a harder problem than if solving the instance directly in the �rstformalism|polynomial reducibility is too coarse for for such guarantees. Intheory, it may be exponentially harder to solve an equivalent instance inanother formalism. However, whether this exponential blow-up arises inpractice is not obvious|it depends on which planners are used etc.This paper presents a case study, using reduction from SAS+ to CPS andtwo essentially identical planners for the two formalisms. We show that forthese planners it may, in fact, be exponentially harder to solve an equivalentCPS instance than to solve the original SAS+ instance, depending on certainparameters and which reduction is used.We know of no similar analysis comparing di�erent formalisms, but somecomparisons of various planners and search techniques for one �xed formal-ism can be found in the literature [9, 11].The remainder of this paper is organized as follows. Section 2 recapit-ulates the CPS and SAS+ formalisms. Section 3 recapitulates McAllesterand Rosenblitt's [10] planner for CPS and shows how this can be modi�edto plan for SAS+. Section 4 de�nes two reductions from SAS+ to CPS, onepolynomial and one exponential and in Section 5 the complexity of planningin the SAS+ formalism directly is compared with planning for equivalentCPS instances under both reductions.2 Two Planning FormalismsThe two formalism considered in this paper are Classical PropositionalSTRIPS (CPS) and SAS+. The CPS formalism should be well known tomost readers and for further detail on the SAS+ formalism, the reader isreferred to previous publications [2, 4].De�nition 2.1 An instance of the CPS planning problem is given by atuple � = hP ;O; I;Gi, where� P is a �nite set of atoms;� O is a �nite set of operators of the form h'; �; �i, subject to therestriction that �\� = ;, where '; �; � � P denote the precondition,2

addlist and deletelist respectively;� I � P and G � P denote the initial state and goal state respectively.If o = h'; �; �i � O, we write '(o), �(o) and �(o) to denote ', � and� respectively. Let O� denote the set of all sequences of operators fromO. The members of O� are called plans over �. The ternary relationvalid � O��I �G is de�ned recursively s.t. for arbitrary operator sequenceho1; : : : ; oni 2 O� and arbitrary states S; T � P, valid(ho1; : : : ; oni; S; T) i�either1. n = 0 and T � S or2. n > 0, '(o1) � S and valid(ho2; : : : ; oni; (S [�(o1)� �(o1)); T).A plan ho1; : : : ; oni 2 O� solves � i� valid(ho1; : : : ; oni; I;G).Instead of propositional atoms, the SAS+ formalism uses multi-valuedstate variables, which may additionally have the value unde�ned. A valueassignment to the state variables is a (partial) state. Further, an operator ismodelled using a pre-, a post- and a prevail-condition. Any variable beingde�ned in the postcondition will get this de�ned value after executing theoperator and the others will remain unchanged. A variable which is requiredto have some speci�c value before executing the operator should be speci�edto have this value either in the precondition, if the variable is changed by theoperator, or in the prevailcondition, if it is not changed. That is, the pre-and prevailconditions together correspond to the precondition of an CPSoperator..2De�nition 2.2 An instance of the SAS+ planning problem is given by atuple � = hV ;O; sI ; sGi with components de�ned as follows:� V = fv1; : : : ; vmg is a set of state variables. Each variable v 2 Vhas an associated domain Dv, which implicitly de�nes an extendeddomain D+v = Dv [fug, where u denotes the unde�ned value.Further, the total state space S = Dv1 � : : :�Dvm and the partialstate space S+ = D+v1 � : : :� D+vm are implicitly de�ned. We writes[v] to denote the value of the variable v in a state s.� O is a set of operators of the form hb; e; fi, where b; e; f 2 S+ denotethe pre-, post- and prevail-condition respectively. O is subject tothe following two restrictions: For every operator hb; e; fi 2 O,(R1) for all v 2 V if b[v] 6= u, then b[v] 6= e[v] 6= u,(R2) for all v 2 V, e[v] = u or f[v] = u.2Although, not technically necessary, this distinction between the pre-condition andthe prevail-condition has shown to have conceptual advantages in some cases. For in-stance, it has been possible to identify certain restrictions that result in computationallytractable subcases of the SAS+ planning problem (see B�ackstr�om and Nebel [4] for a recentsummary). 3

� sI 2 S+ and sG 2 S+ denote the initial state and goal state respec-tively.Restriction R1 essentially says that a state variable can never be madeunde�ned, once made de�ned by some operator. Restriction R2 says thatthe pre- and prevail-conditions of an operator must never de�ne the samevariable.We write s[v] to denote the value of the variable v in a state s. We alsowrite s v t if the state s is subsumed (or satis�ed) by state t, i.e. if s[v] = uor s[v] = t[v]. We extend this notion to whole states, de�nings v t i� for all v 2 V ; s[v] = u or s[v] = t[v]:If o = hb; e; fi is a SAS+ operator, we write b(o), e(o) and f(o) to denote b, eand f respectively. As previously, O� denotes the set of operators sequencesand the members of O� are called plans. Given two states s; t 2 S+, wede�ne for all v 2 V, (s� t)[v] = (t[v] if t[v] 6= u;s[v] otherwise.The ternary relation valid � O� � sI � sG is de�ned recursively s.t. forarbitrary operator sequence ho1; : : : ; oni 2 O� and arbitrary states s; t 2 S+,valid(ho1; : : : ; oni; s; t) i� either1. n = 0 and t v s or2. n > 0, b(o1) v s, f(o1) v s and valid(ho2; : : : ; oni; (s� e(o1)); t).A plan ho1; : : : ; oni 2 O� solves � i� valid(ho1; : : : ; oni; sI ; sG).3 The MAR AlgorithmMcAllester and Rosenblitt [10] have presented a systematic partial-orderplanner for the CPS formalism. We will refer to this algorithm as the CPS-MAR, or simply MAR, algorithm3 This section will briey recapitulate theMAR algorithm and the de�nitions needed for it; the reader is referred tothe original paper [10] for further intuition and explanation.MAR is a re�nement planner, simulating the initial and goal states bytwo operators, so we need the following de�nition.De�nition 3.1 Given an CPS problem instance � = hP ;O; I;Gi, there aretwo implicitly de�ned, special operators oI = h;; I; ;i and oG = hG; ;; ;i,which need not be members of O.A self-contained plan over � is an operator sequence ho1; : : : ; oni s.t.o1 = oI, on = oG and ho2; : : : ; on�1i � O�. A self-contained plan ! is validi� valid(!; ;; ;).3The lifted version of the algorithm is usually referred to as SNLP after a popularimplementation of it. 4

Theorem 3.2 Given an CPS problem instance � = hP ;O; I;Gi, a self-contained plan ho1; : : : ; oni over � is valid i� valid(ho2; : : : ; on�1i; I;G).The following de�nitions are further needed.De�nition 3.3 An action (or plan step) is an instantiation of an operator.A condition � is a propositional atom. A causal link is a triple ha; �; bi,usually written a �! b, where a and b are actions and � is a condition s.t.� 2 �(a) and � 2 '(b).A plan structure for an CPS instance � = hP ;O; I;Gi is a triple� = hA;
;�i s.t. A is a set of actions,
 is a binary relation on A,the action order, and � is a set of causal links over the action in A. Themembers of
 are usually written as a � b. Furthermore, A must containtwo designated actions amin and amax, being instantiations of oI and oGrespectively, and
 must contain amin � amax. The minimal plan structurehfamin; amaxg; famin � amaxg; ;i is referred to as the empty plan struc-ture for � A plan structure hA;
;�i is order consistent i� the transitiveclosure,
+, of
 is irreexive and amin and amax are the unique minimaland maximal elements respectively.An open goal in a plan hA;
;�i is a tuple ha; �i s.t. a 2 A, � 2 '(a)and there is no action b s.t. b �! a 2 �. An action a 2 A is a threat to acausal link b �! c 2 � i� a 6= b, � 2 �(a) or � 2 �(a) and neither a � b 2
+nor c � a 2
+.A plan structure � = hA;
;�i is complete i� it is order consistentand it contains no open goals and no threats.The MAR planner is shown in Figure 1.4 It is used by passing it theempty plan structure for an CPS instance as argument and it then callsitself recursively, extending this plan structure. The algorithm is presentedas a non-deterministic algorithm, that is it only de�nes its search space|asearch strategy has to be added to the algorithm according to taste.The following two theorems (due to McAllester and Rosenblitt [10]) to-gether say that MAR is a sound and complete algorithm for CPS planning.Theorem 3.4 For every complete plan structure hA;
;�i for some CPSinstance � = hP ;O; I;Gi and for every topological sorting ha1; : : : ; ani ofhA;
+i, the sequence of operators ho2; : : : ; on�1i corresponding to the ac-tions ha2; : : : ; an�1i solves �.Theorem 3.5 If MAR is called with the empty plan for some CPS instance� = hP ;O; I;Gi, then it returns a complete plan structure for � if thereexists some plan over � solving � and otherwise it fails.4There are some minor di�erences compared to the original MAR [10]: the cost cut-o�limit is here not included in the algorithm per se, but considered to be part of the searchstrategy, and all action orderings implicit in the causal links are also duplicated in theorder
. Further, we use a di�erent notation.5

1 procedure MAR(�); where � = hA;
;�i2 begin3 if ! is not order consistent then fail4 elsif ! is complete then return !5 elsif there exists some c 2 A which is a threat to some a �! b 2 �6 then7 nondeterministically do either of the following8 1. return Plan(hA;
 [fc � ag;�i)9 2. return Plan(hA;
 [fb � cg;�i)10 else there must exist some open goal ha; �i in !11 Arbitrarily choose such an open goal ha; �i andnondeterministically do either of the following12 1. Nondeterministically choose some action b 2 A that13 contributes �;14 return Plan(hA;
 [fb � ag;�[fb �! agi);15 2. Nondeterministically choose some operator o 2 O thatcontributes �16 Let b be a new instantiation of o;17 return Plan(hA [fbg;
[fb � ag;�[fb �! agi)18 end if19 end Figure 1: The MAR AlgorithmEverything in the MAR algorithm that is speci�c to the CPS formalismis abstracted away from the actual algorithm and hidden in the underlyingde�nitions. Hence, we can get a planning algorithm for SAS+ by makingsome changes to these underlying de�nitions only. No changes are requiredin the actual algorithm|the di�erent de�nitions would result in di�erentimplementations of the algorithm, though. The SAS+ version of the algo-rithm, referred to as SAS+-MAR, results if we substitute SAS+ instancesfor CPS instances in the de�nitions in the previous section and make thefollowing rede�nitions.De�nition 3.6 Given an SAS+ problem instance � = hV ;O; sI; sGi, thereare two implicitly de�ned, special operators oI = hu; sI ; ui and oG = hu; u; sGi,which need not be members of O.A self-contained plan over � is an operator sequence ho1; : : : ; oni s.t.o1 = osI , on = osG and ho2; : : : ; on�1i � O�. A self-contained plan ! isvalid i� valid(!; hu; : : : ; ui; hu; : : : ; ui).Theorem 3.7 Given an SAS+ problem instance � = hV ;O; sI; sGi, a self-contained plan ho1; : : : ; oni over � is valid i� valid(ho2; : : : ; on�1i; sI ; sG).De�nition 3.8 A condition � is a tuple hv; xi s.t. v 2 V and x 2 Dv.A causal link is a triple ha; �; bi, usually written a �! b, where a and bare actions and � = hv; xi is a condition s.t. e(a)[v] = x and b(b) = x.6

An open goal in a plan hA;
;�i is a tuple ha; �i s.t. a 2 A, � = hv; xi,either b(a)[v] = x or f(a)[v] = x and there is no action b s.t. hb; �; ai 2 �.An action a 2 A is a threat to a causal link hb; hv; xi; ci 2 � i� a 6= b,e(a) = y for some y 2 Dv and neither a � b 2
+ nor c � a 2
+.A plan ! = hA;
;�i is complete i� ! is order consistent, ! containsno open goals and for each causal link hb; �; ci 2 � which is threatened bysome action a 2 A, either a � b 2
 or c � a 2
.Also SAS+-MAR is a sound and complete planning algorithm.Theorem 3.9 For every complete plan structure hA;
;�i for some SAS+instance � = hV ;O; sI ; sGi and for every topological sorting ha1; : : : ; aniof hA;
+i, the sequence of operators ho2; : : : ; on�1i corresponding to theactions ha2; : : : ; an�1i solves �.Theorem 3.10 If MAR is called with the empty plan for some SAS+ in-stance � = hV ;O; sI; sGi, then it returns a complete plan structure for � ifthere exists some plan over � solving � and otherwise it fails.4 Lin- and Log-encodingsWe know from the formalism equivalence proofs [1, 2] that a SAS+ probleminstance can be solved by re-encoding it as an equivalent CPS probleminstance in the following way, which we call a log-encoding.De�nition 4.1 A log-encoding of a SAS+ problem instance � =hfv1; : : : ; vmg;O; sI; sGi is an equivalent CPS instance �0 de�ned as follows.For each v 2 V de�ne a set of atoms Pv as follows. Assume wlg. thatDv = f0; : : : ; nv � 1g for some nv � 0. Let kv = dlog nve. Further, let thefunction bitv : Dv � f1; : : : ; kvg ! f0; 1gkv be de�ned s.t. for x 2 Dv and1 � i � kv, bit(x; i) is the ith bit in the binary encoding of x. Now de�nePv = fpv1; pv1; : : : ; pvkv ; pvkvg where all members are distinct atoms. The statevariable v can be encoded by the atoms of Pv in the following way. De�nethe function �v : D+v ! 2Pv s.t. for x 2 Dv and 1 � i � kv,pvi 2 �v(x) i� x 6= u and bit(x; i) = 1pvi 2 �v(x) i� x 6= u and bit(x; i) = 0:Since all Pv are disjoint we can de�ne P = [v2VPv and merge all �v intoone function � : S+ ! 2P de�ned as s.t. for s 2 S+, �(s) = [v2V�v(s[v]).Also de�ne the function � : S+ ! 2P de�ned s.t. for s 2 S+, �(s) =[v2V 0(Pv � �v(s[v])), where V 0 = fv 2 V j s[v] 6= ug. Further, de�ne a setO0 of CPS operators s.t. for each operator hb; e; fi 2 O, O0 contains theoperator h�(b) [(f); �(e); �(e)i. Finally, let �0 = hP ;O0; �(sI); �(sG)i bethe corresponding CPS instance.Similarly, we de�ne a lin-encoding. 7

De�nition 4.2 A lin-encoding of a SAS+ instance is an equivalent CPSinstance de�ned in the same way as a log-encoding, but with the followingtwo di�erences. For each v 2 V, the set Pv and the function � are de�neds.t. Pv = fpv1; : : : ; pvnvg and pvi 2 �v(x) i� x = i.In a log-encoding, a state variable v with a domain of size n is simulatedby the domain Pv, containing 2 dlog ne distinct atoms. If the variable isunde�ned, then it is encoded as the empty set and otherwise it is encoded bya subset S of Pv s.t. for each pair of atoms pvi ; pvi exactly one of these atomsis in S. A lin-encoding is similar, but each possible value x of the variablev is simulated by its own, distinct atom pvx. The log-encoding constitutesa polynomial reduction of SAS+ into CPS while the lin-encoding is not apolynomial reduction in the general case [1].To get som intuition for these encodings, consider the following example.Let � = hV ;O; sI; sGi be a SAS+ instance where V = fv1; v2; v3g withdomains Dv1 = Dv2 = Dv3 = f0; : : : ; 3g. The values of �v for each value ofa variable v 2 V are shown in Table 2. Table 3 shows how a sample SAS+operator in O is lin- and log-encoded.x u 0 1 2 3log-reduction �v(x) ; fpv1; pv2g fpv1; pv2g fpv1; pv2g fpv1; pv2glin-reduction �v(x) ; fpv0g fpv1g fpv2g fpv3gTable 2: Log- and lin-encodings of a state variable with domain f0; : : : ; 3g. SAS+ operator o b = hu; u; 1i e = hu; 1; 2i f = h3; u; uilog-reduction of o ' = fp11; p12; p31; p32g � = fp21; p22; p31; p32g � = fp21; p22; p31; p32glin-reduction of o ' = fp31; p13g � = fp21; p32g � = fp20; p22; p23; p30; p31; p33gTable 3: Log- and lin-encodings of a SAS+ operator.5 ComparisonIn this section we will compare solving SAS+ instances directly using theSAS+-MAR algorithm with solving them indirectly by applying the CPS-MAR algorithm to the corresponding lin- or log-encoded instances. CPS-MAR and SAS+-MAR are, in principle, the same algorithm, di�ering atmost polynomially in the cost per search node. That is, the time CPS-MARtakes to solve the hardest CPS instance di�ers at most polynomially from thetime SAS+-MAR takes to solve the hardest SAS+ instance. This, however,does not tell us anything about the time required to solve an arbitrary SASinstance and solving its log-encoding respectively. We will, thus, analyse the8

relative complexity of solving an an arbitrary SAS instance and solving itslog- and lin-encodings respectively.We do not commit ourselves to any particular search technique. Rather,we will compare the size of the search spaces. Since the MAR algorithmsearches the plan space, which is in�nite, we must restrict the analysis tosearch trees that are cut at a certain depth. That is, we cut the search treeat every node containing a plan structure with more than k actions for somek, which can be captured formally as follows.De�nition 5.1 A depth n search tree for MAR, is a MAR search treewhere every node containing more than n + 2 actions is a leaf.As long as we are not considering any domain-speci�c heuristics, this shouldgive a fair estimate of the time complexity for any search technique usingsuch a limit for cutting branches. This can be formally captured as follows,where the additive constant 2 compensates for the actions amin and amax.It turns out that if open goals are chosen according to a FIFO strategy,then it may be exponentially more e�cient to use SAS+-MAR than to solvea log-encoding using CPS-MAR. If a LIFO strategy is used, then it is atleast polynomially more e�cient to use SAS+-MAR.5Theorem 5.2 If a FIFO strategy is used for selecting open goals in line 10of MAR, then for each n > 0, there exists a SAS+ instance � s.t. SAS+-MAR has a depth n search space of size O(n) for � and CPS-MAR has adepth n search space of size
(2n) for the corresponding log-encoded CPSinstance.Proof sketch: For arbitrary n > 0, let V = fvg and Dv = f0; : : : ; n� 1g.Wlg. assume n = 2k for some k � 0. Let O = fo1; : : : ; ong where for each1 � i � n, b(oi)[v] = i� 1, e(oi)[v] = imodn and f(oi)[v] = u. De�ne theSAS+ instance � = hV ;O; h0i; hn� 1ii and let �0 be the corresponding log-encoded CPS instance. It is obvious that SAS+-MAR has a non-branchingsearch tree of depth O(n) which is of size O(n), since it is non-branching.Now consider the CPS-MAR search space for �0. Call a node in the searchtree live if (1) it is either a leaf containing a plan with � n+2 actions or (2)it has at least two children which are live. Every threat-free live non-leaf hassome open goal and there are at least two di�erent operators that can beinstantiated to close this goal. It follows by induction over n that the rootof the search tree is live, which immediately implies that the search tree isof size
(2n). 2Theorem 5.3 If a LIFO strategy is used for selecting open goals in line 10of MAR, then for each n > 0, there exists a SAS+ instance � s.t. SAS+-MAR has a search space of size O(n) for � and CPS-MAR has a searchspace of size
(n2 log n) for the corresponding log-encoded CPS instance.5Analysing only these two strategies does not allow us to conclude that there can be astate-space blow-up for all goal selection strategies, but FIFO and LIFO are at least theextreme cases for such strategies. 9

Proof sketch: Consider the same SAS+ instance � as in the proof ofTheorem 5.2 and the, same, log-encoding �0. Consider the CPS-MAR searchspace for �0. We introduce the following terminology. Any consistent nodewithout threats is live if it is either a solution node or some of its childrenis live; full-open if the next open goal to select belongs to an action, theselected action, having all its preconditions open and semi-open if the nextopen goal to select belongs to an action, the selected action, having at leastsome preconditions closed by a causal link. We also note that there existsonly one solution leaf in the search tree, containing a plan of length n + 2(including the initial and goal actions). Hence, all live nodes are on the pathto this, unique solution leaf. Each operator has dlog ne =2 preconditions,so there must be �(n logn) live nodes, of which �(n) are full-open and�(n logn) are semi-open.Each full-open, live non-leaf has at least n=2 semi-open children, corre-sponding to the n=2 di�erent operators that can be instantiated to producethe next open goal. Only one of these nodes instantiates an operator thatcan produce all the preconditions of the selected action, however, so thereis exactly one live child among these n=2 nodes. Hence, each live, full-opennode has at
(n) children, containing some live semi-open node. A similarargument shows that every live, semi-open node has
(n) children, contain-ing some node which is live. Since there are �(n logn) live nodes, it followsthat the search space is of size
(n2 logn). 2This latter theorem provides only a lower bound, so we cannot ruleout the possibility that there is an exponential di�erence also for the LIFOstrategy. It seems unlikely that there should exist a strategy allowing us toto solve a log-encoding of a SAS+ instance using CPS-MAR as e�cientlyas if using SAS+-MAR directly. solving However, we could introduce anoperator-selection �lter in line 14 of the MAR algorithm in the followingway. Whenever there is some action of type o having an open goal p 2 Pv,for some variable v, then only operators o0 s.t. �(o0) \ Pv = '(o0) \ Pv areconsidered for instantiation. Such a �lter would make the algorithm avoidbranching by selecting the wrong operator to instantiate, so the exponentialsearch-space blow-up disappears. The CPS-MAR search space will still beslightly larger, though, but only within some constant. The reason for thisis as follows. Suppose there is some action of type o having an open goalp 2 Pv, for some variable v, and that some other precondition q 2 Pvis produced by some action a of type o0 in the plan structure. The rightchoice for producing p is to re-use the action a, but the algorithm wouldalso consider instantiating a new action of type o0, leading to a double-crossconict (three actions constituting two symmetric right-forks [7]), whichcannot lead to a solution. However, also this problem could be �ltered away.It should be noted, however, that when using such �lters, we are allowing thealgorithm to use information which is not available in the CPS instance �0,so we are, strictly speaking, no longer doing domain-independent planning.If using lin-encodings, on the other hand, there is no search-space blow-up at all. 10

De�nition 5.4 Let � be a SAS+ instance and �0 its corresponding lin-encoded CPS instance. Let T be the search tree of SAS+-MAR for � andT 0 the search tree of CPS-MAR for �0. T and T 0 are isomorphic if they areisomorphic trees s.t. for every N in T and its corresponding node N 0 in T 0,the plan structures of N and N 0 are isomorphic and for each action a in Nand its corresponding action b in N 0, b instantiates the lin-encoding of theoperator a instantiates.Theorem 5.5 Given A SAS+ instance � and its lin-encoded equivalent �0,the CPS-MAR search tree for �0 is isomorphic to the SAS+-MAR searchtree for � s.t. the plan structures in corresponding nodes in the two searchtrees are isomorphic..It is immediate that two search spaces are of the same size since they areisomorphic. Unfortunately, this does not imply that the cost of solving alin-encoded instance is comparable to the cost of solving the original SAS+instance. The reason is that, as mentioned in the previous section, lin-encodings are not polynomial reductions. More precisely, the number ofpropositions encoding a state variable may be exponential in the size of theoriginal representation of the state variable. Hence, the cost per node in thesearch tree for the lin-encoding may be exponentially larger than the costper node in the search tree for the original SAS+ instance, at least if the sizeof the state variable domains dominate over the number of state variablesand the number of actions in the node.Often, domains modelled by state variables are solved using a �rst-orderformalism,eg. STRIPS or TWEAK, encoding the state variables as unarypredicates. However, encoding each state variable as a unary relation andusing the lifted version of MAR [10] would be equivalent to using a lin-encoding, so also in this case do we risk an exponentially higher cost pernode.It is further easy to see from the de�nitions and proofs, that even ifallowing negative preconditions, negative goals and partial initial states, ie.using either the PSN or GT formalims, the theorems in this section wouldstill hold. The CPS formalism was used only because that is the formalismMAR was designed and de�ned for originally.Finally, it is immediate from the formalism equivalence proofs [1, 3] thatCPS, PSN and GT instances can be reencoded as SAS+ instances and besolved as e�ciently using SAS+-MAR as if using the original CPS/PSN/GT-MAR.6 ConclusionsWe have considered two planning formalisms which are known to be expres-sively equivalent|the CPS formalism, using propositional atoms, and theSAS+ formalism, using multi-valued state variables. As a case study, wehave modi�ed a well-known partial-order planner for CPS into an `identical'planner for SAS+and we have considered two encodings of SAS+ into CPS.11

It turns out that it is more e�cient to solve SAS+ instances by using theSAS+ planner directly than to �rst encode them as CPS instances and usethe CPS planner. For one encoding of SAS+ into CPS, which is a polyno-mial reduction, the CPS planner has a polynomially or exponentially largersearch space, depending on goal selection strategy. For the other encoding,which is not a polynomial reduction, the CPS search is of the same size asthe SAS+ search space, but the cost per node can be exponentially higherin this case. To the contrary, however, no similar problems arise when re-encoding CPS instances as SAS+ instances. Some of the problems can beavoided if we make the comparison unfair, allowing the CPS version of theplanner to use domain-speci�c heuristics or knowledge about the variableencodings. However, in the �rst case the comparison is then between adomain-independent planner and a domain-dependent one and in the othercase, we are no longer using the pure CPS formalism.Furhter note that encoding each state variable as a unary relation andusing the lifted version of MAR [10] would be equivalent to using a lin-encoding, so there may be an exponentially higher node cost also in thiscase.The main conclusion is that even if state variables can be easily re-encoded as sets of atoms or as predicates, we may risk losing e�ciencyif solving such a re-encoded instance rather than the original one. Re-encodings may work well in many practical cases, but must then be usedwith care.AcknowledgementsThis research was sponsored by the Swedish Research Council for the Engi-neering Sciences (TFR) under grant Dnr. 92-143.References[1] Christer B�ackstr�om. Computational Complexity of Reasoning aboutPlans. Doctoral dissertation, Link�oping University, Link�oping, Sweden,June 1992.[2] Christer B�ackstr�om. Equivalence and tractability results for SAS+ plan-ning. In Swartout and Nebel [12], pages 126{137.[3] Christer B�ackstr�om. Expressive equivalence of planning formalisms.Submitted manuscript.[4] Christer B�ackstr�om and Bernhard Nebel. Complexity results for SAS+planning. In Bajcsy [5].[5] Ruzena Bajcsy, editor. Proceedings of the 13th International JointConference on Arti�cial Intelligence (IJCAI-93), Chamb�ery, France,August{September 1993. Morgan Kaufmann.12

[6] Michael Garey and David Johnson. Computers and Intractability: AGuide to the Theory of NP-Completeness. Freeman, New York, 1979.[7] Joachim Hertzberg and Alexander Horz. Towards a theory of conictdetection and resolution in nonlinear plans. In N. S. Sridharan, editor,Proceedings of the 11th International Joint Conference on Arti�cial In-telligence (IJCAI-89), pages 937{942, Detroit, MI, USA, August 1989.Morgan Kaufmann.[8] David S Johnson. A catalog of complexity classes. In Jan van Leeuwen,editor, Handbook of Theoretical Computer Science: Algorithms andComplexity, volume A, chapter 2, pages 67{161. Elsevier, Amsterdam,1990.[9] Subbarao Kambhampati. On the utility of systematicity: Understand-ing tradeo�s between redundancy and commitment in partial-orderplanning. In Bajcsy [5].[10] David McAllester and David Rosenblitt. Systematic nonlinear plan-ning. In Proceedings of the 9th (US) National Conference on Arti�-cial Intelligence (AAAI-91), pages 634{639, Anaheim, CA, USA, July1991. American Association for Arti�cial Intelligence, AAAI Press/MITPress.[11] Steven Minton, Mark Drummond, John L. Bresina, and Andrew B.Philips. Total order vs. partial order planning: Factors inuencingperformance. In Swartout and Nebel [12], pages 83{92.[12] Bill Swartout and Bernhard Nebel, editors. Proceedings of the 3rdInternational Conference on Principles on Knowledge Representationand Reasoning (KR-92), Cambridge, MA, USA, October 1992. MorganKaufmann.
13

