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Abstract

One kind of temporal reasoning is temporal
projection—the computation of the consequences
of a set of events. This problem is related to a
number of other temporal reasoning tasks such
as story understanding, planning, and plan vali-
dation. We show that one particular simple case
of temporal projection on partially ordered events
turns out to be harder than previously conjec-
tured. However, given the restrictions of this
problem, story understanding, planning, and plan
validation appear to be easy. In fact, we show that
plan validation, one of the intended applications
of temporal projection, is tractable for an even
larger class of plans.

Introduction

The problem of temporal projection is to compute the
consequences of a set of events. Dean and Boddy [1988]
analyze this problem for sets of partially ordered events
assuming a propositional STRIPS-like [Fikes and Nils-
son, 1971] representation of events. They investigate
the computational complexity of a number of restricted
problems and conclude that even for severely restricted
cases the problem is NP-hard, which motivate them to
develop a tractable and sound but incomplete decision
procedure for the temporal projection problem.

Among the restricted problems they analyze, there is
one they conjecture to be solvable in polynomial time.
As it turns out, however, even in this case temporal
projection is NP-hard, as is shown in this paper. The
result is somewhat surprising, because planning, plan
validation, and story understanding seem to be easily
solvable given the restriction of this temporal projec-
tion problem.

This observation casts some doubts on whether tem-
poral projection is indeed the problem underlying plan
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validation and story understanding, as suggested by
Dean and Boddy [1988]. It seems natural to assume
that the walidation of plans is not harder than plan-
ning. Our NP-hardness result for the simple tempo-
ral projection problem seems to suggest the contrary,
though.

One of the most problematical points in the defini-
tion of the temporal projection problem by Dean and
Boddy seems to be that event sequences are permitted
to contain events that do not affect the world because
their preconditions are not satisfied. If we define the
plan validation problem in a way such that all possible
event sequences have to contain only events that affect
the world, plan validation is tractable for the class of
plans containing only unconditional events, a point al-
ready suggested by Chapman [1987]. In fact, deciding
a conjunction of temporal projection problems that is
equivalent to the plan validation problem appears to
be easier than deciding each conjunct in isolation.

Temporal Projection

Given a description of the state of the world and a de-
scription of which events will occur, we are usually able
to predict what the world will look like. This kind of
reasoning is called temporal projection. It seems to be
the easiest and most basic kind of temporal reasoning.
Depending on the representation, however, there are
subtle difficulties hidden in this reasoning task.

The formalization of the temporal projection prob-
lem for partially ordered events given below closely
follows] the presentation by Dean and Boddy [1988,
Sect. 2].

Definition 1 A causal structure is given by a tuple

S = (P, E,R), where

o P =1{pi,...,pn} is a sel of propositional atoms, the
conditions,

o £E={e1,...,6m} is a sel of event types,

e R={r,...,r,} is a sel of causal rules of the form
ri = (€, 04, 0, 8;), where
— ¢; € £ is the triggering event type,



— ; CP s a set of preconditions,
— a; CP is the add list,
— and &; C P is the delete list.

In order to give an example, assume a toy scenario
with a hall, a room A, and another room B. Room
A contains a public phone, and room B contains an
electric outlet. The robot Robby can be in the hall
(denoted by the atom h), in room A (a), or in room B
(b). Robby can have a phone card (p) or coins (c). Ad-
ditionally, when Robby uses the phone, he can inform
his master on the phone that everything is in order (1).
Robby can be fully charged (f), almost empty (e), or,
in unlucky circumstances, his batteries can be dam-
aged (d). Summarizing, the set of conditions for our
tiny causal structure is the following:

,P = {a’ b’ h’ p’ C’ i’ d’ e’ f}'

Robby can do the following. He can move from the
hall to either room (€en—q, €p—s) and vice versa (€4—p,
€p—h). Provided he is in room a and he has a phone
card or coins, he can call his master (e.q1). Addition-
ally, if Robby is in room b, he can recharge himself
(€charge). However, if Robby is already fully charged,
this results in damaging his batteries. Summarizing,
we have the following set of event types:

&= {Eh—>aa €h—by €a—h, €b—h; €cally Echarge}a

and the following set of causal rules:

R = { <€h—>aa {h}a {a}a {h}>’
<€h—>ba {h}’ {b}’ {h}>
<€a—>ha {a}a {h}’ {a}>
(es—n, {b},  {n}, {p}),
<€calla {aap}a {1}’ ®>’
<€calla {aa C}a {1}’ {C}>’
<€chargea {b, e}a {f}a {e}>’
<€chargea {b,f}, {d}a {f}>}

In order to talk about sets of concrete events and
temporal constraints over them, the notion of a par-
tially ordered ecvent set is introduced.!

Definition 2 Assuming a causal struciure & =
(P,€,R), a partially ordered event set (POFE) over
® is a pair Agp = (Agp, <) consisting of a set of actual
events Agp = {e1,...,ep} such that type(e;) € €, and
a strict partial order? < over Ag.

Continuing our example, we assume a set of six ac-
tual events A = {A,B,C,D E F}, such that

type(A) = €p—a
type(B) = €can
type(C) = €a—n
type(D) = €p—s
type(E) = €charge
type(F) = ep—n,

! This notion is similar to the notion of a nonlinear plan.
2A strict partial order is a tramsitive and irreflexive
relation.

and
A < B < C
D < E < F.

POEs denote sets of possible sequences of events sat-
isfying the partial order. A partial event sequence
of length m over such a POE (A, <) is a sequence
tf = {f1,..., fm) such that (1) {f1,...,fm} C A, (2)
fi # f; it i # j, and (3) for each pair f;, f; of events
appearing in f, if f; < f; then ¢ < j. For instance,
(A, B, C) is a partial event sequence of length three over
the POE given above, while (4, C,B) is not. If the event
sequence is of length |A], it is called a complete event
sequence over the POE. The sequences (4,B,C,D,E, F)
and (A,D,B,E,C,F) are complete event sequences, for
instance. The set of all complete event sequences over
a POE A is denoted by CS(A).

It =1{fi,..., fr,. .., [m) s an event sequence, then
(f1,..., fr) is the initial sequence of f up to fi, writ-
ten £/ fx. Similarly, £\ fi denotes the initial sequence
(f1,..., fr—1) consisting of all events before f;. Fur-
ther, we write f; g to denote (f1,..., fm, ).

Fach event maps states (subsets of P) to states. Let
S C P denote a state and let e be an event. Then
we say that the causal rule r is applicable in state S
iff r = (type(e), p,a,8) and ¢ C S. Given e and S,
app (S, €) denotes the set of all applicable rules for e
in state S. An event e is said to affect the world in a
state S iff app(S,e) # 0. In order to simplify notation,
we write ¢(r), a(r), §(r) to denote the sets ¢, o, and
8, respectively, appearing in the rule r = (¢, p, o, 8). If
there is only one causal rule associated with the event
type type(e), we will also use the notation ¢(e), a(e),
and é(e). Based on this notation, we define what we
mean by the result of a sequence of events relative to
a state S.

Definition 3 The function “Res” from states and
event sequences to states is defined recursively by

Res (S, <>) s
Res (S, (f; g))

Res(S,f)—
16(r)| r € app(Res(S,f),g)} U
{a(r)|r € app(Res(S,1),9)}.

It is easy to verify that the following equation holds
for our example scenario:

Res({h,e,c},(4,B,C,D,E,F)) = {h, £, i}.

The definition of the function Res permits sequences of
events where events occur that do not affect the world.
For instance, it is possible to ask what the result of
(A,D,B,E,C,F) in state {h, e, c} will be:

Res({h,e,c},(4,D,B,E C,F)) = {h, e, i}.

®Note that it can happen that two rules are applicable
in a state, one adding and one deleting the same atom p.
In this case, we follow [Dean and Boddy, 1988] and assume
that p holds after the event as reflected by the definition of
Res.



Although perfectly well-defined, this result seems to
be strange because the events D, E, and F occurred
without having any effect on the state of the world.

Given a state S, we will often restrict our atten-
tion to event sequences such that all events affect the
world. These sequences are called admissible event
sequences relative to the state S. The set of all com-
plete event sequences over A that are admissible rela-
tive to S are denoted by ACS(A,S).

In the following, we will often talk about which con-
sequences a POE will have on some initial state. For
this purpose, the notion of an event system is intro-

duced.

Definition 4 An event system O is a pair (Ag,7),
where Ag 1s a POE over the causal structure ® =
(P,€,R), and T C P is the initial state.

In order to simplify notation, the functions CS
and ACS are extended to event systems with the
obvious meaning, ie., CS({A,S)) = CS(A) and
ACS({A,S)) = ACS(A,S). Further, if CS(©) =
ACS(©), O is called coherent.

The problem of temporal projection as formulated
by Dean and Boddy [1988] is to determine whether
some condition holds, possibly or necessarily, after a
particular event of an event system.

Definition 5 Given an event system O, an event e €
A, and a condition p € P:

p € Poss(e,®) iff 3t € CS(O): p € Res(T,1/e)
p € Nec(e,®) iff VEe€ CS(O): p€ Res(Z,f/e).

Continuing our example, let us assume the initial state
T = {h,e,c}. Then the following can be easily verified:

i € Poss(B,O) i ¢ Nec(B,0)
d ¢ Poss(E,0) d ¢ Nec(E,0O).

In plain words, Robby is only possibly but not neces-
sarily successful in calling his master. On the positive
side, however, we know that Robby’s batteries will not
be damaged, regardless of in which order the events
happen.

Given a set of conditions S and a sequence f,
Res(S,f) can easily be computed in polynomial time.
Since the set CS(©) may contain exponentially many
sequences, however, it is not obvious whether p €
Poss(e,®) and p € Nec(e,®) can be decided in poly-
nomial time.

A “Simple”
Temporal Projection Problem

In the general case, temporal projection is quite diffi-
cult. Dean and Boddy [1988] show that the decision
problems p € Poss(e,®) and p € Nec(e,©) are NP-
complete and co-NP-complete, respectively, even un-
der some severe restrictions, such as restricting « or 6
to be empty for all rules, or requiring that there is only
one causal rule associated with each event type.

Definition 6 An cvent system is called uncondi-
tional iff for each € € &, there exists only one causal
rule with the triggering event type ¢. An event system
s called simple iff it is unconditional, T is a single-
ton, and for each causal rule r = (e, ¢, o, 8), the sets
@, a, and & are singletons and ¢ = 6.

Dean and Boddy conjecture that temporal projec-
tion is a polynomial-time problem for simple event sys-
tems [Dean and Boddy, 1988, p. 379]. As it turns out,
however, also this problem i1s computationally difficult.

Theorem 1 For simple event systems O, deciding p €
Poss(e,©) is NP-complete and deciding p € Nec(e, ©)
1s co-NP-complete.

Proof Sketch. First we show NP-completeness of p €
Poss(e, ©).

Membership in NP is obvious. Guess an event se-
quence f and verify in polynomial time that f € CS(©)
and p € Res(Z,f/e).

In order to prove NP-hardness, we give a polyno-
mial transformation from path with forbidden pairs
(PWFP) to the temporal projection problem. The for-
mer problem is defined as follows:

Given a directed graph G = (V,A), two
vertices s, € V, and a collection C =

{{al,bl}, .. .,{an,bn}} of pairs of arcs from A,

is there a directed path from s to ¢t in G that con-
tains at most one arc from each pair in C?

This problem is NP-complete, even if the graph is
acyclic and all pairs are disjoint [Garey and Johnson,
1979, p. 203].

We now construct an instance of the simple temporal
projection problem from a given instance of the PWFP
problem, assuming that the graph is acyclic and the
forbidden pairs are all digjoint. Let G = (V, A) be a
DAG, where V = {vy,..., v}, and let C be a collection
of “forbidden pairs” of arcs from A. Further, let s and
t be two vertices from V' and assume without loss of
generality that there is no arc (¢,v;) € A. Then define

P = {vi,...,vptU{x}

& = Aea;l(vi,v) € A} ule}

R = (e {vid {vih {vih)| (vi, v;) € A} U
{(e, {3, =} {1}

feijle; € £pudes}

€ ; forall e; ; € A — {e,}

e, forall e € A— {e,}

€kl < €5 iff {(UZ',U]'), (vk,vl)} € C and
there is a path from v; to v

P
l

type(eij
type (e

D
|

A

I = {s}.

Note that © can be constructed in polynomial time
and that © is a simple event system. Further note that
since the forbidden pairs are pairwise disjoint, there



is no set of events {f1, f2, fs} € A — {e.} such that
i =Ff2= s

It 1s now easy to verify that there is a path from s
to t in G that contains at most one arc from each pair
in C'if, and only if, t € Poss(e., ©).

The co-NP-hardness result for the second problem
follows by a slight modification of the above transfor-
mation. Membership in co-NP is again obvious.* m

This result is somewhat surprising because one
might suspect that story understanding and planning
are easy under the restrictions imposed on the struc-
ture of event systems. In fact, a highly abstract form
of story understanding is a polynomial-time problem
under these restriction [Nebel and Béckstréom, 1991;
Bickstrom and Nebel, 1992]. Also planning is an easy
problem in this context. Planning can usually be trans-
formed to the problem of finding a shortest path in a
graph, which is a polynomial time problem. In the
general case, the size of the graph is exponential in the
size of the problem, but it turns out that the simple
problem corresponds to a linearly sized graph. Hence,
the problem can be solved in polynomial time. Sim-
ilar tractability results have been obtained by Bylan-
der [1991], Erol et al [1991] and Béckstréom and Klein
[1991] for more complicated planning problems. Some
relations between these results and the complexity re-
sults for temporal projection are discussed in the full
paper [Nebel and Backstrom, 1991].

One reason for analyzing the temporal projection
problem is that it seems to constitute the heart of
plan validation. If we now consider the restrictions
placed on the simple temporal projection problem, we
have already noted that planning itself—a problem one
would expect to be harder than validation—is quite
easy. One explanation for this apparent paradoxical
situation could be that a planner could create the com-
plicated structure we used in the proof of Theorem 1,
but it never would do so. Hence, the theoretical com-
plexity never shows up in reality. This explanation is
unsatisfying, however. If this would be really the case,
we should be able to characterize the structure of the
nonlinear plans planning systems create and validate.
The real reason is more subtle, as will be shown below.

Temporal Projection and
Plan Validation

Dean and Boddy [1988, p. 378] suggest that tempo-
ral projection is the basic underlying problem in plan
validation:

A nonlinear plan is represented as a set of actions
{e1,...,en} partially ordered by <. Each action
has some set of intended effects: Intended(e;) C
P. A nonlinear plan is said to be valid just in case
Intended(e;) C Necessary (e;), for 1 <7 < n.

*Complete proofs can be found in the full paper [Nebel
and Backstrom, 1991].

Although this definition sounds reasonable, there are
some points which are arguable. We use a slightly
different definition of plan validation in the following.

Definition 7 A POE Ag over a causal structure ® =
(P, €, R) is called a valid nonlinear plan with respect
to an initial state T C P and a goal state G C P iff
Ag achieves its goal, i.e., G C Res(Z,f) for all f €
CS(Ag), and (Ag,T) is coherent.

Note that our definition coincides with Chapman’s
[1987, p. 340] definition of when a plan solves a prob-
lem. In contrast to Dean and Boddy’s formulation,
our definition does not refer to the intended effects of
particular events but to the effects of the overall plan
and to the state before particular events. Further note
that plan validation can be reduced to deciding coher-
ence of an event system in linear time. If Ag is a POE
and G is the goal state, A% shall denote the POE Ag
extended by an event e, such that e, has to occur last
and there is exactly one causal rule associated with e,
such that ¢(e.) =G.

Proposition 2 A POE Ag is a valid nonlinear plan
with respect to I and G iff <A%,I> s a coherent event
system.

In what follows, we show that coherence, and, hence,
the validity of nonlinear plans, can be decided in poly-
nomial time, provided the event system is wuncondi-
tional. Although the restriction may sound severe, it
shows that plan validation is tractable for a consider-
ably larger class of plans than temporal projection. In
the full paper [Nebel and Backstrom, 1991] we argue
that the restriction to unconditional actions is not very
severe given the formalism used in this paper.

First of all, we note that coherence cannot be eas-
ily reduced to temporal projection as defined by Dean
and Boddy since coherence refers to the state before
an event occurs. For this reason, we define a variant
of the temporal projection problem.

Definition 8 Given an event system ©, an event e €
A, and a condition p € P:

p € Possy(e,©) iff It € CS(O): p € Res(Z,f\e)
p € Necy(e,©) iff VI € CS(O): p € Res(Z,f\e).

Deciding p € Necy(e,©) instead of p € Nec(e, ©)
does not simplify anything. All the NP-hardness proofs
for Nec can be easily used to show NP-hardness for
Necy. Nevertheless, using this variant of temporal pro-
jection we can decide coherence for unconditional event
systems.

Proposition 3 An unconditional event system © is
coherent iff

Ve € A: ¢(e) C Necy(e, O).

In order to simplify the following discussion, we will
restrict ourselves to comsistent unconditional event
systems, which have to meet the restrictions that «(e)n



8(e) = 0, for all e € A. Note that any unconditional
event system O can be transformed into an equivalent
consistent unconditional event system ©’ in linear time
by replacing é(e) with é(e) — a(e) for all e € A.

As a first step to specifying a polynomial-time algo-
rithm that decides coherence for unconditional event
systems, we define a simple syntactic criterion, written
Maybe, (e, ©), that approximates Necy(e, ©).

Definition 9 Given a consistent unconditional event
system ©, an atom p € P, and an event e € A,
Maybey (e, ©) is defined as follows:

p € Maybe,(e, ©)
uf
(HpeZvIeeAle! <eAp e a(e)]A
(2)-3e’ e A—{e}: [ Aene e Apeb(eA
(3)Vel e A: [(¢' <eApeble)) —
de” € A:(e/ < e’ <eApeEale))].

This definition resembles Chapman’s [1987] modal
truth criterion. The first condition states that p has to
be established before e. The second condition makes
sure that there is no event unordered w.r.t. e that could
delete p, and the third condition enforces that for all
events that could delete p and that occur before e, some
other event will reestablish p. It is obvious that this
criterion can be checked in polynomial time.

Maybe, is neither sound nor complete w.r.t. Necy
in the general case because we do not know whether
the events referred to in the definition actually affect
the world. However, Maybe, coincides with Necy in
the important special case that the event system is
coherent.

Lemma 4 Let © be an consistent unconditional event
system. If © is coherent, then

Ve € A: Necy(e,©) = Maybe,(e, ©).

Proof Sketch. “C”: Suppose that the first condi-
tion does not hold for some event e and atom p €
Necy(e,©). Since O is coherent, we can construct an
admissible complete event sequence £ = (f1,...,e,...)
such that g = f\e contains only events g; such that
g; < e. By induction over the length of f\e, we get
p & Res(Z,f\e), which is a contradiction.

Suppose that the second condition does not hold,
l.e., there exists an event ¢’ unordered with respect to e
such that p € é(e’). Then there exists a complete event
sequence ¥ = {f1,...,€¢/,e,...). Since O is coherent,
and thus e’ affects the world, it is obvious that p ¢
Res(T,t/e') = Res(Z,f\e), which is a contradiction.

Suppose the third condition is not satisfied, i.e.,
there exists p € Necy(e,©) and an event & < e
such that p € é(e’), but there is no e’ such that
e/ < e <eand p€ a(e’). Consider a complete event
sequence f such that there are only events e; between
¢’ and e that have to occur between them. Because
p & Res(Z,f/e") and because by assumption p & «a(e;)
for all events e; occurring between €’ and e, we can

infer p € Res(Z,f\e) O Necy(e,®), which is again a
contradiction.

“D”: Assume p € Maybe,(e,®). Consider any com-
plete event sequence g € CS(©). We want to show that
p € Res(Z,g\e). By condition (1) of the definition of
Maybe, and the fact that all complete event sequences
are admissible, we know that there exists g; € A such
that [g\g;| < |g\e| and p € Res(Z, g\g;). Consider the
latest such event, i.e., ¢; with a maximal 7. Since all
event sequences are finite, such an event must exist. If
g; = e, we are ready. Otherwise, because of conditions
(2) and (3), ¢ cannot be maximal. m

Now we can give a necessary and sufficient condi-
tion for coherence of consistent unconditional event
systems.

Theorem 5 A consistent unconditional event system
© s coherent iff

Ve € A: p(e) C Maybey(e, ©).

Proof Sketch. “=7:
Lemma 4.

“<": For the converse direction, we use induc-
tion on the number of conditions appearing in the
preconditions of events over the entire event system:
E= 3 cu o)l

For the base step, £ = 0, the claim holds trivially.

For the induction step assume an event system ©
with k+1 preconditions such that ¢(e) C Maybe, (e, ©)
for all e € A. Consider an event system ©' that is
identical to © except that for one event f such that

o(f) # 0 weset ¢'(f) = 0. Because k > > 4/ [¢(e)],
we can apply our induction hypothesis and conclude
that © is coherent. By Lemma 4, we have o(f) C
Maybe,(f,©) = Maybe,(f,0') = Necb(f, ). Hence,
any sequence g € CS(0') that contains f is an ad—
missible sequence even if we would have ¢ (f) = o(f).
Since CS(©) = CS(©'), it follows that © is coherent.
n

Follows immediately from

Since plan validation can be reduced to coherence
in linear time, it is a polynomial-time problem if the
causal structure is unconditional.

Theorem 6 Plan validation for unconditional causal
structures is a polynomial-time problem.

Proof Sketch. Follows from Proposition 2, from The-
orem 5, the fact that any unconditional event struc-
tures can be transformed into a consistent one in lin-
ear time, and the fact that Maybe, can be decided in
polynomial time. ®

One interesting point to note about this result is that
it appears to be easier to decide a big conjunction of

the form
/\ p(e) C Necy(e, ©)
ecA

than to decide one of the conjuncts. In other words,
the claim by Dean and Boddy [1988] that temporal



projection (in some form) is the underlying problem
of plan validation is conceptually correct. However, it
turns out that solving the subproblems is harder than
solving the original problem (assuming NP # P).

Intuitively, temporal projection is difficult because
we cannot avoid to consider all elements of CS(©) as
demonstrated in the proof of Theorem 1. Plan valida-
tion for unconditional causal structures is easy, on the
other hand, since satisfaction of all preconditions can
be reduced to a local syntactic property.

Although maybe surprising, the result 1s not new.
Chapman [1987] used a similar technique to prove
plan validation to be a polynomial-time problem for a
slightly different formalism. It should be noted, how-
ever, that Chapman’s [1987, p. 368] proof of the cor-
rectness and soundness of the modal truth criterion is
correct only if we make the assumption that the plan
is already coherent—a property we want to decide. In
fact, it seems to be the case that Chapman missed to
prove the second half of our Theorem 5.

Discussion

Reconsidering the problem of temporal projection for
sets of partially ordered events as defined by Dean and
Boddy [1988], we noted that one special case conjec-
tured to be tractable turned out to be NP-complete.
Although this result does not undermine the arguments
of Dean and Boddy [1988] that temporal projection is
a quite difficult problem, 1t leads to a counter-intuitive
conclusion, namely, that planning is easier than tem-
poral projection in this special case.

Further, we showed that plan validation, if defined
appropriately, is tractable for an even larger problem,
namely validation of unconditional nonlinear plans.
This means that the problem of validating a plan as
a whole is easier than validating all its actions sepa-
rately. In other words, what might look like a divide
and conquer strategy at a first glance is rather the op-
posite.

These two observations lead to the question of
whether the formalization of temporal projection
[Dean and Boddy, 1988] really captures one of the
intended applications, namely, validation of nonlinear
plans. In particular, one may ask whether the incom-
plete decision procedure for temporal projection devel-
oped by Dean and Boddy [1988] is based on the right
assumptions. It turns out that the incomplete deci-
sion procedure fails on plans that could be validated in
polynomial time using the techniques described above
[Neb]el and Backstrom, 1991; Backstrom and Nebel,
1992].

As a final remark, it should be noted that the criti-
cisms expressed in this paper are possible only because
Dean and Boddy [1988] made their ideas and claims
very explicit and formal.
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