
Open Resources for Language Technology

Lars Degerstedt and Arne Jönsson

Department of Computer and Information Science
Linköping University, SE-581 83, LINKÖPING, SWEDEN

larde@ida.liu.se arnjo@ida.liu.se

Abstract
NLPFARM is an Open Source code repository for development and sharing of language technology resources. NLPFARM hosts a number
of projects covering various language technology needs, providing possibilities to develop more robust and well-formed applications.
NLPFARM has been in use for more than a year and our experience is that it has facilitated co-operation and sharing of resources but that
there are still issues to consider.

1. Introduction
Ideally, the research community of language technol-

ogy should work towards one and the same goal, concern-
ing its software – a shared code library that can be used for
sharing research ideas and serve as a platform for commer-
cial efforts and applications. Furthermore, new research re-
sults must be readily available to industry in order for new
techniques to be useful. Often such dissemination has been
made through the development of prototypes showing the
possibilities and prospects of the current research frontier.
Such prototypes illustrate the potential, but very often the
code itself has been fragile and unreliable and often lack a
proper API (Olsson and Gambäck, 2000).

Another possibility is to provide a repository of frame-
works, tools, and linguistic resources in the form of pub-
licly available facility software ready to be used and re-used
in industry projects of today and tomorrow. This puts new
demands on both design and robustness of the research soft-
ware. In order to be useful the design must have a generic
character, i.e. it must be possible to use new software with-
out too much extra effort. Furthermore, the development
strategy must be chosen carefully so that robustness of code
is eventually achieved. Finally, the design is preferably
open and the code well documented.

To push the level of research software forward it is im-
portant to stimulate interactions between different projects,
its usage and methods of development. By putting more
emphasis on project evolution, research systems and lan-
guage technology modules will eventually evolve beyond a
certain point into artifacts useful for industry (Lehman and
Ramil, 2001). In fact, the evolutionary perspective on sys-
tems, designs and resources also place new issues on the
language technology research agenda.

Language technology systems and frameworks tend to
have a proprietary character (with a few important excep-
tions such as the DARPA initiative cf. (Aberdeen et al.,
1999)). This state of affairs means that it is difficult to dis-
tribute research results to industry and also that it is difficult
for researchers to keep in touch with parallel development
of ideas of software in industry, and other parts of the soci-
ety.

We find ourselves in a situation where we want to:

� hand over existing preliminary prototypes into a phase
of more robust software constructions

� keep our research software compliant with the
network-based software technology to be useful for in-
dustry

� find competent computing competence that are willing
to engage in our projects

� use our systems in an industrial environment and find
users that are truly interested in our results and there-
fore give us feedback that help us direct our own re-
search work.

At this point we turn to the open source community and see
that they seem to solve several of these problems for us, if
we only join their activities.

Definitions of Open Source are somewhat shallow and
need more fundamental analysis of the phenomena. In par-
ticular, the following aspects of Open Source are interesting
from the perspective of development methodology:

� publicity: development is open to public scrutiny since
communication is done through open channels such as
mailing lists, discussion forums and web sites.

� community cooperation: development is conducted by
a community of independent groups that jointly de-
velop software as the result of pursuing their different
goals within the same framework (technical or appli-
cation purpose).

� user-driven design: the members of the user commu-
nity essentially become the developers of the content.
Development tends to become just-in-time, relevance-
based and bottom-up.

Moreover, Open Source projects are not really planned
but rather grow as a result of the emerging needs of the
many different users and the desires of individuals. Result-
ing from the directional flexibility is adaptation to chang-
ing requirements. In an Open Source community the abil-
ity to change is built into the individuality of development.
Everyone is a change-prone individual making decisions
on their own, going their own way. In its extreme, Open
Source is a non-directional development process. Though
most Open Source projects have an application vision, total
freedom of choice is present within the boundaries of that
vision and the vision may also change over time.



2. nlpFarm
NLPFARM, is an open source community that has been

developed as a powerful means for dissemination of re-
search results through new evolving facility software devel-
oped following the open-source criteria. We suggest focus-
ing on the software development process and means to fa-
cilitate this process instead of “reuse via a standardised lan-
guage data storage, management and visualisation” (Cun-
ningham, 1999). With useful facility software modules
available, i.e. code that can be used without too much effort,
NLPFARM encourage development of language technology
that has previously been only available by exemplification
design in research prototypes. The goal is to iteratively de-
velop more and more robust and effective facility software,
which in turn makes the end-application thinner and thus
leaves room for more powerful features to be added.

The NLPFARM site consists of two parts: a web resource
for users of the facility software, and a project page for
facility software developers and administration1. The site
contains dowloadable release files, project documentation,
and the latest source code available on-line2.

2.1. Infrastructure

The NLPFARM is organised as a collection of Java soft-
ware projects, each with their own independent piece of
software, download files and documentation. We have de-
veloped a project work model that contains straight-forward
rules for project management, development, and the com-
munity life. Moreover, efforts have been made to simplify
a uniform treatment of development and project builds.
In particular, a tool for automatically creating all required
project files, projectConfig, has been created. Using the
tool simplifies compilation, debugging, as well as release
file and documentation generation. In this way, project evo-
lution is facilitated, and thus also the ability to follow up
new needs coming in from client applications that use the
facility software of NLPFARM.

2.2. Resources

NLPFARM is constantly growing and changing. Cur-
rently (February 2004) the site hosts 11 projects:

Tools and Frameworks Tools and frameworks comprise
projects that are building blocks for a variety of lan-
guage technology applications and situations.

� QUAC: QUAC is a framework for the interface be-
tween a q/a, or dialogue, system and background
knowledge sources. Currently QUAC supports
access to relational databases and to HTTP re-
sources. In addition, for query-based resources it
offers a template-based query generation scheme.

� GUIDIA: The GUIDIA project provides high-
level dialogue system components which works
under different widget libraries. Currently the
components work on both Java AWT and Swing.

1See http://nlpfarm.sourceforge.net and
http://sourceforge.net/projects/nlpfarm.

2The latest version of the source code is available at all times
by the SourceForge file handling system, i.e. CVS.

� MODI: The MODI project enables users to inter-
act wireless with dialog systems. This is achieved
by utilising the Java MIDP libraries, which are
supported on modern cell phones and PDA:s.

� JAVACHART: JAVACHART is a chart parser with
the following features: 1) it uses syntax similar
to the well-known PATR-II parser. 2) it supports
partial parsing of a sentence 3) it contains both a
command-line mode and a server Java API for
use in applications. 4) it supports compilation
of resources where syntax-checking is done once
and intermediate code is placed on file.

� MOLINC: a collection of dialogue system com-
ponents for re-use of computational phases, and
strategies of a dialogue system.

Demo System This project is used to exemplify how other
projects at the farm can be used in this sample appli-
cation.

� TVGUIDE: TVGUIDE is an information-
providing system where users can type natu-
ral language queries about movies. The cur-
rent information source is the Internet Movie
Database (http://us.imdb.com), and (from version
0.2.0 and on) Swedish TV channel tableau (such
as http://www.tv.nu). The focus of the project is
not so much on dialogue coverage but rather on
principal designs and use of tools.

Libraries Fundamental NLP-modules that form a platform
that can be used both by the more advanced projects
and directly by applications.

� NLPLIB: The NLPLIB project contains basic NLP

packages useful for development of NLP tools
and applications. The library contains a Factory
based implementation of feature structures.

� JBRICKSLIB: The library contains various use-
ful utility snippet classes, implementations of
well-known design patterns, and general support
classes such as configuration management. The
aims of JBRICKSLIB are: 1) to facilitate for
other projects to use well-known design patterns
in their code. 2) to encourage to use generic so-
lutions in all NLPFARM projects for similar prob-
lems. 3) to become a fairly complete Java plat-
form tailored for the needs of the NLP libraries
and applications of study at the NLPFARM.

� JGRLIB: The project contains Java implementa-
tions of various sorts of grammars. Right now,
ordinary context-free grammars and their prob-
abilistic friends, PCFG, are implemented. The
grammars come with parsers and, in the case of
PCFG, an implementation of the Inside-Outside
training algorithm.

� JAVACONLIB: JAVACONLIB is a set of library
functions useful for test and development of al-
gorithms using word contexts.



Support A kind of meta activity containing projects for
support of development of NLP facility and application
software.

� ADMIN: The project contains various resource
files, scripts and programs that supports manage-
ment of the other projects at the NLPFARM. In
particular, it contains the configuration tool pro-
jectConfig for easy handling of the administrative
files for development and release of open source
projects.

As the software modules at NLPFARM become more
mature we intend to also package selected projects as an of-
ficial NLPFARM toolkit release. The user will then be able
to download the resources both as a unit, and as separate
parts.

3. Using nlpFarm
We have been using NLPFARM for more than a year,

and have developed a variety of projects, (Johansson, 2004,
provides an overview) based on the methodology of incre-
mental and iterative development (Degerstedt and Jönsson,
2001). In this section we present one application being de-
veloped using NLPFARM resources.

The BIRDQUEST system is an NLP question-answering
system about birds (Andén et al., 2004). The main fo-
cus of BIRDQUEST is on utilising information extraction
techniques for dialogue systems and on using an ontology.
The system have full support for basic dialogue capabilities,
such as clarification sub-dialogues and focus management,
based on empirically-collected dialogue corpora. The cur-
rent information source is a MySQL Database. The system
is the first documented dialogue system application, besides
the demo system TVGUIDE, that uses the NLPFARM facil-
ity software.

Initially BIRDQUEST was developed in parallel with
the activities on NLPFARM, and consequently, some frame-
works were not available from the beginning. BIRDQUEST

used the JavaChart-parser for parsing user requests from the
start. The grammar and lexicon needed for BIRDQUEST

were new but a variety of constructions from the demo sys-
tem TVGUIDE could be adopted.

The experiences from the BIRDQUEST project gave
feedback that led to further development of the NLPFARM

facility software. The BIRDQUEST system uses a design
pattern called phase graph processor (PGP) for the NLP part
of the system (Degerstedt and Johansson, 2003). The PGP

facility software module was further refined during the de-
velopment BIRDQUEST. Focus resolution and generation
are based on extendable object-oriented facility modules.
The modules could be strengthened by gradual general-
ization of ideas from the BIRDQUEST application code.
The database lookup module used facility software. The
combination of ordinary database processing with tests and
combination of results based on an ontology module gave
birth to future extensions in facility software. In particular,
the projects NLPLIB, QUAC, and MOLINC have been fur-
ther refined and extended, as a consequence of this work.
BIRDQUEST was also re-factored to utilise these new, more
stable and robust, modules.

4. Experience
The NLPFARM resource has been in use for more than

a year and our experience is that it has facilitated co-
operation and sharing of resources but that there are still is-
sues to consider, especially regarding various types of NLP

software developers.

Design and implementation We note that finding the
right conceptualization has been the key to good interface
design. The use of design patterns has been very helpful as
means for this, especially since our approach is incremen-
tal and bottom-up. Modularisation has been done on several
levels, most importantly perhaps the choice to encapsulate
the software in “projects”, i.e. stand-alone release entities.
This forces the development and the code to behave in a
structural way. The major re-use factor so-far is the use of
design patterns, as discussed above. For knowledge repre-
sentation we have so far focused on representation on the
Java-object-level (i.e. not the XML level etc). Extensive
use of (common) interfaces for encapsulation of concrete
classes which makes the representation robust, e.g. as in
the case for structures where we use an (adjusted) interface
from the OpenNLP initiative3

Methodology Our research work related to the NLPFARM

has used an evolutionary development process, developing
applications and facility software as individual projects but
with frequent interaction between the projects. No facil-
ity software at the NLPFARM has yet reached a more stable
and mature status, but we expect to reach at least 1.0 ver-
sions of the most important projects at the end of the year
2004. The basic iterative cycle of the facility software at
NLPFARM is that each phase comprises a new release of a
project. Functionality is incrementally added to the system
in a cumulative way in each release. Following the evo-
lutionary philosophy of the agile methodology (including
Open Source), the contents of NLPFARM have been built
bottom-up in separate independent pieces. Dependencies
between facility software projects themselves are also en-
couraged, but should be one way, and libraries are only al-
lowed to depend on other libraries.

Community An evolutionary process such as NLPFARM

also means a community activity. In the case of a language
technology resource such as the NLPFARM process it has
been a mix of software builders, linguistic and interface
experts and domain experts. The SourceForge community
has given the NLPFARM community its major channels for
communication. This has led to download of our results and
email contacts with other interested parties. The NLPFARM

has become a part of the NLP community formed under the
OpenNLP initiative, and we will integrate our efforts under
the forthcoming OpenNLP Java platform. We have initiated
discussions of and made initial attempts for re-using com-
mon APIs within the OpenNLP forum. OpenNLP is still
immature, though there are currently 14 member projects.
The organisation is informal in its character, since it is run
in the bottom-up style of Open Source.4

3See http://opennlp.sourceforge.net for more details on the
OpenNLP umbrella project.

4In particular, one can note that there has been suggestions
within OpenNLP to learn from the both positive and negative ex-



Usage-feedback has come mostly from application
projects in direct relation with the NLPFARM and exchange
between the NLPFARM projects themselves, so far. How-
ever, there has also been concrete suggestions of improve-
ments coming from independent parties. The re-use be-
tween projects is a suitable initial test bench, since these
projects are developed as separate release-entities. In terms
of research results, our method for dialogue system devel-
opment takes a step towards incorporating Open Source
ideas, by further examination of the incremental aspects of
the method (Johansson et al., 2002).

5. Discussion
During the work with NLPFARM we have gained new

insights that will be used to refine our working process and
software designs further.

That application artefacts and facility software are kept
distinct is crucial as the basis of the software refinement
process. For an application, the functional coverage relative
to a domain and language models are the essential issues.
For the facility software, representation formats and generic
design are the focus points during development. Thus, the
needs of the NLPFARM projects themselves are different
from the needs of their clients, the NLP applications – on
all three levels of development, methodology and commu-
nity.

Differences in professional background tend to deter-
mine the order of how developers prefer to work. Thus, in a
multi-disciplinary environment the method must support a
multitude of iterative strategies to exist in parallel. We have
also learnt the importance of discrimination of beginners
(typically last year undergraduates in our case) with more
experienced system developers (senior graduates or people
with industrial experiences). The beginner must be able to
work with minimal overhead from methodology and other
support routines. Their strength lies in the fresh eyes on the
problems at hand, and they often have more time to spend
but in a shorter interval. The senior developer must take
care of leverage of a platform on which the beginners can
work, as well as re-package results in more robust formats.

Just as pair programming has been found to be a success
in Extreme Programming (Beck, 2000), we have found that
development should be done jointly in small groups (two-
three persons is often optimal) working with NLP aspects of
a system. Working alone with development tends to diverge
the work and thereby decrease re-use, and too large groups
makes the overhead of communication too heavy. The two-
three group size is especially important for more technically
complex phenomena, such as insuring that a dialogue sys-
tem is coherently built in all its executional phases. Note
that programming in groups does not mean that the devel-
opers must be located in the same room. Through NLP-
FARM we have means that facilitate geographically dis-
tributed programming.

Initially it has been natural to work bottom-up with the
software of the NLPFARM. However, recently we have
placed more and more focus on how to handle language
resources, in order to avoid too much divergence between

periences of the GATE project.

the projects. This indicates that the NLPFARM process will
eventually become an intertwined approach consisting of
both a bottom-up software development and a top-down
knowledge representation.

Acknowledgment
This research is financed by Vinnova, Swedish Agency

for Innovation Systems.

6. References
Aberdeen, John, Sam Bayer, Sasha Caskey, Lauire Dami-

anos, Alan Goldschen, Lynette Hirschman, Dan Loehr,
and Hugo Trappe, 1999. Implementing practical dia-
logue systems with the darpa communicator architecture.
In Proceedings of IJCAI-99 Workshop on Knowledge and
Reasoning in Practical Dialogue Systems, August, Stock-
holm.

Andén, Frida, Lars Degersedt, Annika Flycht-Eriksson,
Arne Jönsson, Magnus Merkel, and Sara Norberg, 2004.
Experiences from Combining Dialogue System Devel-
opment with Information Access Techniques. In Mark T.
Maybury (ed.), New Directions in Question Answering.
AAAI/MIT Press.

Beck, Kent, 2000. Extreme Programming Explained.
Addison-Wesley.

Cunningham, Hamish, 1999. A Definition and Short His-
tory of Language Engineering. Natural Language Engi-
neering, 5(1):1–16.

Degerstedt, Lars and Pontus Johansson, 2003. Evolution-
ary Development of Phase-Based Dialogue Systems. In
Proc. of the 8th Scandianvian Conference on Artificial
Intelligence. Bergen, Norway.

Degerstedt, Lars and Arne Jönsson, 2001. Iterative Imple-
mentation of Dialogue System Modules. In Proceedings
of Eurospeech 2001, Aalborg, Denmark.

Johansson, Pontus, 2004. Design and development
of recommender dialogue systems. Licentiate Thesis
1079, Linköping Studies in Science and Technology,
Linköping University.

Johansson, Pontus, Lars Degerstedt, and Arne Jönsson,
2002. Iterative Development of an Information-
Providing Dialogue System. In Proceedings of 7th
ERCIM Workshop.

Lehman, M. M. and J. F. Ramil, 2001. An Approach to a
Theory of Software Evolution. In Proc. of the 4th int.
workshop on Principles of software evolution. Vienna,
Austria.

Olsson, Fredrik and Björn Gambäck, 2000. Composing a
general-purpose toolbox for swedish. In Proceedings of
Using Toolsets and Architectures to Build NLP Systems
a workshop held in conjunction with The 18th Interna-
tional Conference on Computational Linguistics (COL-
ING 2000). Centre Universitaire, Luxembourg.


