
Using Random Indexing to improve Singular Value Decomposition for Latent
Semantic Analysis

Linus Sellberg, Arne Jönsson

Department of Computer and Information Science, Santa Anna IT Research Institute AB
Linköping University, SE-581 83, LINKÖPING, SWEDEN

x07linse@ida.liu.se, arnjo@ida.liu.se

Abstract
We present results from using Random Indexing for Latent Semantic Analysis to handle Singular Value Decomposition tractability
issues. We compare Latent Semantic Analysis, Random Indexing and Latent Semantic Analysis on Random Indexing reduced matrices.
In this study we use a corpus comprising 1003 documents from the MEDLINE-corpus. Our results show that Latent Semantic Analysis on
Random Indexing reduced matrices provide better results on Precision and Recall than Random Indexing only. Furthermore, computation
time for Singular Value Decomposition on a Random Indexing reduced matrix is almost halved compared to Latent Semantic Analysis.

1. Introduction
We are developing an FAQ-system called ACC (Automatic
Contact Center) were clients requests for guidance, help or
contact information are handled without human interven-
tion, c.f. (Åberg, 2002). We use a two-step approach for
our development of ACC. First, we collect human-human
call center conversations and build a database that can be
searched in various ways. This database will be used to
suggest responses to the call center agent continuously. The
database will be extended when new requests arise. Once
the database is large enough we will use it to automatically
answer requests from the clients.
In this paper we present improvements to techniques for
identifying “similar” requests from a collection of FAQ-
items. Such techniques differ from techniques utilised in
traditional QA systems, such as FALCON (Harabagiu et al.,
2000), where a collection of documents are used to retrieve
an answer. Typically QA-systems first utilise information
retrieval techniques to select documents corresponding to
the question type and keywords from the question. Then
the answer is extracted from this subset of documents, for
instance, through pattern matching.
FAQ-systems are instead based on previously recorded
FAQ-items and utilise various techniques to identify the
FAQ-item(s) that best resembles the current question and
present a matching answer. For instance, the FAQFinder
system (Mlynarczyk and Lytinen, 2005), which uses ex-
isting FAQ knowledge bases to retrieve answers to natu-
ral language questions. FAQFinder utilises a mixture of
semantic and statistical methods for determining question
similarities. Another technique is to use a frequency-based
analysis from an ordinary FAQ with given/static questions
and answers (Ng’Ambi, 2002). Linguistic based automatic
FAQ systems often starts with finding the question word,
keywords, keyword heuristics, named entity recognition,
and so forth (Moldovan et al., 1999). Knowledge based
systems can also utilise dialogue to ask the user to guide
the search (Kurohashi and Higasa, 2000). Their knowledge
base has a dictionary-like structure based on domain con-
cepts.
One issue for automatic help-desk systems is that we have
often many-to-many mappings between requests and re-

sponses. A question is stated in many ways and, as humans
answer the requests, the response to a question can be stated
in many ways. The propositional content can also vary, al-
though operators re-use sentences, at least in e-mail help
desk-systems (Zukerman and Marom, 2006).
Help-desk e-mail conversations are further characterised
by: (1) having many requests raising multiple issues, (2)
having high language variability and (3) with many answers
utilising non-technical terms not matching technical terms
in the requests (Marom and Zukerman, 2007). In this paper
we will not consider (1), i.e. we will not present answers
comprising multiple issues.

2. Vector space models
To handle (2) and (3) above, it is natural to investigate tech-
niques that in various ways reduce the linguistic variabil-
ity and better capture semantically related concepts. One
prominent such technique is vector space models (Eldén,
2007). The basic idea is to formulate the problem in a ma-
trix terminology, usually by constructing a matrix using text
units as columns and letting the words in all text units each
have a row in the matrix. Then a certain entry in the ma-
trix is nonzero iff the word corresponding to the row exists
in the text unit represented by the column. There are also
other ways of representing text in a matrix but those will
not be discussed further here.

2.1. Latent Semantic Analysis

Latent Semantic Analysis (LSA) (Landauer and Dumais,
1997) is one of the most well-known vector space models
and has, among other things, been used on a limited help-
desk data set with promising results (Caron, 2000). When
using questions in an FAQ to compute a vector space model,
LSA uses Singular Value Decomposition(SVD) to find a
reduced vector space that fits the original as well as possible
using a lower ranked matrix.
The SVD factorizes a matrix A into A = USV T where U
is the new orthonormal basis for A, S is a diagonal matrix
denoting how prevalent each column is in the basis while
V T is the coordinates of the original documents using the
new basis.



It turns out that results are often improved when dimen-
sions that correspond to the lower values of S are removed
from the basis. This removes the orthogonality restraint be-
tween the different word vectors, and words that appear in
similar contexts will have a scalar product 6= 0. The prod-
uct of the l biggest values of S, Sl and the corresponding
columns and rows of Ul and V T

l makes the closest possible
approximation of A of rank l (Eldén, 2007).
One way to look at this is that the dimensionality reduction
is reducing the amount of noise in the data. An additional
bonus of reducing the rank of the SVD is that the result
is faster to compare with queries, due to fewer elements to
multiply. It is also less computationally demanding to com-
pute a partial SVD consisting of only the l biggest singular
values and the corresponding singular vectors than it takes
to compute a complete SVD factorization.
Answers to questions are retrieved based on how similar
they are to previous questions in the vector space, by chang-
ing the basis of the query to U and then compare likeness
with the coordinates in V T , often based on the cosine be-
tween the two (Caron, 2000).
For larger data sets SVD can be computationally demand-
ing. One way to improve scalability of LSA is by us-
ing Generalised Hebbian Learning (GHA) for SVD (Gor-
rell, 2006). This allows for incremental SVD and han-
dles very large data sets. When applied to a situation with
continuously added FAQs, the GHA approach may well
be preferred. For our current application the frequency of
novel requests is small, and simpler methods may suffice.
One such possibility is to reduce the dimensionality of the
matrix on which SVD is calculated using Random Index-
ing (Gorrell, 2006; Kanerva et al., 2000).

2.2. Random Indexing
Random Indexing is an incremental vector space model that
is computationally less demanding (Karlgren and Sahlgren,
2001). The Random Indexing model reduces dimensional-
ity by, instead of giving each word a whole dimension, it
gives them a random vector by a much lesser dimensional-
ity than the total number of words in the text.
Random Indexing differs from the basic vector space model
in that it doesn’t give each word an orthogonal unit vector.
Instead each word is given a vector of length 1 in a ran-
dom direction. The dimension of this randomized vector
will be chosen to be smaller than the amount of words in
the document, with the end result that not all words will be
orthogonal to each other since the rank of the matrix won’t
be high enough. This can be formulated as AT = Ã where
A is the original matrix representation of the d × w word-
document matrix as in the basic vector space model, T is
the random vectors as a w×k matrix representing the map-
ping between each word wi and the k-dimensional random
vectors, Ã is A projected down into d × k dimensions. A
query is then matched by first multiplying the query vector
with T , and then find the column in Ã that gave the best
match.
T is constructed by, for each column in T , each corre-
sponding to a row in A, selecting n different rows. n/2
of these are assigned the value 1/

√
(n), and the rest are

assigned −1/
√

(n). This ensures unit length, and that the

vectors are distributed evenly in the unit sphere of dimen-
sion k (Sahlgren, 2005). An even distribution will ensure
that every pair of vectors have a high probability to be or-
thogonal.
Information is lost during this process (pigeonhole princi-
ple, the fact that the rank of the reduced matrix is lower).
However, if used on a matrix with very few nonzero ele-
ments, the induced error will decrease as the likelihood of
a conflict in each document, and between documents, will
decrease.
Using Random Indexing on a matrix will introduce a cer-
tain error to the results. These errors will be introduced
by words that match with other words, i.e. the scalar prod-
uct between the corresponding vectors will be 6= 0. In the
matrix this will show either that false positive matches are
created for every word that have a nonzero scalar product
of any vector in the vector room of the matrix. False nega-
tives can also be created by words that have corresponding
vectors that cancel each other out.
Random Indexing has been used and compared to LSA on
the TOEFL test giving similar results on the tests, but with
a much reduced matrix (Kanerva et al., 2000).

3. Experiment
We will investigate the performance of these three tech-
niques, i.e. (1) standard Latent Semantic Analysis, (2) Ran-
dom Indexing and (3) Latent Semantic Analysis on a matrix
where Random Indexing is used to reduce the dimensional-
ity of the matrix before singular value decomposition. Per-
formance will be measured as calculation time as well as
precision and recall.
We have used a subset of the MEDLINE-corpus1. The subset
comprise 1003 documents and 30 test queries. The cor-
pus and test queries are parsed, stemmed and have stop
words removed. Stemming and removal of stop words are
performed since the information contained in them doesn’t
matter for the problem area and these actions will be very
likely to increase performance. The results are inserted into
a word-document matrix with words representing rows and
documents representing columns, resulting in a matrix with
3020 rows and 1063 columns.
MEDLINE is, admittedly, a small corpus, but it is publicly
available and sufficient to show if Random Indexing ap-
plied prior to computing SVD is more efficient. It should
also be sufficient to show what effects the usage of Random
Indexing have on precision and recall compared to LSA
with SVD on a Random Indexing reduced matrix.
To investigate how Random Indexing affects the computa-
tion time of the SVD we make two Random Indexing trans-
formations, one with half the size of the original matrix, i.e.
1500 rows, and one with a quarter of the original size, 750
rows. After this we run SVD on the original matrix and also
on both matrices reduced with Random Indexing. These re-
duced matrices contain a lot more nonzero values than the
original matrix, and our aim is to see how this trade off
between more non zero values versus fewer rows behave
performance wise.
We do this by first performing SVD for matrices with just a
few columns for all three alternatives, and then increasing

1www.dcs.gla.ac.uk/idom/ir resources/test collections



Figure 1: Scaling of SVD and of SVD used on Random Indexing reduced matrices

the amount of columns incrementally while measuring the
time it takes to perform the SVD.
We use precision and recall to compare the tech-
niques (Eldén, 2007). Precision measures how exact the
retrieval process is and is defined as the number of doc-
uments correctly retrieved divided by the total number of
documents Recall is a measure of how complete the re-
trieval process is and it is defined as the number of doc-
uments correctly retrieved divided by the total number of
correct documents.
To measure precision and recall we run tests with the 30
MEDLINE query entries and then compare the results to a
handmade set of correct answers, also publicly available.
We do this for the pure vector model sans LSA, for pure
LSA, for pure Random Indexing and lastly for LSA applied
on a matrix that have been reduced with Random Indexing.

4. Results
Our results show that SVD on a Random Indexing reduced
matrix with 1500 rows is about twice as fast as SVD on our
non-reduced matrix. Furthermore, the difference is more or
less independent on the number of columns used, see Fig-
ure 1. Using the more reduced matrix on 750 rows provides
even shorter running time, but the reduction is not as dra-
matic as the reduction from the original 3000 rows matrix
to the 1500 rows matrix.
Precision and Recall for LSA on Random Indexing reduced
matrices compared to Random Indexing and LSA show that
LSA on Random Indexing reduced matrices provides far

better results, for precision above 0,2, than Random Index-
ing, but slightly worse results than pure LSA, Figure 2. We
also see a loss in Precision and Recall for Random Index-
ing compared to not only our two versions of LSA, but also
to the pure vector space model. This seemingly contradict
(Karlgren and Sahlgren, 2001) who report similar perfor-
mance as for LSA (although for a different problem).

5. Summary
In this paper we have presented results from using Random
Indexing to reduce the dimensionality of the matrix used to
perform Singular Value Decomposition for Latent Seman-
tic Analysis. Our results show that Precision and Recall
are far better than using only Random Indexing and that
computation time for the Singular Value Decomposition is
almost halved compared to non-reduced matrices.
The presented results used a rather small data set, 1003 doc-
uments from the MEDLINE corpus, as it is readily available.
Consequently our original matrix has few rows. We be-
lieve, however, that the gain is most likely to increase sig-
nificantly if this test would have been conducted on a larger
matrix. Here we only used reductions of a half and a quar-
ter of the size, while on a real big problem it would be more
likely to be somewhere along the lines of two to three mag-
nitudes of change (Kanerva et al., 2000).

Acknowledgment
This research is financed by Santa Anna IT Research Insti-
tute AB.



Figure 2: Precision as a function of Recall for LSA, Random Indexing and LSA with Random Indexing reduced matrices

6. References
John Caron. 2000. Applying lsa to online customer sup-

port: A trial study. Master’s thesis, University of Col-
orado, Boulder.

Lars Eldén. 2007. Matrix Methods in Data Mining and
Pattern Recognition. Society for Industrial & Applied
Mathematics (SIAM).

Genevieve Gorrell. 2006. Generalized Hebbian Algorithm
for Dimensionality Reduction in Natural Language Pro-
cessing. Ph.D. thesis, Linköping University.

S. Harabagiu, D. Moldovan, M. Pasca, R. Mihalcea,
M. Surdeanu, R. Bunescu, R. Girju, V. Rus, and
P. Morarescu. 2000. FALCON: Boosting Knowledge for
Answer Engines. In Proceedings of Text Retrieval Con-
ference (TREC-9).

Pentti Kanerva, Jan Kristofersson, and Anders Holst. 2000.
Random indexing of text samples for latent semantic
analysis. In Proceedings of the 22nd Annual Conference
of the Cognitive Science Society. Erlbaum, 2000., page
1036.

Jussi Karlgren and Magnus Sahlgren. 2001. From words
to understanding. In Y. Uesaka, P.Kanerva, and H. Asoh,
editors, Foundations of Real-World Intelligence, chap-
ter 26, pages 294–308. Stanford: CSLI Publications.

Sadao Kurohashi and Wataru Higasa. 2000. Dialogue
helpsystem based on flexible matching of user query with
natural language knowledge base. In Proceedings of the
1st SIGdial workshop on Discourse and dialogue, pages
141–149, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Thomas K. Landauer and Susan T. Dumais. 1997. A so-
lution to Plato’s problem: The latent semantic analysis
theory of the acquisition, induction, and representation
of knowledge. Psychological Review, 104:211–240.

Yuval Marom and Ingrid Zukerman. 2007. A predic-

tive approach to help-desk response generation. In
Manuela M. Veloso, editor, Proceedings of IJCAI 2007,
Hyderabad, India, pages 1665–1670.

S. Mlynarczyk and S. Lytinen. 2005. Faqfinder question
answering improvements using question/answer match-
ing. In Proceedings of L&T-2005 - Human Language
Technologies as a Challenge for Computer Science and
Linguistics.

D. Moldovan, S. Harabagiu, M. Pasca, R. Mihalcea,
R. Goodrum, R. irji, and V. Rus. 1999. Lasso: A tool
for surfing the answer net.

D Ng’Ambi. 2002. Pre-empting user questions through an-
ticipation: data mining faq lists. In Proceedings of the
2002 Annual Research Conference of the South African
institute of Computer Scientists and information Tech-
nologists on Enablement Through Technology. ACM In-
ternational Conference Proceeding Series.

M. Sahlgren. 2005. An Introduction to Random Indexing.
Methods and Applications of Semantic Indexing Work-
shop at the 7th International Conference on Terminology
and Knowledge Engineering, TKE 2005.

Ingrid Zukerman and Yuval Marom. 2006. A comparative
study of information-gathering approaches for answering
help-desk email inquiries. In Proceedings of 19th Aus-
tralian Joint Conference on Artificial Intelligence, Ho-
bart, Australia.

Johan Åberg. 2002. Live Help Systems: An Approach
to Intelligent Help for Web Information Systems.
Ph.D. thesis, Linköpings universitet, Thesis No 745.
http://www.ida.liu.se/˜johab/articles/phd.pdf.


