
Iterative Implementation of Dialogue System Modules

Lars Degerstedt, Arne Jönsson

Department of Computer and Information Science
Linköping University, Sweden

larde@ida.liu.se, arnjo@ida.liu.se

Abstract

This paper presents an approach to the implementation of mod-
ules for dialogue systems. The implementation method is di-
vided into two distinct, but correlated, steps; Conceptual design
and Framework customisation. Conceptual design and frame-
work customisation are two mutually dependent sides of the
same phenomena, where the former is an on-paper activity that
results in a design document and the latter results in the actual
implementation. The method is iterative and applicable in vari-
ous phases of dialogue system development and also for differ-
ent dialogue system modules. We also present the development
of the dialogue management module in more detail. The devel-
opment space for such modules involves issues on modularisa-
tion, knowledge representation and interface functionality inter-
nally, and between modules. Orthogonal to this are the various
types of re-use for framework customisation; tools, framework
template and code patterns. Taken together they form a scheme
which is explored during the implementation process.

1. Introduction
Implementation of dialogue systems for new applications could
be viewed as a process of customising a generic framework to
fit the needs of a more specific application. For fairly simple
applications this can be carried out using predefined building
blocks, e.g.CSLU [1] and VoiceXML[2]. Another approach is
to develop tools that can be used to modify the behaviour of the
dialogue system by modifying parameters or writing dialogue
grammar rules using a graphical interface, cf.GULAN [3]. GU-
LAN was useful for educational purposes, but it did not allow
for more advanced changes of dialogue behaviour [4]. Further-
more, issues on how to customise parts of the dialogue system
to a new domain was not addressed. Although, we conform
to The Practical Dialogue Hypothesis[5], e.g. that conversa-
tional competence for practical dialogues is significantly sim-
pler to achieve than general human conversation, realisation of
more advanced dialogue systems still involves substantial work,
cf. [6].

In this paper we will outline a method for the implementa-
tion of modules for dialogue systems from generic frameworks,
such as,TRIPS[7], TRINDIKIT [8] and LINLIN [9]. We see the
contribution of our implementation method as a step towards a
tool for building dialogue systems that can be “adapted to each
new task relatively easy” [5]. However, this vision rests onThe
Domain-Independence Hypothesis[5], e.g. that the complexity
in the language interpretation and dialogue is independent of the
task being performed, which still needs to be verified.

The presented working method has been, and still is, devel-
oped in an evolutionary manner at our research group mainly on
the development of modules for information providing systems.

C
on

ce
pt

ua
l d

es
ig

n
F

ra
m

ew
or

k
cu

st
om

is
at

io
n

DS Requirements specification

Other modulesFramework

Module design

Customised module

Theory

Figure 1: Design and implementation of dialogue system mod-
ules

2. Method Overview
Development of a dialogue system (DS) can be viewed as an
iterative process involving four activities: Design, Implementa-
tion, Analysis, and Evaluation [10]. Our method focuses on De-
sign and Implementation, and does not, currently, cover Analy-
sis and Evaluation [10, 11]. On the other hand we believe that it
provides more guidance, especially for dialogue management1

(DM) design [12]. The method suggests to work iteratively from
the two anglesconceptual designandframework customisa-
tion. Conceptual design and framework customisation are seen
as two mutually dependent sides of the same phenomena.

The framework customisation starts out from a selected
framework (i.e. some development environment and tools) and
(some version of) the other modules of the dialogue system.
Figure 1 shows the twofold implementation process. The solid
lines depict the creative progression step. The dotted lines show,
point-by-point, how the two levels of the method correlate.

Consider, for instance, applying the method to the imple-
mentation of the interpretation module of a dialogue system.
The prerequisites for the Conceptual Design is a parsing theory
andDS Requirements Specifications. System requirements are
mainly acquired using suitable empirical methods such asWOZ

tests and dialogue distillations [13], and guidelines (cf. [14]).
The Design of the Interpretation module specifies how,

1We will not use the term Dialogue Manager as it, in this paper, is
important to distinguish between the running module in the customised
dialogue system and the generic framework from which it is developed.
We will instead use the termsDM module andDM framework to denote
the running module and the framework to be customised respectively.



within the parsing theory, theDS requirements at hand should be
realised. This is preferably done in terms of the selected parsing
theory, considering linguistic as well as knowledge representa-
tion issues.

Framework customisation for the Interpretation module is
typically constrained by the formats and requirements from the
dialogue management module and input format. Input to the In-
terpretation module varies. For instance, for a speech dialogue
system we can assume that the speech recogniser provides a
string of words or a ann-best list of strings. The Interpretation
framework often includes tools for parsing, e.g. a Chart parser.
The resulting Interpretation module includes the Lexicon and
Grammar for the final application.

However, although the scheme of the suggested implemen-
tation method is well suited for the interpretation module, we
need to further specify guidelines before we have a more com-
plete implementation method.

2.1. Iterative Thinking for Dialogue Systems

It is not possible to sequentially divide and implement the en-
tire system in one phase for sophisticated dialogue systems.
Through iterative thinking the realisation process can be di-
vided into more manageable pieces (cf. [15]). Through succes-
sive refinements and incremental development, the solution can
be reached gradually, as the understanding of the problem in-
creases, in an evolutionary manner.

Our implementation method focuses on early development
of a flexible architectural pattern and a working prototype for
the dialogue system. The method does not attempt to model
or control the implementation work flow sequentially. Instead
our view is to help the implementor in his own way of working
with well-defined methodological tools and concepts. We may
give suggestions, but he is in charge, for the particular project at
hand. He may chose to work breadth-first, depth-first, bottom-
up or top-down, as he wish. That is, byiterativewe understand
that the method should be highlyconfigurableandmulti-level,
or recursive, in its construction. Our use of frameworks is in-
tended to be highly configurable as well as recursive in nature.
The notion of modularisation is also recursive in nature and ap-
plies to each level of implementation.

The dialogue system can in fact be viewed as a module in
itself, the top-level, which is supposed to work for some sys-
tem environments and some system requirements, and, hence,
Figure 1 applies.

2.2. Iterative view of DS modularisation

Given that the method can be applied to various modules and
frameworks of a dialogue system, we have not yet discussed the
question of where to start the implementation for which guide-
lines are welcome. From an iterative standpoint this point will
depend on the project at hand, both on the problem as well as
other issues such as the skill and knowledge of the project work-
ers. Instead the method should, at least, point out how require-
ments, andDS capabilities are connected with prototypical ver-
sions of the standard modularisation scheme with modules for
interpretation, dialogue management, background system con-
trol, generation, and user-interface control. For example, if the
issue of separate utterances is in focus, then the interpretation
module should be built first. If a central point is in sub-dialogue
structures, then theDM module should be implemented next.

Our experience is that the framework provides guidance
even here. Conceptual design of the whole system based on the-
ories of communication and initial DS requirements sketches

often provide a starting point for the whole development pro-
cess.

2.3. Method Prerequisites

The implementation of a dialogue system module should be
done with specific means but yet conform to a generic work-
ing schema to be in harmony with realisation of other modules.

Prerequisites for the design are a requirements specification
of the dialogue system and selected dialogue theory.

The suggested implementation method is open for adjust-
ments of its prerequisites within a particular project. The selec-
tion of theory and framework chiefly affects the representation
and how its associated functionality is attached. The choice is
based partly on previous experience and partly on applicability.
For our own work, we mainly use concepts from theLINLIN

model together with a framework calledMALIN [16] (based on
architectural ideas from [17]). By analysis of the material we
may formulate the requirements specification. We suggest to
include the following two parts, as a minimum, in the specifica-
tion:

� classification of possible dialogues and identification of
the main use-cases.

� specification of the requirements for the system be-
haviour in each class of dialogues using notions of the
selected theory.

2.4. The DM Module as Pilot

Given a fair amount of frameworks for various tasks, such as
parsing, generation and dialogue management, sometimes a
good starting point is dialogue management. Most dialogue
systems view the dialogue manager as the central control unit.
This has nothing to do with the architecture of the dialogue
system, and is, we believe, true also for agent architectures,
cf. [18, 19]. Furthermore, it is mainly issues on context and
topic [10] around which information flow is defined, which
in turn are imperative for dialogue history.DM design in-
volves specifying the Conceptual design of dialogue manage-
ment. In our view onDM capabilities this means specifying
data structures for dialogue history, interpretation of user re-
quests based on user actions and dialogue history content, and
dialogue phases and sub-dialogue control.

Once this has been carried out the development of the var-
ious modules can be done more or less in parallel, though, as
stated above in an iterative fashion, i.e. we do not believe that
each development team can take theDM design and develop a
module without interactions with the other parts of the dialogue
system.

The DM module has served as pilot study in our work to-
wards a general method. For the remainder of this paper we
will, therefore, focus on the iterative realisation of theDM mod-
ule, i.e. the process ofDM design andDM customisation.

In MALIN -DM, the requirements include classification of
the dialogue patterns into equivalence groups, or dialogue acts,
on two levels: for individual utterances and sub-dialogues. Cen-
tral dialogue patterns are selected as use-cases for which the
corresponding flow of information in the dialogue system is
analysed in more detail. Furthermore, for each such group we
typically assign (shortly and in informal terms) the correspond-
ing system functionality for the customisedDM module, e.g. in
terms of system commands, a form of help request or a query
pattern.



3. The Twofold DM Implementation Step
Design and customisation of theDM module are performed by
point-wise connecting conceptual issues with those of the se-
lectedDM framework. ConceptualDM design is an on-paper
activity that results in adesign document. The result of theDM

framework customisation is the actualimplementation, cf. 1.
The DM design constructs must be effectively realisable

within the selected framework. TheDM framework customisa-
tion should strive for a visible connection to the design. More-
over, the design and customisation should strive for a visible,
but perhaps non-trivial, connection to theDM theory andDS re-
quirements from which they start.

The remainder of this section contains a subdivision of both
the design and customisation that describes the results of the
twofold implementation step. We can view these subdivisions
as two orthogonal parameters which forms the space to explore
during the implementation process, as shown in Figure 2. Each
tuple within this space represents a special sub-issue that should
be tackled during the realisation of theDM module, e.g. how to
structure the dialogue representation using a particular knowl-
edge representation tool such as theMALIN -DG tool.

3.1. Dialogue Management Design

The DM design should preferably focus on input-output rela-
tions for the DM submodules (such as their data exchange)
rather than control issues (such as their slave-master-relations).
The DM design document can be relatively brief. There is no
need to put down near-implementation information on paper
since theDM module is built in parallel with the design. How-
ever, theDM design document, preferably, establishes some no-
tion of correctness and completeness in terms of the selected
DM theory and the requirements specification.

The finished design document for theDM module should
normally, at least, include discussions on:

� modularisation: identification of sub-units of theDM

module and defining their responsibilities. Submodules
are identified on three levels: control, handlers and meth-
ods. ForLINLIN examples from these levels are dialogue
tree construction, the focus inheritance algorithm, and
background system access, respectively.

� knowledge representation: identification and abstract
formulation of data representation for theDM module.
This part is preferably kept in formal or semi-formal
terms with selected use-cases.

� interfaces: formulation of interface functionality and
(sub)module dependencies that defines the central data
flows of the DM module, both internally and towards
other modules.

3.2. DM Framework Customisation

The starting point for the actual implementation of aDM mod-
ule is the selectedDM framework. We viewclear-cut bor-
dersbetween framework and application as the main criteria for
successful customisation. Another issue is, of course, that the
framework should be generic and provide support for as many
DM tasks as possible. However, in practise this ambition often
conflicts with the fact that frameworks becomes straight-jackets
rather than supporting tools. Instead we distinguish between
different forms of re-use for theDM implementation that can
be used in parallel and complement each other. We distinguish
between:

DM
design

Kno
wled

ge

rep
res

en
tat

ion

x x

x

xx x

xx

xpatterns

Tools

Code

In
ter

fac
es

M
od

ula
ris

ati
on

DM framework
customisation

templates
Framework

Figure 2: Development space for the twofoldDM implementa-
tion step

� DM tools: customisation through well-defined parameter
settings and data representation files.

� DM framework templates: framework templates and
application-specific code are kept in separate code trees
with clear-cut borders and only one-way module depen-
dencies from framework to application (cf. [20]).

� DM code patterns: submodules, edited code patterns
and other forms of textual re-use (cf. [21]).

During the customisation process all three forms of re-use have
their place. The tools are a strong form of re-use but often lim-
ited in scope and flexibility. An example of such a tool in the
MALIN -DM framework is aMALIN -DG compiler for dialogue
grammars [22], which is specialised for declarative generation
of dialogue trees. The use of framework templates is typically
a more complex process but offers more support for construc-
tion of a complete application. Code patterns are the weakest
form of re-use that yields important prototypical code and data
skeletons to work from. Pattern re-use often occurs due to fuzzy
similarities between domains that cannot easily be captured in
frameworks or tools, e.g. similarities w.r.t. temporal aspects, or
focus inheritance.

4. Our view on DM Capabilities
We define a set ofDM capabilities that further instantiates the
method scheme of Figure 2. The identifiedDM capabilities
should be viewed as notions ofmodule requirements rather
than design concepts. That is, these capabilities are only loosely
related to system design choices such as the choice ofDM archi-
tecture. The capabilities are intended to support the organiza-
tion of specification properties for aDM module, not to give
the final implementation automatically. We have, so far, found
it sufficient to distinguish between the following fairly general
types ofDM capabilities:

� dialogue history: the DM module creates and holds a
model of the dialogue history. The model is accessible
both internally inDM and externally through search in-
terfaces.

� user request handling: the DM module groups and
maps user actions as different types of requests and coor-
dinates/performs the corresponding system executions.



� sub-dialogue control: the DM module selects the dia-
logue strategy at each dialogue state.

This distinction divides the construction process into the three
stages with focus on the full high-level picture, specific system
functionalities, and central sub-processes, respectively.

We suggest to organize the implementation work mainly
from the perspective of theseDM capabilities. For each capabil-
ity it is suggested to solve the relatedDS specification require-
ments from the two viewpoints of design and customisation, as
given by the tuples of Figure 2. TheDM capabilities can, in
fact, be seen as a third dimension that is orthogonal with the
design and customisation dimensions of Figure 2. However, it
is a moreDMspecific dimension.

5. Summary
In this paper we have presented a method for the implemen-
tation of dialogue system modules. The method unifies issues
of conceptual design with a clear correspondence to the com-
ponents of the customisation of a generic framework. One im-
portant aspect is the emphasis on iterative development. Each
phase, conceptual design and framework customisation, is iter-
ated during the implementation of a module. Furthermore, the
twofold implementation step is iterated between modules.

The method allows for implementation of fairly competent
dialogue systems. We also believe that the method is applicable
for realisation of various modules in a dialogue system, but to
be complete, guidelines must be specified for each such type of
module.

6. References
[1] Michael F. McTear, “Software to support research and

development of spoken dialogue systems,” inProceedings
of Eurospeech’99, Budapest, Hungary, 1999.

[2] Eric D. Tober and Robert Marchand, “Voicexml tutorials,”
http://www.voicexml.org/, available March 2001.

[3] Joakim Gustafson, Patrik Elmberg, Rolf Carlson, and
Arne Jönsson, “An educational dialogue system with a
user controllable dialogue manager,” inProceedings of
ICSLP’98, Sydney, Australia, 1998.

[4] Pernilla Qvarfordt and Arne J¨onsson, “Evaluating the di-
alogue component in the gulan educational system,” in
Proceedings of Eurospeech’99, Budapest, Hungary, 1999.

[5] James Allen, Donna Byron, Myroslava Dzikovska,
George Ferguson, Lucian Galescu, and Amanda Stent,
“Towards conversational human-computer interaction,”
AI Magazine, 2001.

[6] Susan W. McRoy and Syed S. Ali, “A practical declarative
model of dialog,” Electronic Transactions on Artificial
Intelligence, 2001.

[7] James Allen, Donna Byron, Myroslava Dzikovska,
George Ferguson, Lucian Galescu, and Amanda Stent,
“An architecture for a generic dialogue shell,”Natural
Language Engineering, vol. 6, no. 3, pp. 1–16, 2000.

[8] Staffan Larsson, Robin Cooper, Elisabet Engdahl, and Pe-
ter Ljunglöf, “Information state and dialogue move en-
gines,” Electronic Transactions on Artificial Intelligence,
2001.

[9] Arne Jönsson, “A method for development of dialogue
managers for natural language interfaces,” inProceedings

of the Eleventh National Conference of Artificial Intelli-
gence, Washington DC, 1993, pp. 190–195.

[10] Joris Hulstijn,Dialogue Models for Inquiry and Transac-
tion, Ph.D. thesis, Universiteit Twente, 2000.

[11] Niels Ole Bernsen, Hans Dybkjær, and Laila Dybkjær,
Designing Interactive Speech Systems. From First Ideas
to User Testing, Springer Verlag, 1998.

[12] Lars Degerstedt and Arne J¨onsson, “A method for system-
atic implementation of dialogue management,” inWork-
shop notes from the 2nd IJCAI Workshop on Knowledge
and Reasoning in Practical Dialogue Systems, 2001.

[13] Arne Jönsson and Nils Dahlb¨ack, “Distilling dialogues -
a method using natural dialogue corpora for dialogue sys-
tems development,” inProceedings of 6th Applied Natural
Language Processing Conference, 2000, pp. 44–51.

[14] DISC, “Dialogue management grid,” Tech. Rep.,
http://www.disc2.dk/slds/dm/dmgrid-details.html, avail-
able February 2001, 1999.

[15] Philippe Krutchen,The Rational Unified Process, An In-
troduction, 2nd edition, Addison-Wesley, 2000.

[16] Nils Dahlbäck, Annika Flycht-Eriksson, Arne J¨onsson,
and Pernilla Qvarfordt, “An architecture for multi-modal
natural dialogue systems,” inProceedings of ESCA Tuto-
rial and Research Workshop (ETRW) on Interactive Dia-
logue in Multi-Modal Systems, Germany, 1999.

[17] Arne Jönsson, “A model for habitable and efficient dia-
logue management for natural language interaction,”Nat-
ural Language Engineering, vol. 3, no. 2/3, pp. 103–122,
1997.

[18] John Aberdeen, Sam Bayer, Sasha Caskey, Lauire Dami-
anos, Alan Goldschen, Lynette Hirschman, Dan Loehr,
and Hugo Trappe, “Implementing practical dialogue sys-
tems with the darpa communicator architecture,” inPro-
ceedings of IJCAI-99 Workshop on Knowledge and Rea-
soning in Practical Dialogue Systems, August, Stockholm,
1999.

[19] David L. Martin, Adam J. Cheyer, and Douglas B. Moran,
“The open agent architecture: A framework for building
distributed software systems,”Applied Artificial Intelli-
gence, vol. 13, no. 1-2, pp. 91–128, January-March 1999.

[20] Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E.
Johnson, Building Application Frameworks: Object-
Oriented Foundations of Framework Design, Wiley, 1999.

[21] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides,Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley Professional Com-
puting Series, 1995.

[22] Lars Degerstedt, Arne J¨onsson, and Lars Ahrenberg,
“Declarative dialogue design in an object-oriented envi-
ronment,” Unpublished manuscript, 2000.


